
PHYSICAL REVIEW D 71, 063520 (2005)
Inflation from superstring and M-theory compactification with higher order corrections
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We study time-dependent solutions in M and superstring theories with higher-order corrections. We first
present general field equations for theories of Lovelock type with stringy corrections in arbitrary
dimensions. We then exhaust all exact and asymptotic solutions of exponential and power-law expansions
in the theory with Gauss-Bonnet terms relevant to heterotic strings and in the theories with quartic
corrections corresponding to the M theory and type II superstrings. We discuss interesting inflationary
solutions that can generate enough e foldings in the early universe.
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I. INTRODUCTION

There are two major questions that confront the current
cosmology. One is the horizon problem which asks why the
early universe is highly homogeneous beyond causally
disconnected regions. The other is the flatness problem:
why does the present universe appear so extremely flat? It
is widely believed that these can be resolved once we
accept that our universe underwent an inflationary evolu-
tion in the early epoch. The recent cosmological observa-
tion confirmed the existence of the early inflationary
cosmological epoch as well as the accelerated expansion
of the present universe [1].

Though it is not difficult to construct cosmological
models with these features if one introduces scalar fields
with suitable potentials, it is desirable to derive such a
model from the fundamental theories of particle physics
that incorporate gravity without making special assump-
tions in the theories. The most promising candidates for
such theories are the 10-dimensional superstrings or 11-
dimensional M theory, which are hoped to give models of
accelerated expansion of the universe upon compactifica-
tion to four dimensions.

However, it was believed that there was a ‘‘no-go’’
theorem which forbids such solutions if the six- or seven-
dimensional internal space is a time-independent nonsin-
gular compact manifold without boundary [2]. Progress
has recently been made by the discovery that this no-go
theorem can be evaded if the size of the internal space
depends on time. In fact, it has been shown that a model
with a certain period of accelerated expansion can be
obtained from the higher-dimensional vacuum Einstein
equation if one takes the internal space hyperbolic and its
size depending on time [3]. It has been shown [4] that this
class of models is obtained from what are known as
S branes [5,6] in the limit of vanishing flux of three-form
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fields (see also [7]). It is found that this wider class of
solutions give accelerating universes for internal spaces
with zero and positive curvature as well if the flux is
introduced. Further discussion of this class of models has
been given in Refs. [8–12].

It turns out, however, that the models thus obtained do
not give enough e foldings necessary to explain the cos-
mological problems mentioned above [4,8]. The reason for
this can be understood from the viewpoint of the effective
four-dimensional theory, where one gets gravitational the-
ory coupled to scalar fields which characterize the sizes of
the internal spaces. Typically one finds exponential poten-
tial, and the slope for the scalar fields in this potential is too
steep to produce large enough expansion [10]. Some efforts
to overcome this problem were made in the present frame-
work in Ref. [11].

The scale when the acceleration occurs in this type of
model is basically governed by the Planck scale in the
higher ten or 11 dimensions. With phenomena at such
high energy, it is expected that we cannot ignore higher-
order corrections such as higher derivative terms in the
theories at least in the early universe. It is known that there
are terms of higher orders in the curvature to the lowest
effective supergravity action coming from superstrings or
M theory [13–15]. With such corrections, they will signifi-
cantly affect the inflation at the early stage of the evolution
of our universe.

The cosmological models in higher dimensions were
studied intensively in the 1980’s by many authors [16–
19]. It was shown that inflation is indeed possible with
higher-order curvature corrections [17,18]. (The no-go
theorem does not apply to theories with higher derivatives.)
In particular the model with the Gauss-Bonnet (GB) terms
is interesting because they are the special combination
without ghost [20] and they exist as higher-order correc-
tions in the heterotic string theories [13]. It was shown that
there are two exponentially expanding solutions, which
may be called generalized de Sitter solutions since the
size of the internal space also depends on time (otherwise
-1  2005 The American Physical Society
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there is no solution of this type) [18]. In both solutions, the
external space inflates, while the internal space shrinks
exponentially. (There are also two time-reversed solutions,
i.e., the external space shrinks exponentially but the inter-
nal space inflates.) One solution is stable and the other is
unstable. Since the present universe is not in the phase of
de Sitter expansion with this energy scale, we cannot use
the stable solution for a realistic universe. If we adopt the
unstable solution, on the other hand, we may not find
sufficient inflation unless we fine-tune the initial values.
The higher-order curvature terms called Lovelock gravity
[21] and other types [22] were also considered in higher-
dimensional cosmology.

A good news is that large e-folding number was ob-
tained in these models. However, most of the work con-
sidered powers of scalar curvature or Lovelock gravity,
which are not the types of corrections known to arise in
superstring theories or M theory. It is thus important to
examine if the above result of small e folding is modified
with higher-order corrections expected in these fundamen-
tal theories. In our previous paper [23], we have presented
brief report of our results on this problem for M theory.
Here we give the details of our results in M theory as well
as superstrings. We focus on the solutions to the vacuum
Einstein equations with higher-order corrections since the
basic feature can be obtained in this simple setting. In this
paper, we exhaust exact solutions as well as past and future
asymptotic solutions and discuss inflationary solutions
among them. The past and future asymptotic solutions
are useful in describing the inflation at the early universe
and the present accelerating cosmology, respectively. In a
forthcoming paper [24], we shall discuss more detailed
properties of these solutions including stability and pos-
sible scenario for the history of our universe.

In the next section, we present our actions and field
equations to be solved. We write down these for D � 1�
p� q dimensions with p external and q internal space
dimensions. Though we are mainly interested in p � 3 in
this paper, there may be interesting applications if we keep
the dimension p arbitrary. Also we give the equations for
maximally symmetric spaces with nonvanishing curva-
tures. Their explicit forms are given in Appendixes A, B,
and C. The Lovelock part of the field equations generalizes
those in Ref. [21] and should be useful for examining
various other nontrivial solutions. We also discuss the
relation of the solutions to those in the Einstein frame in
�p� 1� dimensions.

In Sec. III, we examine solutions to the vacuum Einstein
equations with GB corrections, corresponding to the het-
erotic strings [13,14]. We exhaust possible generalized
de Sitter and power-law solutions, and find inflationary
models for several types of internal spaces with positive,
zero, and negative curvatures. We find that exponential
type solutions are possible for flat external and internal
spaces, corresponding to those solutions obtained in the
1980’s by Ishihara [18].
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In type II superstrings or M theory, it is known that the
coefficient of the GB terms is zero and the first higher
corrections start with R4 terms [15]. We study this case and
find interesting solutions of exponential and power-law
expansions in Sec. IV.

Finally in Sec. V, we summarize our solutions and
discuss inflationary solutions. We find that some solutions
do not give inflations in the Einstein frame in four dimen-
sions even though they appear to give inflations in the
original frame, and that there are peculiar cases in which
inflation appears to be realized in the Einstein frame
though the external space is shrinking in the original frame.
We discuss which solutions are suitable for interesting
cosmologies.
II. VACUUM EINSTEIN EQUATIONS WITH
HIGHER-ORDER TERMS

We consider the low-energy effective action for super-
strings (D � 10) or M theory (D � 11) with higher-order
corrections in D dimensions:

S �
X4
n�1

Sn � SS; (2.1)

with

S1 � SEH �

1
2�2D

Z
dDx

�������
�g

p
R; (2.2)

S2 � SGB �

2
2�2D

Z
dDx

�������
�g

p
�R2���� � 4R2�� � R2	;

(2.3)

S3 �

3
2�2D

Z
dDx

�������
�g

p ~E6; (2.4)

S4 �

4
2�2D

Z
dDx

�������
�g

p ~E8; (2.5)

SS �
�

2�2D

Z
dDx

�������
�g

p ~J0; (2.6)

where

~E2n � �
1

2n�D� 2n�!
�
1



D�2n�1�1...�n�n

� �
1



D�2n�1�1...�n�n
R�1�1

�1�1 
 
 
R
�n�n

�n�n ; (2.7)

~J 0 � R����R
���R�
��
R�

���

�
1

2
R����R
���R�

��
R�
���: (2.8)

Here we have dropped contributions from forms and dila-
tons (if they exist), �2D is a D-dimensional gravitational
constant, and we leave the coefficients 
1; . . . ; 
4 and �
free. The coefficient 
1 of the Einstein-Hilbert (EH) term
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is 1 by definition, and though 
3 is zero for all superstrings
and M theory, we have included it since it will be useful for
examining other cases. For the heterotic strings, the leading
correction is given by the GB terms with the coefficient
[13,14]:


2 �
1

8

0; (2.9)

multiplied by an exponential factor of the dilaton, where 
0

is the Regge slope parameter. So it is not immediately
obvious if our solutions are valid within the full string
theories. Nevertheless they would give solutions for con-
stant dilaton, and our results for these cases should be
understood with this restriction. For the M theory in 11
dimensions, the coefficient for the GB terms 
2 vanishes,
so we should consider fourth-order terms with the coeffi-
cients [15]:


2 � 
3 � 0; 
4 � �
�211T2

32 � 29 � �2��4
;

� � �
�211T2

3� 24 � �2��4
;

(2.10)

where T2 � �2�2=�211�
1=3 is the membrane tension. Type II

superstring has the same couplings as M theory in 10
dimensions, so we can discuss this case if we keep the
dilaton field constant and ignore the contributions from
other fields. We should also note that contributions of the
Ricci tensor R�� and scalar curvature R are not included in
the fourth-order corrections (2.6) because these terms are
not uniquely fixed.
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A. Basic equations for cosmology

Since we are interested in cosmological solutions, we
take the metric of our D-dimensional space as

ds2D � �N2�t�dt2 � a2�t�ds2p � b2�t�ds2q; (2.11)

with

N�t� � eu0�t�; a�t� � eu1�t�; b�t� � eu2�t�; (2.12)

where D � 1� p� q. The external p- and internal
q-dimensional spaces (ds2p and ds2q) are chosen to be
maximally symmetric. The curvature constants of those
spaces are defined by �p and �q. The sign of �p (�q)
determines the type of maximally symmetric spaces, i.e.,
�p (or �q) � � 1, 0, and 1 denote a hyperbolic space, a
flat Euclidean space, and a sphere, respectively. The vol-
umes of the hyperbolic and flat spaces are made finite by
dividing by discrete isometry.

From the variation of the total action (2.1) with respect
to u0; u1 and u2, we find three basic field equations:

F �
X4
n�1

Fn � FS � 0; (2.13)

F�p� �
X4
n�1

f�p�n � X
X4
n�1

g�p�n � Y
X4
n�1

h�p�n � F�p�
S � 0;

(2.14)

F�q� �
X4
n�1

f�q�n � Y
X4
n�1

g�q�n � X
X4
n�1

h�q�n � F�q�
S � 0;

(2.15)

where X � �u1 � _u0 _u1 � _u21, Y � �u2 � _u0 _u2 � _u22, and
Fn � Fn�u0; _u1; _u2; Ap; Aq�; FS � �u0; u1; u2; _u0; _u1; _u2; �u1; �u2; u
:::
1; u
:::
2; X; Y; _X; _Y�;

f�p�n � f�p�n �u0; _u1; _u2; Ap; Aq�; g�p�n � g�p�n �u0; _u1; _u2; Ap; Aq�; h�p�n � h�p�n �u0; _u1; _u2; Ap; Aq�;

F�p�
S � F�p�

S �u0; u1; u2; _u0; _u1; _u2; �u1; �u2; u
:::
1; u
:::
2; X; Y; _X; _Y; �X; �Y�; f�q�n � f�q�n �u0; _u1; _u2; Ap; Aq�;

g�q�n � g�q�n �u0; _u1; _u2; Ap; Aq�; h�q�n � h�q�n �u0; _u1; _u2; Ap; Aq�;

F�q�
S � F�q�

S �u0; u1; u2; _u0; _u1; _u2; �u1; �u2; u
:::
1; u
:::
2; X; Y; _X; _Y; �X; �Y�;

(2.16)
are explicitly given in Appendix A. Here Ap and Aq are
defined by

Ap � _u21 � �p exp�2�u0 � u1�	;

Aq � _u22 � �q exp�2�u0 � u2�	:
(2.17)

Since u0 is a gauge freedom of time coordinate, we have
three equations for two variables u1 and u2. It looks like an
over-determinant system. However, these three equations
are not independent. In fact, we can derive the following
equation after bothersome calculation:
_F� �p _u1 � q _u2 � _u0�F � p _u1F�p� � q _u2F�q�: (2.18)

If F � 0 and F�p� � 0 (or F�q� � 0), we obtain _u2F�q� � 0
(or _u1F�p� � 0), since F � 0 is a constraint equation and
its time derivative also vanishes. The third equation F�q� �

0 (or F�p� � 0) is then automatically satisfied unless _u2 �
0 (or _u1 � 0). On the other hand, suppose we have only
F�p� � 0 and F�q� � 0. Then Eq. (2.18) gives

F � Ceu0��pu1�qu2�; (2.19)
-3



KEI-ICHI MAEDA AND NOBUYOSHI OHTA PHYSICAL REVIEW D 71, 063520 (2005)
where C is an integration constant. Upon imposing the
initial condition F � 0 in (2.19), we get C � 0 and hence
F � 0. This means that the constraint equation is satisfied
if other dynamical equations are solved and it is initially
satisfied. Consequently, it is in general not enough to solve
the dynamical equations F�p� � F�q� � 0 only, but enough
to solve the two equations F � 0 and F�p� � 0 (or F�q� �
0) instead of trying to solve all three equations.

B. Ansatz for solutions

We now analyze our basic equations (2.13), (2.14), and
(2.15) for several models and look for inflationary solu-
tions. Since we are interested in analytic solutions, we
study the following two cases:
(i) G
eneralized de Sitter solutions: Using a cosmic
time, i.e., u0 � 0, an exponential expansion of
each scale factor is given by u1 � �t� lna0, and
u2 � �t� lnb0, where �; �; a0 and b0 are con-
stants.
(ii) P
ower-law solutions: To find a power-law solution,
although we can discuss it with the above cosmic
time, we use a different time gauge, which is defined
by u0 � t. Using this time coordinate, a power-law
solution is given by u1 � �t� lna0, and u2 � �t�
lnb0, where � and � are constants.
The choice of time coordinate in (ii) is more convenient
than the cosmic time in (i) because we can discuss both
solutions in the same set up. Namely, we can write

u0 � �t; u1 � �t� lna0; and u2 � �t� lnb0;

(2.20)

where � � 0 for case (i), while � � 1 for case (ii). In the
latter case, in terms of a new cosmic time ) � et, we see
that the solution gives the power-law behavior:

a � eu1 � a0)�; and b � eu2 � b0)�: (2.21)

Note that when the curvature constant �p (or �q) vanishes,
a0 and b0 are arbitrary but we can set a0 � 1 (or b0 � 1)
because such a numerical constant can be absorbed by
rescaling of the spatial coordinates.

C. Description in the Einstein frame

After the internal space is compactified, we observe
physical variables in the �1� p�-dimensional Einstein
frame, which is defined by

ds2D � e�2�q=�p�1�	*��dt2E � a2Eds
2
p� � e2*ds2q; (2.22)

where tE, aE, and *�� u2 � lnb� are a cosmic time, a
scale factor, and a scalar field parametrizing the size of the
internal space in the Einstein frame, respectively.
Comparing Eqs. (2.11) and (2.22), we find the relations

eu0dt � 
e��q=�p�1�	*dtE; (2.23)
063520
eu1 � e��q=�p�1�	*aE; (2.24)

u2 � *: (2.25)

The sign 
 in Eq. (2.23) is chosen so that two time
coordinates proceed in the same (future) direction. The
solutions in the form (2.20) can be rewritten in the
Einstein frame as follows:
(i) �
-4
� 0 and � > 0

tE � t�0�E e�q=�p�1�	�t; (2.26)

aE � a�0�E

�������� tE
t�0�E

���������
; (2.27)

* � *�0� �
�p� 1��

q
ln

�������� tE
t�0�E

��������; (2.28)

where t�0�E �>0�, a�0�E , and *�0� are integration con-
stants, and

� � 1�
�p� 1��

q�
: (2.29)

If �=� > 0, this solution gives a power-law infla-
tion in the Einstein frame. t � �1 and t � 1
correspond to tE � 0 and tE � 1, respectively.
(ii) �
 � 0 and � < 0

tE � t�0�E e�q=�p�1�	�t; (2.30)

where t�0�E �<0� is an integration constant, and aE
and * are the same as Eqs. (2.27) and (2.28). t 2
��1;1� is transformed into tE 2 ��1; 0�. t �
�1 and t � 1 correspond to tE � �1 and tE �
0, respectively. In this case the inflationary solu-
tions in the Einstein frame are obtained for � < 0,
i.e., when tE ! 0�, aE diverges as jtEj�j�j. This is
called a superinflation in Kaluza-Klein cosmology
[16,25]. Since the asymptotic behavior as tE ! 0
does not explain the present universe, we have to
avoid a singularity at tE � 0. Then, we have to
clarify a mechanism to avoid the singularity at tE �
0. The same problem was found in the Kaluza-
Klein inflation in the 1980’s [16]. In a pre–big
bang scenario, we also find a similar inflation in
the string frame [26].
Note that even for �> 0, this class of solutions in
general do not give inflationary solutions in the
Einstein frame.
(iii) �
 � 0 and � � 0

tE � e�q=�p�1�	*
�0�
t; (2.31)

aE � a�0�E exp��e
��q=�p�1�	*�0�

tE	; (2.32)

* � *�0�; (2.33)

where a�0�E and *�0� are constants. Rescaling the
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time coordinate, we can set *�0� � 0, i.e., tE � t
and aE / exp��tE�. This solution gives an expo-
nential expansion even in the Einstein frame for
�> 0.
(iv) �
 � 1 and � >���p� 1�=q	

tE � t�0�E ef1��q=�p�1�	�gt; (2.34)

aE � a�0�E

�������� tE
t�0�E

���������
; (2.35)

* � *�0� �
�p� 1��

�p� 1� � q�
ln

�������� tE
t�0�E

��������; (2.36)

where t�0�E �>0�, a�0�E , and *�0� are integration con-
stants, and

� �
�p� 1��� q�
�p� 1� � q�

: (2.37)

This solution gives a power-law inflation in the
Einstein frame if �> 1. Note that �> 1 gives a
power-law inflation in the original frame. t � �1
and t � 1 correspond to tE � 0 and tE � 1,
respectively.
(v) �
 � 1 and � <���p� 1�=q	

tE � t�0�E ef1��q=�p�1�	�gt; (2.38)

where t�0�E �<0� is an integration constant, and aE
and * are the same as Eqs. (2.35) and (2.36). t 2
��1;1� is transformed into tE 2 ��1; 0�. t �
�1 and t � 1 correspond to tE � �1 and tE �
0, respectively. Here the inflationary solutions in
the Einstein frame are obtained for � < 0 (a
superinflation).
(vi) �
 � 1 and � � ���p� 1�=q	

tE � efq=��p�1�	g*
�0�
t; (2.39)

aE � a�0�E exp���� 1�e�fq=��p�1�	g*�0�
tE	; (2.40)

* � *�0� �
�p� 1�

q
e�fq=��p�1�	g*�0�

tE; (2.41)

where *�0� can be set zero by rescaling time coor-
dinate, i.e., tE � t. This solution gives an exponen-
tial expansion in the Einstein frame if �> 1.
Rescaling the time coordinate, we find tE � t, aE /
exp���� 1�tE	, and * � ���p� 1�=q	tE.
These will be useful in discussing the results in the
Einstein frame.

III. SOLUTIONS IN HETEROTIC STRINGS

The higher-order corrections for heterotic strings start
with the GB terms. So in this section, we first study various
solutions of the field equations only with EH and GB
063520
terms, which are given by

F1 � F2 � 0; (3.1)

F�p�
1 � F�p�

2 � 0; (3.2)

F�q�
1 � F�q�

2 � 0; (3.3)

where

F1 � F1�t; �; �; �; Ap; Aq�;

F2 � F2�t; �; �; �; Ap; Aq�;

F�p�
1 � f�p�1 �t; �; �; �; Ap; Aq� � Xg�p�1 �t; �; �; �; Ap; Aq�

� Yh�p�1 �t; �; �; �; Ap; Aq�;

F�p�
2 � f�p�2 �t; �; �; �; Ap; Aq� � Xg�p�2 �t; �; �; �; Ap; Aq�

� Yh�p�2 �t; �; �; �; Ap; Aq�;

F�q�
1 � f�q�1 �t; �;�; �; Ap; Aq� � Yg�q�1 �t; �; �; �; Ap; Aq�

� Xh�q�1 �t; �; �; �; Ap; Aq�;

F�q�
2 � f�q�2 �t; �;�; �; Ap; Aq� � Yg�q�2 �t; �; �; �; Ap; Aq�

� Xh�q�2 �t; �; �; �; Ap; Aq�; (3.4)

whose explicit expressions are given in Appendix B. Here
we have three equations for two unknown parameters �
and �. However, two of them are independent because we
have one constraint Eq. (2.18).

From Eq. (B2), we expect there may exist no exact
solution except for the case of �p � �q � 0. However,
even for the case of �p � 0 or �q � 0, we may have some
asymptotic analytic solutions either in the future direction
(t ! 1) or in the past direction (t ! �1), which describe
cosmologies in these time regions. We classify solutions to
Eqs. (3.1), (3.2), and (3.3) by the signatures of �p and �q.

A. �p � �q � 0

In this case, Ap � �2 and Aq � �2 are constants. We
have two classes of solutions:
(i) e
-5
xact solutions for � � 0 (generalized de Sitter
solutions),
(ii) a
symptotic solutions for � � 1 (power-law
solutions),
which are summarized below.

1. Generalized de Sitter solutions (� � 0)

We have three basic equations one of which is a con-
straint equation. In this case, however, as discussed in
Appendix C, if the solution is not the Minkowski space
(� � � � 0), we can find two independent algebraic equa-
tions without any constraint equation:

F1��; �� � F2��; �� � 0; (3.5)

H1��; �� �H2��; �� � 0; (3.6)
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which are given in Appendix C, i.e.,


1�p1�
2 � q1�

2 � 2pq��	 � 
2�p3�
4�

6p1q1�2�2 � q3�4 � 4���p2q�2 � pq2�2�	 � 0; (3.7)

��� ��f
1 � 2
2��p� 1�2�2�

2�p� 1��q� 1���� �q� 1�2�2	g � 0: (3.8)

Now we have two branches of solutions: one is � � �, and
the other is


1 � 2
2��p� 1�2�2 � 2�p� 1��q� 1����

�q� 1�2�2	 � 0: (3.9)
(i) I
nserting � � � into Eq. (3.7), we find either
Minkowski space � � � � 0, or another solution,
i.e.,

� � �

� 


�������������������������������������������������������������������������������������
�


1�p1 � q1 � 2pq�

2�p3 � q3 � 6p1q1 � 4�p2q� pq2�	

s
;

(3.10)

if 
2 < 0. For 
2 > 0, there is no real solution.

(ii) W
;

hen we assume Eq. (3.9), eliminating 
2 from
Eq. (3.7), we obtain the fourth-order equation:

�p� 1�2�4 � 4p1�p� 1��q� 1��3��

2�p� 1��q� 1��3pq� 2p� 2q��2�2�

4q1�p� 1��q� 1���3 � �q� 1�2�4 � 0:

(3.11)

If � � 0, we have � � 0, which gives Minkowski
space. Except for this trivial solution, Eq. (3.11) is
reduced to the fourth-order equation for h � �=�:

�p� 1�2h4 � 4p1�p� 1��q� 1�h3�

2�p� 1��q� 1��3pq� 2p� 2q�h2�

4q1�p� 1��q� 1�h� �q� 1�2 � 0: (3.12)

We then have four solutions for h. For a solution h
of this equation, we get � and then � from Eq. (3.9),
which is rewritten as


1�2
2��p�1�2h
2�2�p�1��q�1�h�

�q�1�2	�
2�0:

(3.13)
We thus find
��




��������������������������������������������������������������������������������������������������
�


1
2
2��p�1�2h2�2�p�1��q�1�h��q�1�2	

s

(3.14)
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� � h�: (3.15)
For � to take a real value, we have a constraint


2��p� 1�2h
2� 2�p� 1��q� 1�h��q� 1�2�	< 0:

(3.16)
For the heterotic strings with 
1 � 1, 
2 � 
0=8, p �
3, and q � 6, we have two real solutions for h in Eq. (3.12).
Using these two solutions, we have the following four
solutions in the unit 
0 � 1:

��; �� � �1:36601;�0:965665�; �2:50608;�0:391608�;

(3.17)

and the time-reversed ones ���;���. In both solutions in
(3.17), the external space inflates, while the internal space
shrinks exponentially. It was shown that one solution is
stable and the other is unstable [18]. Since the present
universe is not in the phase of de Sitter expansion with
this energy scale, we cannot use the stable solution for a
realistic universe. If we adopt the unstable solution, on the
other hand, we may not find sufficient inflation unless we
fine-tune the initial values. We shall also discuss if these
solutions give an inflation in the four-dimensional Einstein
frame in Sec. V.

Though it is known that there is no GB terms for
M theory, it may be instructive to find solutions for p �
3 and q � 7:

��; �� � �1:45839;�0:838657�; �2:53838;�0:331212�;

(3.18)

and the time-reversed ones ���;���. Thus we find that
the result does not change qualitatively.

2. Power-law solutions (� � 1)

Setting � � 1 in Eqs. (B4) and (B5), we find that the EH
action is dominant as t ! 1, while the GB action becomes
dominant as t ! �1. Here we present asymptotic power-
law solutions for each case.
(i) F
uture asymptotic solutions (t ! 1): Our basic
equations reduce to

p1�
2 � q1�

2 � 2pq�� � 0; (3.19)

q������ 1� � �p� 1�� � 0; (3.20)

p���� �� 1� � �q� 1�� � 0: (3.21)

We can easily show that these three equations are
equivalent to the following two equations, if it is not
Minkowski space (� � � � 0):

p�2 � q�2 � 1; p�� q� � 1; (3.22)

which is a special case of Kasner solutions. We have
a solution
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� �
p


�������������������������������
pq�p� q� 1�

p
p�p� q�

;

� �
q�

�������������������������������
pq�p� q� 1�

p
q�p� q�

:

(3.23)

For p � 3 and q � 6, we find ��; �� �
�5=9;�1=9�; ��1=3; 1=3�. They are also future
asymptotic solutions for type II superstrings. Note
that a general Kasner solution is given by

Xp�q

i�1

�2i � 1;
Xp�q

i�1

�i � 1; (3.24)

where each scale factor is assumed as eui � )�i

(i � 1; . . . ; p� q). Apparently �< 1 in this class
of solutions and they do not give inflation according
to the discussions in Sec. II C.
(ii) P
ast asymptotic solutions (t ! �1): Our equations
are

p3�
4 � 6p1q1�

2�2 � q3�
4�

4���p2q�2 � pq2�2� � 0; (3.25)

q���q� 1�2�3 � �q� 1��2p� q���2�

�p� 1��p� 2q��2�� �p� 1�2�3	�

�q2�3 � 3�p� 1�q1��2�

3�p� 1�2q�2�� �p� 1�3�3	 � 0;

(3.26)

p���p� 1�2�3 � �p� 1��p� 2q��2��

�q� 1��2p� q���2 � �q� 1�2�3	�

�p2�3 � 3p1�q� 1��2��

3p�q� 1�2��2 � �q� 1�3�3	 � 0:

(3.27)

We can show that Eq. (3.25) is derived from
Eqs. (3.26) and (3.27), and these three equations
are not independent. We can use any two of them
to find the solutions.
We obtain the following equation from the differ-
ence between Eqs. (3.26) and (3.27):

�p�� q�� 3���p� 1�2�
3�

�p� 1��p� 2q��2�� �q� 1��2p� q���2�

�q� 1�2�
3	 � 0:

(3.28)

Thus we have either

p�� q�� 3 � 0; (3.29)
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or

�p� 1�2�3 � �p� 1��p� 2q��2��

�q� 1��2p� q���2 � �q� 1�2�
3 � 0: (3.30)
(a) p
�� q�� 3 � 0: Here � � 0 gives � � 3=p,
which is incompatible with Eq. (3.25). Thus � �

0, and Eq. (3.25) is rewritten by h � �=�:

p3h4 � 4p2qh3 � 6p1q1h2 � 4pq2h� q3 � 0:

(3.31)

Once we find the solution of this fourth-order equa-
tion, � and � are given as

� �
3h

ph� q
; � �

3

ph� q
: (3.32)

If p � 3, Eq. (3.31) reduces to a third order equa-
tion. We can formally find three solutions for h as

h � �
q� 1

2
�

��������������
q2 � 1
3

s
cos

�
1

3
tan�1

�
1

q

��������������
q2 � 4
3

s 	

�
2�n
3



; n � 0; 1; 2: (3.33)

For the heterotic strings with p � 3 and q � 6, we
find three real solutions:

h � �5:86861; ��;�� � �1:51698;�0:25849�;

h � �1:30495; ��;�� � ��1:877 48; 1:43874�;

h � �0:32645; ��;�� � ��0:195 06; 0:59753�:

(3.34)

The first solution gives an inflation and is
interesting.
(b) E
quation (3.30): Using h � �=�, Eq. (3.30) reduces
to a third order equation:

�p� 1�2h
3 � �p� 1��p� 2q�h2

� �q� 1��2p� q�h� �q� 1�2

� �h� 1���p� 1�2h
2 � 2�p� 1��q� 1�h

� �q� 1�2	 � 0: (3.35)

We then have either h � 1, or

h �
1

�p� 1��p� 2�
���p� 1��q� 1�



��������������������������������������������������������
�p� 1��q� 1��p� q� 3�

q
	: (3.36)

However, those are not consistent with Eq. (3.25).
Hence we have no solution in this case.
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B. �p � 0; �q � 0 (or �p � 0; �q � 0)

1. Generalized de Sitter solutions (� � 0)

Since Ap � �2 and Aq � �2 � ~�qe�2�t, it is easy to see
that � must vanish for the existence of exact solutions,
where ~�q � �q=b20. (We also introduce ~�p � �p=a20 for
further calculations.) Setting � � 0, we have

F � F1 � F2;

� 
1�p1�2 � q1 ~�q	 � 
2�p3�4 � 2p1q1�2 ~�q

� q3 ~�2q	 � 0;

F�p� � f�p�1 � f�p�2 � �g�p�1 � g�p�2 �X� �h�p�1 � h�p�2 �Y

� 
1�p1�2 � q1 ~�q	 � 
2�p3�4 � 2p1q1�2 ~�q

� q3 ~�2q	 � 0;

F�q� � f�q�1 � f�q�2 � �g�q�1 � g�q�2 �X� �h�q�1 � h�q�2 �Y

� 
1��p� 1�0�2 � �q� 1�2 ~�q	

� 
2��p� 1�2�
4 � 2�p� 1�0�q� 1�2�

2 ~�q

� �q� 1�4 ~�
2
q	 � 0: (3.37)

Although the first and second equations are identical, the
third one is different. Since we have two undetermined
variables � and ~�q for two independent equations, we may
have some solutions. However, we find that there is no real
solution at least for p � 3 and q � 6.

If � � 0, we have only asymptotic solutions. If � >
0�<0�,

Aq ! �2 as t ! �1 ��1�; (3.38)

Aq ! ~�qe
�2�t as t ! �1 ��1�: (3.39)

Then, for the case (3.38), as t ! �1��1�, we recover the
previous generalized de Sitter solutions (3.17). For the
heterotic strings, we find that

��; �� � ��1:366 01; 0:965 665�; ��2:506 08; 0:391 608�;

as t ! �1;

��; �� � �1:366 01;�0:965 665�; �2:506 08;�0:391 608�;

as t ! �1: (3.40)

On the other hand, for the case (3.39), as t ! �1��1�,
we do not find any asymptotic solutions within our ansatz
for solutions. This does not mean that there is no time-
dependent solution to this system but simply implies that
there is no solution within our ansatz. We can study the
evolution of the system by a numerical analysis.

In the case of �p � 0 and �q � 0, we can obtain our
result by exchanging p;� and q; �. We have only asymp-
totic solutions. For the heterotic strings, we find that
063520
��; �� � �1:366 01;�0:965 665�; �2:506 08;�0:391 608�;

as t ! �1;

��; �� � ��1:366 01; 0:965 665�; ��2:506 08; 0:391 608�;

as t ! �1: (3.41)

There are solutions in which our space inflates and internal
space shrinks at late times, but no such solutions at early
era.

2. Power-law solutions (� � 1)

Next we turn to the power-law solutions. Let us classify
the solutions into three cases depending on �:
(i) �
-8
> 1: In this case, as t ! 1, the EH term becomes
dominant and we obtain the asymptotic solution in
the previous Sec. III A 2. However, no solutions
satisfy the condition � > 1 [see Eq. (3.22)]. Thus
there is no asymptotic solution of our form. As t !
�1, the GB curvature terms become dominant, but
we find no consistent solution since Aq diverges
without any balancing term.
(ii) �
< 1: As t ! 1 with EH dominance, we again
find no consistent solution. As t ! �1 with GB
dominance, we obtain the asymptotic solutions
(3.34) in the previous section. For the heterotic
strings, imposing the condition of � < 1, we
find two solutions, which are ��; �� �
�1:516 98;�0:258 49�, and ��0:195 06; 0:597 53�.
(iii) �
 � 1: This case is a little bit special because both
Ap � �2 and Aq � 1� ~�q are constants. Then the
time dependence in the basic Eqs. (B4) and (B5) is
only e�t from the EH action and e�3t from the GB
action. In the future asymptotic solutions, as t !
1, the EH term becomes dominant, and we are left
with

p1�
2 � q1�1� ~�q� � 2pq� � 0; (3.42)

�p� q� 1�� � 0; (3.43)

2p���� 2� � 2�q� 1��1� ~�q� � 0: (3.44)

We then have an asymptotic solution � � 0, � �
1, and �q � �1 (b0 � 1). This is just Minkowski
spacetime with Milne-type time slicing. We find
that this solution is also consistent with the GB
term because Ap � 0; Aq � 0, and � � 0. Hence
this Minkowski solution is an exact one to the
whole system.
Though this appears a rather trivial solution in the
frame we are discussing, it gives power-law solu-
tions in the Einstein frame in �p� 1� dimensions
and a nontrivial solution, as discussed in Sec. II C.
Unfortunately, the scale factor behaves like aE �
tq=�p�1�q�
E and it is not an inflationary solution.

In the past asymptotic region t ! �1, the GB term
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becomes dominant. We have

p3�4 � 4p2q�3 � 4p1q1�2�

2p1q1�2�1� ~�q��

4pq2��1� ~�q� � q3�1� ~�q�
2 � 0; (3.45)

�p�q�3����p�1�2�
2�

2�p�1�q��q1�1� ~�q�	� 0; (3.46)

p�p� q� 3��2��p� 1�2�
2�

2�p� 1�q�� q1�1� ~�q�	 � 0: (3.47)

Then we have either � � 0 or

�p� 1�2�
2 � 2�p� 1�q�� q1�1� ~�q� � 0:

(3.48)
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For � � 0, inserting it into Eq. (3.45) gives �q �
�1 and b0 � 1. It is just the Minkowski spacetime
with Milne-type time slicing found above. When
Eq. (3.48) is satisfied, eliminating �1� ~�q� in
Eq. (3.45) yields the equation for �:

�p�q�2��2��p�2��2pq�3p�q�3��2�

4q�pq�2p�q�3���2q2�q�3�	� 0:

(3.49)

We find the solution

� �
q

�p� 2��2pq� 3p� q� 3�

� ��2�pq� 2p� q� 3�



����������������������������������������������
2p�q� 1��p� q� 3�

q
	; (3.50)
1� ~�q �
�p� 1�qf6� 2p�q� 2� � 2q�

����������������������������������������������
2p�q� 1��p� q� 3�

p
g

�p� 2��q� 1��2pq� 3p� q� 3�2
� f2p�q� 1� 


����������������������������������������������
2p�q� 1��p� q� 3�

q
g: (3.51)
For p � 3 and q � 6, we obtain � � 3
2 ��3


���
5

p
� and

~�q �
1
10 �5� 3

���
5

p
�, i.e., ��; �� � ��1:1459; 1�; �q �

�1; b0 � 2:419 53, or ��; �� � ��7:8541; 1�; �q �
�1; b0 � 0:924 176. In both cases, the external space is
contracting.

For the case of �p � 0 and �q � 0, exchanging �;p
and �; q, we obtain the solutions. For p � 3 and q � 6, we
find � � 1, � � 0;�1 and ~�p � �1; 23 , i.e., ��; �� �
�1; 0�; �p � �1; a0 � 1, or ��; �� � �1;�1�; �p �

�1; a0 �
2
3 . The first is an exact solution similar to that

found for �p � 0; �q � �1. Here the external space is
expanding while the internal space is static or contracting
and these are interesting solutions.

C. �p�q � 0

1. Generalized de Sitter solutions (� � 0)

If � � � � 0, our basic equations reduce to


1�p1 ~�p�q1 ~�q	�
2�p3 ~�
2
p� 2p1q1 ~�p ~�q�q3 ~�

2
q	 � 0;


1��p� 1�2 ~�p�q1 ~�q	�
2��p� 1�4 ~�2p�

2�p� 1�2q1 ~�p ~�q�q3 ~�2q	 � 0;


1�p1 ~�p��q� 1�2 ~�q	�
2�p3 ~�2p�

2p1�q� 1�2 ~�p ~�q��q� 1�4 ~�2q	 � 0:

(3.52)

It is easy to see that there is no consistent solution.
If either � � 0 or � � 0 and the other is nonzero, it is

clear that there is no exact solution. For asymptotic solu-
tions, we can search for them by setting Ap � ~�p; Aq � �2

and X � 0; Y � �2 for the first case. We find that there is
no real asymptotic solution. The second case is similar. For
�� � 0, if our ansatz for solutions is imposed, it is easy to
see that there is no asymptotic solution if � and � are of the
opposite signs. If they are of the same sign, either t ! �1
or t ! �1 gives Ap ! �2; Aq ! �2 and there may be
solutions. However, we find that there is no solution for
Eqs. (3.7) and (3.8). To study time evolution of the system,
we need again a numerical analysis.

2. Power-law solutions (� � 1)

In this case, we first consider the cases when both � and
� are not equal to 1.
(i) �
> 1 and � > 1: As t ! 1 with EH dominance,
we obtain the asymptotic solutions in Sec. III A 2.
However, no solutions satisfy the condition of �>
1 and � > 1 [see Eq. (3.22)]. This implies that there
is no asymptotic solution of our form. As t ! �1,
the GB terms become dominant, and we find no
consistent solution.
(ii) �
< 1 and � < 1: As t ! 1 with EH dominance,
we again find no consistent solution. As t ! �1
with GB dominance, we obtain the asymptotic
solution in Sec. III A 2. For the heterotic strings,
we find only one consistent solution, which is
��; �� � ��0:195 06; 0:597 53�.
(iii) �
> 1 and � < 1: As t ! 1, Ap ! �2 and Aq !
~�qe

2�1���t. This is similar to the case (ii) in the
previous section. Then there is no asymptotic solu-
tion of our form. As t ! �1, Ap ! ~�pe

2�1���t

and Aq ! �2. We find no solution.

(iv) �
< 1 and � > 1: Here we reach the same result by

exchanging p;� and q; �. No asymptotic solution
of our form is obtained.
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Next, we discuss the cases in which one of � or � is
equal to 1 and the other is not:
(v) �
> 1 and � � 1: As t ! 1 with EH dominance,
Ap ! �2 and Aq � 1� ~�q, and we recover the
case of �p � 0; �q � 0. However, there is no
solution with �> 1. We do not have any asymp-
totic solution of our form. As t ! �1, Ap !
~�pe

2�1���t and Aq � 1� ~�q. We again do not
have any asymptotic solution of our form.
(vi) �
< 1 and � � 1: As t ! 1, Ap diverges as
~�pe2�1���t. There is no asymptotic solution of
our form. As t ! �1, we again recover the
case of �p � 0; �q � 0 with the GB-term domi-
nance, namely � � 0; � � 1; �q � �1, and
(3.50) and (3.51). Since these asymptotic solutions
are consistent with �< 1, we have asymptotic
power-law solutions. (Note that the first one was
an exact solution for �p � 0, but here we are
considering �p � 0.)
(vii) �
 � 1 and � > 1: The analysis is almost the same
as the case (v). There are no asymptotic solutions.
(viii) �
 � 1 and � < 1: The analysis is almost the same
as the case (vi), then we find the asymptotic
solutions as t ! �1, which are the same as the
case of �p � 0; �q � 0. We have � � 1; � �
0; �p � �1 and � � 1; � � �1; �p � �1; a0 �
2
3 .
Finally, we consider the remaining case.

(ix) �
 � 1 and � � 1: Here we have constant Ap �

1� ~�p and Aq � 1� ~�q. As t ! �1, the EH
term is dominant, and we have

p1Ap � q1Aq � 2pq � 0;

�p� 1�2Ap � q1Aq � 2�p� 1�q � 0;

p1Ap � �q� 1�2Aq � 2p�q� 1� � 0:

(3.53)

The solution is given by

Ap � �
q

p� 1
; Aq � �

p
q� 1

: (3.54)

This is the solution found in Ref. [11] which ex-
hibits eternal accelerating expansion when higher-
order effects are taken into account.
For p � 3; q � 6, we have ~�p � �4; ~�q � � 8

5 .
For t ! �1, GB terms are dominant and we get
two independent equations

p3A2p � p1q1ApAq � 3p2qAp�

pq2Aq � 2p1q1 � 0; (3.55)

q3A2q � p1q1ApAq � p2qAp�

3pq2Aq � 2p1q1 � 0: (3.56)
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For p � 3 and q � 6, we have only one real solu-
tion Ap � �1:361 56; Aq � �1:853 05, i.e., �p �
�q � �1 and a0 � 0:650 73; b0 � 0:592 032.
IV. SOLUTIONS IN M AND TYPE II THEORIES

The higher-order corrections to M and type II theories
do not involve GB terms, so we have to take the fourth-
order corrections into account. From our ansatz for solu-
tions, we have

F1 � F4 � FS � 0; (4.1)

F�p�
1 � F�p�

4 � F�p�
S � 0; (4.2)

F�q�
1 � F�q�

4 � F�q�
S � 0; ; (4.3)

where

F1 � F1�t; �; �; �; Ap; Aq�;

F4 � F4�t; �; �; �; Ap; Aq�;

FS � FS�t; �; �; �; Ap; Aq�;

F�p�
1 � f�p�1 �t; �; �; �; Ap; Aq� � Xg�p�1 �t; �; �; �; Ap; Aq�

� Yh�p�1 �t; �; �; �; Ap; Aq�;

F�p�
4 � f�p�4 �t; �; �; �; Ap; Aq� � Xg�p�4 �t; �; �; �; Ap; Aq�

� Yh�p�4 �t; �; �; �; Ap; Aq�;

F�p�
S � F�p�

S �t; �; �; �; Ap; Aq�;

F�q�
1 � f�q�1 �t; �;�; �; Ap; Aq� � Yg�q�1 �t; �; �; �; Ap; Aq�

� Xh�q�1 �t; �; �; �; Ap; Aq�;

F�q�
4 � f�q�4 �t; �;�; �; Ap; Aq� � Yg�q�4 �t; �; �; �; Ap; Aq�

� Xh�q�4 �t; �; �; �; Ap; Aq�;

F�q�
S � F�q�

S �t; �;�; �; Ap; Aq�; (4.4)

whose explicit expressions are given in Appendix B.

A. �p � �q � 0

In this case, Ap � �2; Aq � �2 are constants. We shall
discuss the cases of � � 0 and � � 1 in order.

1. Generalized de Sitter solutions (� � 0)

From Appendix C, we have two algebraic equations:

F1 � F4 � FS � 0; (4.5)

H1 �H4 �HS � 0; (4.6)

where F1; F4; FS; H1; H4, and HS are functions with re-
spect to � and � given in Appendix C. In what follows, we
set p � 3. The explicit forms of equations are
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1�6�
2 � 6q��� q1�

2	 � 
4q4�
5�336�3 � 168�q� 5��2�� 24�q� 5�6��

2 � �q� 5�7�
3	�

21��24�8 � 2q��2 � �2 ����2�2�2 � �q� 1�1�8 � 2q�2�� ��2�4�2 � q1��� 2��2�2�4	�

24��3�� q���6�7 � q1�7 � q��� ���2�2��2 � �2 ����	 � 0; (4.7)

��� ���
1 � 4
4f30�q� 1�4�2�4 � 12�q� 1�5��5 � �q� 1�6�6g � 2�f12�6 � 6�2q� 1��5��

3�q� 1��4�2 � �q2 � 15q� 6��3�3 � �2q2 � 7q� 3��2�4 � �q� 1��q� 12���5 � 6�q� 1��6g	 � 0: (4.8)

Setting 
1 � 1, we have solved these equations numerically. Before giving the solution, we note on the unit used in our
solutions when the coupling constants 
4 and � are free. If � does not vanish, rescaling 
4, �, �, and � as

~
 4 � 
4=j�j; ~� � �=j�j�� 1 or � 1�; ~� � �j�j1=6; and ~� � �j�j1=6; (4.9)

we can always set � to �1 if it is negative (or 1 if positive). We also have to rescale time coordinate as ~t � j�j�1=6t. The
typical dynamical time scale is then given by j�j1=6 �O�m�1

D �, where mD � ��2=�D�2�
D is the fundamental Planck scale. In

particular, for M theory, we find j�j1=6 � 6�1=6�4���5=9m�1
11 � 0:181 8176m�1

11 from Eq. (2.10). After this scaling, we have
only one free parameter ~
4.

If � � 0 and 
4 � 0, we can always set 
4 to �1 if it is negative (or 1 if positive), by rescaling 
4, �, and � as

�
 4 � 
4=j
4j�� 1 or � 1�; �� � �j
4j1=6; and �� � �j
4j1=6: (4.10)
Let us now present our results for M theory and type II
superstrings, in which 
4 and � are given by Eq. (2.10). In
this paper, we use the above unit as in our previous paper
[23]. (We have slightly changed our convention so the
numerical results also a little change from those in [23].)
For brevity, we omit a tilde for variables except for ~
4 and
~�.
(i) M
 theory: For the M theory, we have

~
 4 � �
1

3� 25
; ~� � �1: (4.11)

We then find three solutions

��; �� � �0:40731; 0:40731�; �0:79683; 0:10793�;

�0:55570; 0:34253�; (4.12)

and the time-reversed ones ���;���.

(ii) T
ype II superstrings: In type II superstrings, the

coefficients ~
4 and ~� are same as the M theory,
but there are additional terms in the curvature as
well as dilaton [15]. However, we examine what
happens if we simply consider the above theory
063520-11
for ten dimensions (q � 6). Since the basic features
of the obtained results are the same, we simply give
the solutions. The same remark applies to the fol-
lowing discussions on type II superstrings.
With the couplings (4.11), we find three solutions

��; �� � �0:50754; 0:50754�; �0:79988; 0:12991�;

�0:49618; 0:51313�; (4.13)

and the time-reversed ones. We thus find that the
solutions are qualitatively similar to those in
M theory.
2. Power-law solutions (� � 1)

As t ! 1 with EH dominance, we get the same results
(3.23) in Sec. III A 2. For p � 3; q � 7, we get ��; �� �
��1


������
21

p
�=10; �7� 3

������
21

p
�=70�.

As t ! �1, the fourth-order terms dominate. So let us
briefly discuss asymptotic power-law solutions only with
quartic terms. Assuming the metric (2.20) with � � 1, we
obtain three algebraic equations:

4q4�
5�336�3 � 168�q� 5��2�� 24�q� 5�6��

2 � �q� 5�7�
3	 � 7��6�4��� 1�2�3�� 1�2�

q1�
4��� 1�2�3�� 1�2 � 18�8 � 3q2�

8 � 6q�2�� ��2�4�2 � 3q1��� 2��2�2�4�

6q�2�2���� �� 1�2 ����2	 � ��24�4��� 1��2�� 1��3�� 1� � 4q1�
4��� 1��2�� 1��3�� 1��

24q�2�2��� �� 1����� �� 1�2 ����	�3�� q�� 7� � 0; (4.14)
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4
4q4�
5f14�q� 5��2�� 4�q� 5�6��

2 � 4���� 1��6�� �q� 5��	 � 2��� 1��30�2 � 12�q� 5����

�q� 5�6�2	g � �f6�4��� 1�2�3�� 1�2 � q1�4��� 1�2�3�� 1�2 � 18�8 � 3q2�8 � 6q�2�� ��2�4�2�

3q1��� 2��2�2�4 � 6q�2�2���� �� 1�2 ���	2g � �f4�3��� 1��2�� 1��3�� 1�2�

4�3��� 1�2�3�� 1��6�� 1� � 48�7 � 8q�3�2�2�� ���3�� �� � 4q1��4��� ����� 2���

4q��2���� �� 1��3�� �� 1� � 2��	���� �� 1�2 ���	g�3�� q�� 7��

�f8�3��� 1��2�� 1��3�� 1� � 4q��2��� �� 1����� �� 1�2 ���	g � �3�� q�� 7�2 � 0;

(4.15)


4�q� 1�4�
4��q� 5�8�

4 � 24�q� 5�7��
3 � 168�q� 5�6�

2�2 � 336�q� 5��3�� 24���� 1��30�2�

12�q� 5���� �q� 5�6�
2�� 8��� 1��120�3 � 90�q� 5��2�� 18�q� 5�6��

2 � �q� 5�7�
3�	�

��6�4��� 1�2�3�� 1�2 � q1�
4��� 1�2�3�� 1�2 � 18�8 � 3q2�

8 � 6q�2�� ��2�4�2�

3q1��� 2��2�2�4 � 6q�2�2���� �� 1�2 ����2	 � 2����q� 1��2��� 1��2�� 1��3�� 1�2�

�q� 1��2��� 1�2�3�� 1��6�� 1� � 12�q� 1�2�6 � 12�4��� ���2�� ���

6�q� 1��2�2��� 2����� 3�� � 6�2���� �� 1���� 3�� 1��

2������� �� 1�2 ����	�3�� q�� 7� � 4����q� 1��2��� 1��2�� 1��3�� 1��

3�2��� �� 1����� �� 1�2 ����	 � �3�� q�� 7�2 � 0: (4.16)
Using the values for ~
4 and ~� in Eq. (4.11), we have
solved these equations numerically and found the follow-
ing four solutions:

q � 7 �M theory�

��; �� � �0:87610; 0:62453�; �0:53167; 0:77214�;

�0:32052; 0:000168�; ��0:000877; 0:28898�;

(4.17)

q � 6 �Type II superstrings�

��; �� � �5:74269; 5:74269�; �0:32052; 0:000168�;

�0:28829; 0:28829�; �0:00133; 0:295437�: (4.18)

B. �p � 0; �q � 0 (or �p � 0; �q � 0)

1. Generalized de Sitter solutions (� � 0)

Here we have Ap � �2; Aq � �2 � ~�qe
�2�t; X � �2,

and Y � �2. It is easy to see that there is no exact solution
unless � � 0, in which case we have constant Ap � X �

�2; Aq � ~�q, and Y � 0. Our basic Eqs. (4.1) and (4.3)
now give


1�p1�
2 � q1 ~�q	 � 
4�p7�

8 � 4p5q1�
6 ~�q�

6p3q3�
4 ~�2q � 4p1q5�

2 ~�3q � q7 ~�
4
q	�

3���p� 7�p1�
8 � q2 ~�

4
q	 � 0;

(4.19)
063520

1��p� 1�0�2 � �q� 1�2 ~�q	�


4��p� 1�6�8 � 4�p� 1�4�q� 1�2�6 ~�q�

6�p� 1�2�q� 1�4�4 ~�2q � 4�p� 1�0�q� 1�6�2 ~�3q�

�q� 1�8 ~�4q	 � 3���p� 1�1�8 � �q� 8��q� 1�2 ~�4q	 � 0:

(4.20)

We note that Eq. (4.2) gives the same equation as (4.19) for
� � 0 and need not be taken into account.

For p � 3, we find the following solutions:

q � 7 �M theory�

��; ~�q� � �
0:65615; 0:28708�;

�
0:61935;�0:61904�; �
0:60255;�0:08823�;

(4.21)

q � 6 �Type II superstrings�

��; ~�q� � �
0:765 53; 0:456 70�; �
0:620 04;�0:130 97�:

(4.22)

For the case of �p � 0 and �q � 0, exchanging �;p
and �; q, we obtain the solutions with � � 0 and

M theory: ��; ~�p� � �
0:490 21; 0:630 74�;

Type II superstrings: ��; ~�p� � �
0:620 07; 0:860 33�:

(4.23)
-12
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2. Power-law solutions (� � 1)

Here we have Ap � �2; Aq � �2 � ~�qe2�1���t; X �

���� 1�, and Y � ���� 1�. We have asymptotic solu-
tions in most cases.
(i) �
> 1: For t ! 1, the EH term dominates and
Aq ! �2. The solutions are the same as �p �
�q � 0 case in Sec. III A 2. However, there is no
solution with � > 1.
For t ! �1, Aq ! ~�qe

2�1���t and there is no
solution.
(ii) �
< 1: For t ! 1, Aq ! ~�qe
2�1���t and there is no

solution.
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For t ! �1, Aq ! �2 and the solutions are the
same as �p � �q � 0 case.
(iii) �
 � 1: We have Ap � �2; Aq � 1� ~�q; X �
���� 1�, and Y � 0.
For t ! 1, the EH term dominates and the solutions are
the same as GB case. We have

� � 0; � � 1; �q � �1; b0 � 1: (4.24)

Actually this is an exact solution.
For t ! �1, fourth-order terms dominate. Our basic

independent Eqs. (4.1) and (4.3) give

4�p7�8 � 4p5q1�6Aq � 6p3q3�4A2q � 4p1q5�2A3q � q7A4q � 8�fp6q�6 � 3p4q2�4Aq � 3p2q4�2A2q�

pq6A3qg � 24�2fp5q1�4 � 2p3q3�2Aq � p1q5A2qg � 32�3fp4q2�2 � p2q4Aqg � 16p3q3�4	�

���7 ~L4 � �p�� q� 7��p�MX � qMY� � 2�Aq � 1�qNq	 � 0; (4.25)
~f �q�
4 � ~h�q�4 ���� 1� � ~F�q�

S � 0; (4.26)

where

~L4 � p1�4��� 1�2�3�� 1�2 � 2pq�4��� 1�2

� 3p2�
8 � 3q2A

4
q � p1q�

4�2�� 1�2

� pq1�
2��� 2Aq�

2; (4.27)
MX � 4��p� 1��3��� 1��2�� 1��3�� 1�

� q�3��� 1�	; (4.28)

MY � 4p�4��� 1�; (4.29)

Nq � 4�q� 1��3�q� 2�A3q � p�2��� 2Aq�	; (4.30)
~f�q�4 � 
4�p7�8 � 4p5�q� 1�2�6Aq � 6p3�q� 1�4�4A2q � 4p1�q� 1�6�2A3q � �q� 1�8A4q

� 8�fp6�q� 1��6 � 3p4�q� 1�3�4Aq � 3p2�q� 1�5�2A2q � p�q� 1�7A3qg � 24�2fp5�q� 1�2�4

� 2p3�q� 1�4�2Aq � p1�q� 1�6A2qg � 32�3fp4�q� 1�3�2 � p2�q� 1�5Aqg � 16p3�q� 1�4�4	; (4.31)

~h�q�4 � 8p
4��p� 1�6�6 � 3�p� 1�4�q� 1�2�4Aq � 3�p� 1�2�q� 1�4�2A2q � �q� 1�6A3q

� 6�f�p� 1�5�q� 1��4 � 2�p� 1�3�q� 1�3�2Aq � �p� 1��q� 1�5A2qg � 12�2f�p� 1�4�q� 1�2�2

� �p� 1�2�q� 1�4Aqg � 8�p� 1�3�q� 1�3�3	; (4.32)
~F�q�
S � �� ~L4 � �p�� q� 7�fMY � 2Nq � p�Ug

� �p�� q� 7�2MY � 2�Aq � 1�Nq	; (4.33)

U � 4��3��� 1�2 � �p� 1��3��� 1��2�� 1�

� �q� 1����� Aq���� 2Aq�	: (4.34)

For p � 3, we find the solution (4.24) and

q � 7 �M theory�

��; ~�q� � �14:8319;�413:5411�; �0:7335;�0:3062�;

(4.35)
q � 6 �Type II string�

��; ~�q� � �4:0305; 8:7771�; �0:4484;�1:2490�;

��9:7439;�94:7146�: (4.36)

[We also find a solution ��; ~�q� � �0; 7� to Eqs. (4.25) and
(4.26), but this is the special case of _u1 � 0, and then
Eq. (4.2) must be checked, as discussed in Sec. II A. We
find that it is not satisfied asymptotically and this is not a
solution.] The first of these gives an interesting inflationary
solution.

For the case of �p � 0 and �q � 0, exchanging �;p
and �; q, we obtain the solutions:
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exact solution: ��; �;�p� � �1; 0;�1�;

past asymptotic solutions: ��; �; ~�p� � �1; 0:7181;�1:5485�; �1; 0:0417;�1:0204�;

�1;�14:1607;�138:1063�; (4.37)

for M theory and

exact solution: ��; �;�p� � �1; 0;�1�;

past asymptotic solutions: ��; �; ~�p� � �1; 6:1725; 75:9086�; �1; 0:0358;�1:0173�;

�1;�26:8744;�961:1752�; (4.38)

for type II superstrings.
C. �p�q � 0

1. Generalized de Sitter solutions (� � 0)

If � � � � 0, our basic equations reduce to


1�p1 ~�p � q1 ~�q	 � 
4�p7 ~�
4
p � 4p5q1 ~�

3
p ~�q � 6p3q3 ~�

2
p ~�
2
q � 4p1q5 ~�p ~�

3
q � q7 ~�

4
q	 � 3��p2 ~�

4
p � q2 ~�

4
q	 � 0;


1��p� 1�2 ~�p � q1 ~�q	 � 
4��p� 1�8 ~�
4
p � 4�p� 1�6q1 ~�

3
p ~�q � 6�p� 1�4q3 ~�

2
p ~�
2
q�

4�p� 1�2q5 ~�p ~�
3
q � q7 ~�

4
q	 � 3���p� 8��p� 1�2 ~�

4
p � q2 ~�

4
q	 � 0; (4.39)


1�p1 ~�p � �q� 1�2 ~�q	 � 
4�p7 ~�4p � 4p5�q� 1�2 ~�3p ~�q � 6p3�q� 1�4 ~�2p ~�2q � 4p1�q� 1�6 ~�p ~�3q�

�q� 1�8 ~�4q	 � 3��p2 ~�4p � �q� 8��q� 1�2 ~�4q	 � 0:

For both M theory with p � 3; q � 7 and type II theory with p � 3; q � 6, we find that there is no solution.
If either � � 0 or � � 0 and the other is nonzero, it is clear that there is no exact solution. For asymptotic solutions, we

can search for them by setting Ap � ~�p; Aq � �2, X � 0 and Y � �2 for the first case. The solution is for t ! �1��1�

for � or � > 0�<0�. The basic equations are


1�p1 ~�p � q1�
2	 � 
4�p7 ~�

4
p � 4p5q1 ~�

3
p�
2 � 6p3q3 ~�

2
p�
4 � 4p1q5 ~�p�

6 � q7�
8	 � 3��p2 ~�

4
p � �q� 7�q1�

8	 � 0;


1��p� 1�2 ~�p � �q� 1�0�
2	 � 
4��p� 1�8 ~�

4
p � 4�p� 1�6�q� 1�0 ~�

3
p�
2 � 6�p� 1�4�q� 1�2 ~�

2
p�
4�

4�p� 1�2�q� 1�4 ~�p�
6 � �q� 1�6�

8	 � 3���p� 8��p� 1�2 ~�
4
p � �q� 1�1�

8	 � 0:

(4.40)
We find for M theory that there are solutions with � � 0
and

�~�p; �� � �0:630 74;
0:490 21�; (4.41)

and for type II superstrings

�~�p; �� � �0:860 33;
0:620 07�; (4.42)

for t ! �1��1� for � > 0�<0�.
The second case is obtained by exchanging p;� and

q; �. The solutions are

�~�q;�� � �0:287 08;
0:656 15�; ��0:619 04;
0:619 35�;

��0:088 23;
0:602 55�; (4.43)

for M theory and
063520
�~�q;�� � �0:456 70;
0:765 53�; ��0:130 97;
0:620 04�;

(4.44)

for type II superstrings. They are qualitatively the same.
For �� � 0, if our ansatz for solutions is imposed, it is

easy to see that there is no asymptotic solution if � and �
are of the opposite signs. If they are of the same sign, either
t ! �1 or t ! �1 gives Ap ! �2; Aq ! �2 and there
may be solutions. This implies that inflationary solutions
with positive eigenvalues are obtained for asymptotic infi-
nite future, so that these are not interesting from the
cosmological point of view. However, it may be useful to
check if there are any solutions of this type. In fact we find
that there are asymptotic solutions for M theory

��; �� � 
�0:796 83; 0:107 92�;
�0:555 70; 0:342 53�;


 �0:407 31; 0:407 31�; (4.45)
-14
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where negative (positive) one is for t ! �1�1�. For
type II superstrings, we have

��; �� � 
�0:799 88; 0:129 91�;
�0:507 54; 0:507 54�;


 �0:496 18; 0:513 13�: (4.46)

2. Power-law solutions (� � 1)

In this case, we first consider the cases when both � and
� are not equal to 1.
(i) �
> 1 and � > 1: For t ! 1, the EH term domi-
nates and we obtain the asymptotic solutions in
Sec. III A 2. Again no solutions satisfy the condi-
tion of �> 1 and � > 1 [see Eq. (3.22)] and hence
there is no asymptotic solution of our form.
As t ! �1, the fourth-order terms become domi-
nant and we find no consistent solution from the
fourth-order terms.
(ii) �
< 1 and � < 1: As t ! 1 with EH dominance,
we again find no consistent solution. As t ! �1
with fourth-order-term dominance, we obtain the
asymptotic solutions in Eqs. (4.17) and (4.18) in
Sec. IVA 2.
(iii) �
> 1 and � < 1: As t ! 1, Ap ! �2 and Aq !
~�qe

2�1���t. This is similar to the case (ii) in
Sec. IV B 2. There is no asymptotic solution of
our form. As t ! �1, Ap ! ~�pe

2�1���t, and Aq !
�2. We find no solution.
(iv) �
< 1 and � > 1: Here we reach the same result by
exchanging p;� and q; �. No asymptotic solution
of our form is obtained.
Next, we discuss the cases in which one of � or � is
equal to 1 and the other is not:
063520
(v) �
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> 1 and � � 1: As t ! 1 with EH dominance,
Ap ! �2, and we recover the case of
�p � 0; �q � 0. However, there is no solution
with �> 1. We do not have any asymptotic solu-
tion of our form. As t ! �1 with fourth-
order-term dominance, Ap ! ~�pe2�1���t. We
again do not have any asymptotic solution of our
form.
(vi) �
< 1 and � � 1: As t ! 1 with EH dominance,
Ap diverges as ~�pe

2�1���t. There is no asymptotic
solution of our form. As t ! �1, we again re-
cover the case of �p � 0; �q � 0 with the fourth-
order-term dominance (4.24). Since this asymp-
totic solution is consistent with �< 1, we have an
asymptotic power-law solution. (Note that this
was an exact solution for �p � 0.)
(vii) �
 � 1 and � > 1: The analysis is almost the
same as the case (v). There is no asymptotic
solution.
(viii) �
 � 1 and � < 1: The analysis is almost the same
as the case (vi), then we find the asymptotic
solution as t ! �1, which is the same as the
case of �p � 0; �q � 0.
Finally, we consider the remaining case.

(ix) �
 � 1 and � � 1: Here we have constant Ap �

1� ~�p and Aq � 1� ~�q. As t ! �1 with EH
dominance, and we recover the solution (3.54) of
Sec. III C 2. For p � 3; q � 7, we get �~�p; ~�q� �
�� 9

2 ;�
3
2�.

For t ! �1 with fourth-order-term dominance,
we get two independent equations for Ap � 1�
~�p; Aq � 1� ~�q:

4�p7A
4
p � 4p5q1A

3
pAq � 6p3q3A

2
pA
2
q � 4p1q5ApA

3
q � q7A

4
q � 8�p6qA

3
p � 3p4q2A

2
pAq � 3p2q4ApA

2
q�

pq6A
3
q� � 24�p5q1A

2
p � 2p3q3ApAq � p1q5A

2
q� � 32�p4q2Ap � p2q4Aq� � 16p3q3	�

���7 ~L4 � 2p�Ap � 1�Np � 2q�Aq � 1�Nq	 � 0; (4.47)


4��p� 1�8A
4
p � 4�p� 1�6q1A

3
pAq � 6�p� 1�4q3A

2
pA
2
q � 4�p� 1�2q5ApA

3
q � q7A

4
q�

8f�p� 1�7qA3p � 3�p� 1�5q2A2pAq � 3�p� 1�3q4ApA2q � �p� 1�q6A3qg � 24f�p� 1�6q1A2p�

2�p� 1�4q3ApAq � �p� 1�2q5A2qg � 32f�p� 1�5q2Ap � �p� 1�3q4Aqg � 16�p� 1�4q3	�

�� ~L4 � �p� q� 7��2Np � qU� � 2�Ap � 1�Np	 � 0; (4.48)

where

~L4 � 3p2A4p � 3q2A4q � p1q�2Ap � 1�
2 � pq1�2Aq � 1�

2;

Np � 4�p� 1��3�p� 2�A3p � q�2Ap � 1�	;

Nq � 4�q� 1��3�q� 2�A3q � p�2Aq � 1�	;

U � 4��p� 1��Ap � 1��2Ap � 1� � �q� 1��Aq � 1��2Aq � 1�	: (4.49)
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For p � 3, we have four real solutions

q � 7 �M theory�

�Ap; Aq� � �12:2143;�10:4313�; �0:43403;�0:60288�;

�0:19127; 0:73878�; ��2:10241;�0:19306�

(4.50)

q � 6 �Type II string�

�Ap; Aq� � �5:5316; 3:1354�; �0:212 14;�0:662 02�;

��1:3472;�0:311 16�; ��33:5609; 19:4154�:

(4.51)

V. SUMMARY AND DISCUSSIONS

We have found generalized de Sitter solutions

a / e�t; b / e�t; for � � 0; (5.1)

and power-law solutions

a / )�; b / )�; for � � 1: (5.2)

In the Einstein frame,

aE / t�E; *�*�0� �*1 ln�tE=t
�0�
E 	; (5.3)

where

�� 1�
�p� 1��

q�
; *1 �

�p� 1��
q

for � � 0;

��
�p� 1��� q�
�p� 1� � q�

; *1 �
�p� 1��

�p� 1� � q�
for � � 1:

(5.4)

Note that the values of � and � in generalized de Sitter
solutions (5.1) depend on the choice of the unit. In the
heterotic string theories, we adopt 
0 � 1, while in the
M theory and the type II string theory, we use the unit of
j�j � 1, i.e., m11 � 6�1=2�4���5=9 � 0:181 8176. If we set
TABLE I. Heterotic string: exact solutions. K, M
type space, and a flat static space, respectively. 


� �p �q � �

HE1
 0 0 0 
1:366 �0:9657
HE2
 0 0 0 
2:506 �0:3916
HE3 1 0 �1 0 1
HE4 1 �1 0 1 0

063520
m11 � 1, the values of � and � in the following tables
should be multiplied by the factor 61=2�4��5=9 � 5:5. On
the other hand, the power exponent � and � in the power-
law solutions (5.2) or � in (5.3) are dimensionless and they
do not depend on the choice of the unit.

We summarize our results in the following tables for the
cases of the heterotic string theories and M theory in order.
For asymptotic solutions, the time regions for tE where the
solutions are valid in the Einstein frame are also included.
In the last lines of the tables, we include the type of two
spaces (ds2p; ds2q). K means the kinetic dominant space, in
which the curvature term (�p, or �q) is either zero or can
be asymptotically ignored. M denote the Milne-type space,
which is described by ds2 � �dt2 � t2ds2p � 
 
 
 with
�p � �1, or ds2 � �dt2 � 
 
 
 � t2ds2q with �q � �1.
Similarly, we define a constant curvature space C by �p �

1 or �q � 1, and S0 and S
 are static spaces with zero
curvature and positive (or negative) curvature, respectively.
The result for the type II string model, which is similar to
the case of M theory, is given in Appendix D.

A. Heterotic strings

Exact solutions are given in Table I, future asymptotic
solutions in Table II and past asymptotic solutions in
Table III, where 
 
 
 means that the radius can be arbitrary.

Since we are interested in inflation in string theories, we
pick up such solutions and give comments on those. In the
original frame, we find HE1� (HF3, HP3) give an expo-
nential expansion whereas HE2� (HF4, HP4) and HP5
give a power-law inflation. In the former solutions the extra
space expands exponentially, while the internal space
shrinks exponentially. However, in the Einstein frame,
they correspond to a noninflationary power-law expansion
andHE2� (HF4, HP4) and HP5 give a power-law inflation.
Another interesting observation is that we could obtain an
expansion of the universe in the Einstein frame from an
external space shrinking in the original frame [HE1� (HF1,
HP1), HF6, HP6, HP7, HP8].

B. M theory

Exact solutions are summarized in Table IV, future
asymptotic solutions in Table V and past asymptotic solu-
tions in Table VI.
, and S0 mean a kinetic dominance, a Milne-

 
 means that the radius can be arbitrary.

a0 b0 � *1 Type


 
 
 
 
 
 0.5285 �0:3219 K K

 
 
 
 
 
 �1:132 �0:1305 K K

 
 
 1 0.75 0.25 S0 M
1 
 
 
 1 0 M S0
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TABLE III. Heterotic string: past asymptotic solutions (t ! �1). K, M, and C mean a kinetic
dominance, a Milne-type space, and a constant curvature space, respectively.

� �p �q � � a0 b0 � *1 tE Type

HP1 0 
1 0 �1:366 0:9657 
 
 
 
 
 
 0.5285 0:3219 �0 HE1�
HP2 0 
1 0 �2:506 0:3916 
 
 
 
 
 
 �1:132 0:1305 �0 HE2�
HP3 0 0 
1 1:366 �0:9657 
 
 
 
 
 
 0.5285 �0:3219 ! �1 HE1�
HP4 0 0 
1 2:506 �0:3916 
 
 
 
 
 
 �1:132 �0:1305 ! �1 HE2�
HP5 1 0 0;
1 1.517 �0:2585 
 
 
 
 
 
 3.3029 �1:15145 �0 K K
HP6 1 0;
1 0 �1:877 1.439 
 
 
 
 
 
 0.4589 0.2706 �0 K K
HP7 1 0;
1 0;
1 �0:1951 0.5975 
 
 
 
 
 
 0.5720 0.2140 �0 K K
HP8 1 0;
1 �1 �1:146 1 
 
 
 2.420 0.4635 0.25 �0 K M
HP9 1 0;
1 1 �7:854 1 
 
 
 0.9242 �1:214 0.25 �0 K C
HP10 1 
1 �1 0 1 
 
 
 1 0.75 0.25 �0 K M
HP11 1 �1 
1 1 0 1 
 
 
 1 0 �0 M K
HP12 1 1 0;
1 1 �1 1.2247 
 
 
 1 0.5 ! �1 C K
HP13 1 �1 �1 1 1 0:6507 0.5920 1 0.25 �0 M M

TABLE IV. M theory: exact solutions. K, S
, S0, and M mean a kinetic dominance, a static
space with positive (or negative) curvature, a flat static space, and a Milne-type space.

� �p �q � � a0 b0 � *1 Type

ME1
 0 0 0 
0:7968 
0:1079 
 
 
 
 
 
 3.1099 
0:030 83 K K
ME2
 0 0 0 
0:5557 
0:3425 
 
 
 
 
 
 1.4636 
0:097 86 K K
ME3
 0 0 0 
0:4073 
0:4073 
 
 
 
 
 
 1.2857 
0:1164 K K
ME4
 0 0 1 
0:6562 0 
 
 
 1.866 e�tE 0 K S�
ME5
 0 0 �1 
0:6194 0 
 
 
 1.271 e�tE 0 K S�
ME6
 0 0 �1 
0:6026 0 
 
 
 3.367 e�tE 0 K S�
ME7
 0 1 0 0 
0:4902 1.259 
 
 
 1 
0:1401 S� K
ME8 1 0 �1 0 1 
 
 
 1 0.7778 0.7778 S0 M
ME9 1 �1 0 1 0 1 
 
 
 1 0 M S0

TABLE II. Heterotic string: future asymptotic solutions (t ! 1). M means a Milne-type
space. The time regions for tE where the solutions are valid in the Einstein frame are also
included.

� �p �q � � a0 b0 � *1 tE Type

HF1 0 0 
1 �1:366 0.9657 
 
 
 
 
 
 0.5285 0:3219 ! 1 HE1�
HF2 0 0 
1 �2:506 0.3916 
 
 
 
 
 
 �1:132 0:1305 ! 1 HE2�
HF3 0 
1 0 1:366 �0:9657 
 
 
 
 
 
 0.5285 �0:3219 �0 HE1�
HF4 0 
1 0 2:506 �0:3916 
 
 
 
 
 
 �1:132 �0:1305 �0 HE2�
HF5 1 0 0 0.5556 �0:1111 
 
 
 
 
 
 0.3333 �0:1667 ! 1 Kasner
HF6 1 0 0 �0:3333 0:3333 
 
 
 
 
 
 0.3333 0.1667 ! 1 Kasner
HF7 1 �1 �1 1 1 0.5 0.7906 1 0:25 ! 1 M M

INFLATION FROM SUPERSTRING AND M-THEORY . . . PHYSICAL REVIEW D 71, 063520 (2005)
Here we also focus on inflationary solutions. In the
original frame, ME1�(MF5), ME2�(MF6), ME3�(MF7),
ME4�(MF2), ME5�(MF3), ME6�(MF4) give an expo-
nential expansion for the external space. In the Einstein
frame, we find either a power-law inflation [ME1�(MF5),
063520
ME2�(MF6), ME3�(MF7)] or an exponential expansion
[ME4�(MF2), ME5�(MF3), ME6�(MF4)]. Just as the
case of the heterotic strings, we obtain strange solutions
MP5� 7 and MP11, in which the external space shrinks
exponentially in the original frame, but it expands by a
-17



TABLE V. M theory: future asymptotic solutions (t ! 1). M means a Milne-type space.

� �p �q � � a0 b0 � *1 tE Type

MF1 0 1 
1 0 0.4902 1.259 
 
 
 1 0.14006 ! 1 ME7�
MF2 0 
1 1 0:6562 0 
 
 
 1.866 e�tE 0 ! 1 ME4�
MF3 0 
1 �1 0:6194 0 
 
 
 1.271 e�tE 0 ! 1 ME5�
MF4 0 
1 �1 0:6026 0 
 
 
 3.367 e�tE 0 ! 1 ME6�
MF5 0 
1 
1 0:7968 0.1079 
 
 
 
 
 
 3.1099 0.030 83 ! 1 ME1�
MF6 0 
1 
1 0:5557 0.3425 
 
 
 
 
 
 1.4636 0.097 86 ! 1 ME2�
MF7 0 
1 
1 0:4073 0.4073 
 
 
 
 
 
 1.2857 0.1164 ! 1 ME3�
MF8 1 0 0 0.5583 �0:0964 
 
 
 
 
 
 0.3333 �0:1455 ! 1 Kasner
MF9 1 0 0 �0:3583 0.2964 
 
 
 
 
 
 0.3333 0.1455 ! 1 Kasner
MF10 1 �1 �1 1 1 0.4714 0.8165 1 0.2222 ! 1 M M

TABLE VI. M theory: past asymptotic solutions (t ! �1). K, S
, S0, M and C mean a kinetic dominance, a static space with
positive (or negative) curvature, a flat static space, a Milne-type space, and a constant curvature space, respectively.

� �p �q � � a0 b0 � *1 tE Type

MP1 0 1 
1 0 �0:4902 1.259 
 
 
 1 �0:140 06 ! �1 ME7�
MP2 0 
1 1 �0:6562 0 
 
 
 1.866 e�tE 0 ! �1 ME4�
MP3 0 
1 �1 �0:6194 0 
 
 
 1.271 e�tE 0 ! �1 ME5�
MP4 0 
1 �1 �0:6026 0 
 
 
 3.367 e�tE 0 ! �1 ME6�
MP5 0 
1 
1 �0:7968 �0:1079 
 
 
 
 
 
 3.1099 �0:030 83 ! �1 ME1�
MP6 0 
1 
1 �0:5557 �0:3425 
 
 
 
 
 
 1.4636 �0:097 86 ! �1 ME2�
MP7 0 
1 
1 �0:4073 �0:4073 
 
 
 
 
 
 1.2857 �0:1164 ! �1 ME3�
MP8 1 0;
1 0;
1 0.876 10 0.624 53 
 
 
 
 
 
 0.9611 0.1960 �0 K K
MP9 1 0;
1 0;
1 0.531 67 0.772 14 
 
 
 
 
 
 0.8735 0.2085 �0 K K
MP10 1 0;
1 0;
1 0.320 52 0.000 168 
 
 
 
 
 
 0.3209 0.000 1679 �0 K K
MP11 1 0;
1 0;
1 �0:000 88 0.288 98 
 
 
 
 
 
 0.5024 0.1437 �0 K K
MP12 1 0 �1 14:8319 1 
 
 
 0.0492 4.0738 0.2222 �0 K M
MP13 1 0 �1 0:7335 1 
 
 
 1.807 0.9408 0.2222 �0 K M
MP14 1 �1 0 1 0.7181 0.8036 
 
 
 1 0.2044 �0 M K
MP15 1 �1 0 1 0.0417 0.9900 
 
 
 1 0.0364 �0 M K
MP16 1 �1 0 1 �14:1607 0.0851 
 
 
 1 0.2916 �0 M K
MP17 1 �1 
1 1 0 1 
 
 
 1 0 �0 M K
MP18 1 
1 �1 0 1 
 
 
 1 0.75 0.25 �0 S
 M
MP19 1 1 �1 1 1 0.2986 0.2958 1 0.25 �0 C M
MP20 1 �1 �1 1 1 1.329 0.7899 1 0.25 �0 M M
MP21 1 �1 �1 1 1 1.112 1.957 1 0.25 �0 M M
MP22 1 �1 �1 1 1 0.5677 0.9155 1 0.25 �0 M M
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power-law in the Einstein frame. In the past asymptotic
solution MP12, we also find a power-law inflation both in
the original and Einstein frames.

C. Concluding remarks

Before we apply our solutions to cosmology, we have to
specify what kind of universe we are looking for. We wish
to have an inflation in the early stage of the universe. We
also hope to find an accelerated expansion in the present
stage, if possible. Note that our cosmological model is
higher dimensional, so that there are two kinds of frames
that we can take to discuss cosmologies, the original frame
and the Einstein frame in four dimensions. We must first
063520
determine in which frame we should consider the problem.
Notice that the flatness and horizon problems should be
explained in our four-dimensional spacetime for a success-
ful inflationary scenario. If the radius of the internal space
does not change, there is no difference between these
frames. On the other hand, the four-dimensional gravita-
tional constant depends on time in general unless we take
the Einstein frame when the radius of the internal space
changes as in the present case, and this is not preferable for
a model of our universe. It thus appears more reasonable to
consider the problem in the Einstein frame. Also the con-
dition for the inflation in the Einstein frame is sufficient for
that in the original frame. For these reasons, we require a
successful inflation in the Einstein frame. This may be
-18
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regarded as a criterion for the successful inflation indepen-
dent of the mechanism of fixing the size of the internal
space.

Next, we need at least 60 e foldings of inflationary
expansion. This may give some constraint on the power
exponent for a power-law inflation, that is, the power
exponent should be significantly larger than unity. As we
mentioned above, some solutions give an inflation in the
Einstein frame but the external space shrinks in the original
higher dimensions. Are such solutions suitable for a good
cosmological model? The answer is no. Our four-
dimensional universe makes sense only if it is much larger
than the internal space, so the external space should expand
faster than the internal space. Its expansion may not nec-
essary to be inflationary, but at least the external space
must be expanding in the whole space.

From these considerations and the above list of solu-
tions, we conclude that the M theory (and type II string
theories) can provide successful inflationary solutions. In
the heterotic string theories with Gauss-Bonnet term,
although we find exponential expansions of the external
space in the original frame, those give noninflationary
power-law expansions in the Einstein frame. There is a
power-law inflation HP5 in the past asymptotic regime.
However, the power exponent is 3.3, which may be too
small to solve flatness and horizon problems, because we
do not expect the expansion in these solutions continues so
long. We also have a super inflation HE2� (HF4, HP4) in
the Einstein frame [25]. In this case, we have to clarify a
mechanism to avoid the singularity at tE � 0.

In the M theory, we find seven candidates (ME1�,
ME2�, ME3�, ME4�, ME5�, ME6�, and MP12).
Among these, we can first exclude ME2� and ME3�
because the internal space expands almost at the same
rate as the external space. As for the solutions ME1� and
MP12, we could also reject them because the power ex-
ponents in the Einstein frame are 3.1 and 4.1, which may be
too small. However, this does not completely exclude the
solutions because they may give large e foldings if the
inflation lasts for a long time. To check this, we have to
analyze how long such an inflationary period can continue.
In our previous paper [23], we showed that although the
period may be too short for the present value of ~
4 in the
solution ME1�, if we change the coupling constant
slightly, we find a successful inflationary scenario with
large extra dimensions. Such change of coupling constant
is possible because there is intrinsic ambiguity in the terms
of effective action involving Ricci tensors and scalar
curvature.

For the solutions ME4�, ME5�, ME6�, we find an
exponential expansion of the external space both in the
original and the Einstein frames, and the internal space is
static. Hence those solutions may provide a successful
inflationary scenario.

Which solution is preferable? In order to answer this
question, we have to analyze the dynamics of our system.
063520
Then we should study the stability of those solutions both
perturbatively and nonperturbatively and find how large
e folding we can get. This study is in progress and the
results will be reported in the forthcoming paper [24].
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APPENDIX A: EQUATIONS OF MOTION

Taking variation of the actions, we find the basic equa-
tions (2.13), (2.14), and (2.15), where each term is sum-
marized here according to which action it originates from.
We use the following notation throughout this paper.

�p�m�n � �p�m��p�m� 1��p�m� 2� 
 
 
 �p� n�;

�q�m�n � �q�m��q�m� 1��q�m� 2� 
 
 
 �q� n�;

Ap � _u21 � �pe2�u0�u1�; Aq � _u22 � �qe2�u0�u2�;

X � �u1 � _u0 _u1 � _u21; Y � �u2 � _u0 _u2 � _u22:

(A1)

The Einstein equations are given by the following three
equations:

F � 0; (A2)

F�p� � 0; (A3)

F�q� � 0; (A4)

where

F �
@S
@u0

�
X4
n�1

Fn � FS; (A5)

F�p� �
1

p
@S
@u1

�
X4
n�1

F�p�
n � F�p�

S ; (A6)

F�q� �
1

q
@S
@u2

�
X4
n�1

F�q�
n � F�q�

S ; (A7)

with

F�p�
n � f�p�n � g�p�n X� h�p�n Y; (A8)

F�q�
n � f�q�n � g�q�n Y � h�q�n X: (A9)
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f�p�n ; g�p�n ; h�p�n ; f�q�n ; g�q�n , and h�q�n are functionals of
u0; _u1; _u2; Ap, and Aq, while FS; F

�p�
S , and F�q�

S are func-
tionals of u0; u1; u2; _u0; _u1; _u2; �u1; �u2; u

:::
1; u
:::
2; X; Y; _X; _Y; �X,

and �Y. The explicit forms of each term are listed here:

(i) E
H action (n � 1)

F1 � 
1e�u0�p1Ap � q1Aq � 2pq _u1 _u2	; (A10)

f�p�1 � 
1e�u0��p� 1�2Ap � q1Aq

� 2�p� 1�q _u1 _u2	; (A11)

f�q�1 � 
1e
�u0�p1Ap � �q� 1�2Aq

� 2p�q� 1� _u1 _u2	; (A12)

g�p�1 � 2�p� 1�
1e�u0 ; (A13)

g�q�1 � 2�q� 1�
1e�u0 ; (A14)

h�p�1 � 2q
1e�u0 ; (A15)

h�q�1 � 2p
1e
�u0 : (A16)
(ii) G
B action (n � 2)

F2 � 
2e
�3u0�p3A

2
p � 2p1q1ApAq � q3A

2
q

� 4 _u1 _u2�p2qAp � pq2Aq� � 4p1q1 _u21 _u
2
2	;

(A17)
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f�p�2 � 
2e
�3u0��p� 1�4A

2
p � 2�p� 1�2q1ApAq

� q3A
2
q � 4 _u1 _u2��p� 1�3qAp

� �p� 1�q2Aq�� 4�p� 1�2q1 _u
2
1 _u
2
2	;

(A18)

f�q�2 � 
2e�3u0��q� 1�4A2q � 2�q� 1�2p1ApAq

� p3A
2
p � 4 _u1 _u2��q� 1�3pAq

� �q� 1�p2Ap�� 4�q� 1�2p1 _u
2
1 _u
2
2	;

(A19)

g�p�2 � 4�p� 1�
2e�3u0��p� 2�3Ap � q1Aq

� 2�p� 2�q _u1 _u2	; (A20)

g�q�2 � 4�q� 1�
2e
�3u0��q� 2�3Aq � p1Ap

� 2�q� 2�p _u1 _u2	; (A21)

h�p�2 � 4q
2e�3u0��p� 1�2Ap � �q� 1�2Aq

� 2�p� 1��q� 1� _u1 _u2	; (A22)

h�q�2 � 4p
2e
�3u0��q� 1�2Aq � �p� 1�2Ap

� 2�p� 1��q� 1� _u1 _u2	: (A23)
(iii) L
ovelock action (n � 3; 4)
F3 � 
3e�5u0�p5A3p � 3p3q1A2pAq � 3p1q3ApA2q � q5A3q � 6 _u1 _u2�p4qA2p � 2p2q2ApAq � pq4A2q�

� 12 _u21 _u
2
2�p3q1Ap � p1q3Aq� � 8p2q2 _u

3
1 _u
3
2	; (A24)

f�p�3 � 
3e
�5u0��p� 1�6A

3
p � 3�p� 1�4q1A

2
pAq � 3�p� 1�2q3ApA

2
q � q5A

3
q � 6 _u1 _u2��p� 1�5qA

2
p � 2�p� 1�3q2ApAq

� �p� 1�q4A
2
q�� 12 _u

2
1 _u
2
2��p� 1�4q1Ap � �p� 1�2q3Aq�� 8�p� 1�3q2 _u

3
1 _u
3
2	; (A25)

f�q�3 � 
3e�5u0��q� 1�6A3q � 3�q� 1�4p1A2qAp � 3�q� 1�2p3AqA2p � p5A3p � 6 _u1 _u2��q� 1�5pA2q � 2�q� 1�3p2AqAp

� �q� 1�p4A2p�� 12 _u21 _u
2
2��q� 1�4p1Aq � �q� 1�2p3Ap�� 8�q� 1�3p2 _u

3
1 _u
3
2	; (A26)

g�p�3 � 6�p� 1�
3e
�5u0��p� 2�5A

2
p � 2�p� 2�3q1ApAq � q3A

2
q � 4 _u1 _u2��p� 2�4qAp � �p� 2�q2Aq�

� 4�p� 2�3q1 _u
2
1 _u
2
2	; (A27)

g�q�3 � 6�q� 1�
3e�5u0��q� 2�5A2q � 2�q� 2�3p1ApAq � p3A2p � 4 _u1 _u2��q� 2�4pAq � �q� 2�p2Ap�

� 4�q� 2�3p1 _u21 _u
2
2	; (A28)

h�p�3 � 6q
3e
�5u0��p� 1�4A

2
p � 2�p� 1�2�q� 1�2ApAq � �q� 1�4A

2
q � 4 _u1 _u2��p� 1�3�q� 1�Ap

� �p� 1��q� 1�3Aq�� 4�p� 1�2�q� 1�2 _u
2
1 _u
2
2	; (A29)
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h�q�3 � 6p
3e
�5u0��q� 1�4A

2
q � 2�q� 1�2�p� 1�2ApAq � �p� 1�4A

2
p � 4 _u1 _u2��q� 1�3�p� 1�Aq

� �q� 1��p� 1�3Ap�� 4�p� 1�2�q� 1�2 _u
2
1 _u
2
2	; (A30)

F4 � 
4e
�7u0�p7A

4
p � 4p5q1A

3
pAq � 6p3q3A

2
pA
2
q � 4p1q5ApA

3
q � q7A

4
q � 8 _u1 _u2�p6qA

3
p � 3p4q2A

2
pAq � 3p2q4ApA

2
q

� pq6A
3
q� � 24 _u

2
1 _u
2
2�p5q1A

2
p � 2p3q3ApAq � p1q5A

2
q� � 32 _u

3
1 _u
3
2�p4q2Ap � p2q4Aq� � 16p3q3 _u

4
1 _u
4
2	; (A31)

f�p�4 � 
4e�7u0��p� 1�8A4p � 4�p� 1�6q1A3pAq � 6�p� 1�4q3A2pA2q � 4�p� 1�2q5ApA3q � q7A4q � 8 _u1 _u2��p� 1�7qA3p

� 3�p� 1�5q2A2pAq � 3�p� 1�3q4ApA2q � �p� 1�q6A3q�� 24 _u21 _u
2
2��p� 1�6q1A2p � 2�p� 1�4q3ApAq

� �p� 1�2q5A2q�� 32 _u
3
1 _u
3
2��p� 1�5q2Ap � �p� 1�3q4Aq�� 16�p� 1�4q3 _u41 _u

4
2	; (A32)

f�q�4 � 
4e
�7u0��q� 1�8A

4
q � 4�q� 1�6p1A

3
qAp � 6�q� 1�4p3A

2
pA
2
q � 4�q� 1�2p5AqA

3
p � p7A

4
p � 8 _u1 _u2��q� 1�7pA

3
q

� 3�q� 1�5p2A
2
qAp � 3�q� 1�3p4AqA

2
p � �q� 1�p6A

3
p�� 24 _u

2
1 _u
2
2��q� 1�6p1A

2
q � 2�q� 1�4p3ApAq

� �q� 1�2p5A
2
p�� 32 _u

3
1 _u
3
2��q� 1�5p2Aq � �q� 1�3p4Ap�� 16�q� 1�4p3 _u

4
1 _u
4
2	; (A33)

g�p�4 � 8�p� 1�
4e�7u0��p� 2�7A3p � 3�p� 2�5q1A2pAq � 3�p� 2�3q3ApA2q � q5A3q � 6 _u1 _u2��p� 2�6qA2p

� 2�p� 2�4q2ApAq � �p� 2�q4A
2
q�� 12 _u

2
1 _u
2
2��p� 2�5q1Ap � �p� 2�3q3Aq�� 8�p� 2�4q2 _u

3
1 _u
3
2	; (A34)

g�q�4 � 8�q� 1�
4e�7u0��q� 2�7A3q � 3�q� 2�5p1A2qAp � 3�q� 2�3p3AqA2p � p5A3p � 6 _u1 _u2��q� 2�6pA2q

� 2�q� 2�4p2ApAq � �q� 2�p4A2p�� 12 _u21 _u
2
2��q� 2�5p1Aq � �q� 2�3p3Ap�� 8�q� 2�4p2 _u

3
1 _u
3
2	; (A35)

h�p�4 � 8q
4e
�7u0��p� 1�6A

3
p � 3�p� 1�4�q� 1�2A

2
pAq � 3�p� 1�2�q� 1�4ApA

2
q � �q� 1�6A

3
q

� 6 _u1 _u2��p� 1�5�q� 1�A2p � 2�p� 1�3�q� 1�3ApAq � �p� 1��q� 1�5A
2
q�

� 12 _u21 _u
2
2��p� 1�4�q� 1�2Ap � �p� 1�2�q� 1�4Aq�� 8�p� 1�3�q� 1�3 _u

3
1 _u
3
2	; (A36)

h�q�4 � 8p
4e�7u0��q� 1�6A3q � 3�q� 1�4�p� 1�2A2qAp � 3�q� 1�2�p� 1�4AqA2p � �p� 1�6A3p

� 6 _u1 _u2��q� 1�5�p� 1�A2q � 2�p� 1�3�q� 1�3ApAq � �q� 1��p� 1�5A2p�

� 12 _u21 _u
2
2��q� 1�4�p� 1�2Aq � �q� 1�2�p� 1�4Ap�� 8�p� 1�3�q� 1�3 _u

3
1 _u
3
2	: (A37)

(iv) SS action

FS � �e�pu1�qu2

�
�7L4 � 2�pe2�u0�u1�

@L4
@Ap

� 2�qe2�u0�u2�
@L4
@Aq

�
d
dt

�
_u1
@L4
@X

� _u2
@L4
@Y

	

; (A38)

pF�p�
S � �e�pu1�qu2

�
pL4 � 2�pe

2�u0�u1�
@L4
@Ap

�
d
dt

�
� _u0 � 2 _u1�

@L4
@X

� 2 _u1
@L4
@Ap

�
@L4
@ _u1



�

d2

dt2

�
@L4
@X

	

; (A39)

qF�q�
S � �e�pu1�qu2

�
qL4 � 2�qe2�u0�u2�

@L4
@Aq

�
d
dt

�
� _u0 � 2 _u2�

@L4
@Y

� 2 _u2
@L4
@Aq

�
@L4
@ _u2



�

d2

dt2

�
@L4
@Y

	

; (A40)

where
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L4 � e�7u0�pu1�qu2�p1X
2�X� 2Ap�

2 � q1Y
2�Y � 2Aq�

2 � 2pq�XY � �X� Y� _u1 _u2�
2 � 3p2A

4
p � 3q2A

4
q

� p1q _u21 _u
2
2� _u1 _u2 � 2Ap�

2 � pq1 _u21 _u
2
2� _u1 _u2 � 2Aq�

2	; (A41)

@L4
@X

� 4pe�7u0�pu1�qu2��p� 1�X�X� Ap��X� 2Ap� � q�Y � _u1 _u2��XY � �X� Y� _u1 _u2�	; (A42)

@L4
@Y

� 4qe�7u0�pu1�qu2��q� 1�Y�Y � Aq��Y � 2Aq� � p�X� _u1 _u2��XY � �X� Y� _u1 _u2�	; (A43)

@L4
@Ap

� 4p1e�7u0�pu1�qu2�X2�X� 2Ap� � 3�p� 2�A3p � q _u21 _u
2
2� _u1 _u2 � 2Ap�	; (A44)

@L4
@Aq

� 4q1e
�7u0�pu1�qu2�Y2�Y � 2Aq� � 3�q� 2�A3q � p _u21 _u

2
2� _u1 _u2 � 2Aq�	; (A45)

@L4
@ _u1

� 4pqe�7u0�pu1�qu2 _u2��X� Y��XY � �X� Y� _u1 _u2�� �p� 1� _u1 _u2� _u1 _u2 � Ap�� _u1 _u2 � 2Ap�

� �q� 1� _u1 _u2� _u1 _u2 � Aq�� _u1 _u2 � 2Aq�	; (A46)

@L4
@ _u2

� 4pqe�7u0�pu1�qu2 _u1��X� Y��XY � �X� Y� _u1 _u2�� �p� 1� _u1 _u2� _u1 _u2 � Ap�� _u1 _u2 � 2Ap�

� �q� 1� _u1 _u2� _u1 _u2 � Aq�� _u1 _u2 � 2Aq�	: (A47)

APPENDIX B: INPUTTING OUR ANSATZ INTO SOLUTIONS

In order to find solutions, we assume
u0 � �t; u1 � �t� lna0; u2 � �t� lnb0: (B1)

Inserting this form into the above equations [Eqs. (A10)–(A23)] and setting

Ap � �2 � ~�pe2�����t; Aq � �2 � ~�qe2�����t; ~�p �
�p

a20
; ~�q �

�q

b20
; (B2)

X � ���� ��; Y � ���� ��; (B3)

we obtain

F1 � 
1e��t�p1Ap � q1Aq � 2pq��	; f�p�1 � 
1e��t��p� 1�2Ap � q1Aq � 2�p� 1�q��	;

f�q�1 � 
1e
��t�p1Ap � �q� 1�2Aq � 2p�q� 1���	; g�p�1 � 2�p� 1�
1e

��t; g�q�1 � 2�q� 1�
1e
��t;

h�p�1 � 2q
1e
��t; h�q�1 � 2p
1e

��t;

(B4)
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F2 � 
2e
�3�t�p3A

2
p � 2p1q1ApAq � q3A

2
q � 4���p2qAp � pq2Aq� � 4p1q1�

2�2	;

f�p�2 � 
2e
�3�t��p� 1�4A

2
p � 2�p� 1�2q1ApAq � q3A

2
q � 4����p� 1�3qAp � �p� 1�q2Aq�� 4�p� 1�2q1�

2�2	;

f�q�2 � 
2e
�3�t��q� 1�4A

2
q � 2�q� 1�2p1ApAq � p3A

2
p � 4����q� 1�3pAq � �q� 1�p2Ap�� 4�q� 1�2p1�

2�2	;

g�p�2 � 4�p� 1�
2e
�3�t��p� 2�3Ap � q1Aq � 2�p� 2�q��	;

g�q�2 � 4�q� 1�
2e
�3�t��q� 2�3Aq � p1Ap � 2�q� 2�p��	;

h�p�2 � 4q
2e
�3�t��p� 1�2Ap � �q� 1�2Aq � 2�p� 1��q� 1���	;

h�q�2 � 4p
2e
�3�t��p� 1�2Ap � �q� 1�2Aq � 2�p� 1��q� 1���	; (B5)

F4 � 
4e�7�t�p7A4p � 4p5q1A3pAq � 6p3q3A2pA2q � 4p1q5ApA3q � q7A4q � 8���p6qA3p � 3p4q2A2pAq

� 3p2q4ApA2q � pq6A3q� � 24�2�2�p5q1A2p � 2p3q3ApAq � p1q5A2q� � 32�3�3�p4q2Ap � p2q4Aq�

� 16p3q3�4�4	; (B6)

f�p�4 � 
4e�7�t��p� 1�8A4p � 4�p� 1�6q1A3pAq � 6�p� 1�4q3A2pA2q � 4�p� 1�2q5ApA3q � q7A4q

� 8��f�p� 1�7qA3p � 3�p� 1�5q2A2pAq � 3�p� 1�3q4ApA2q � �p� 1�q6A3qg � 24�2�2f�p� 1�6q1A2p

� 2�p� 1�4q3ApAq � �p� 1�2q5A2qg � 32�3�3f�p� 1�5q2Ap � �p� 1�3q4Aqg � 16�p� 1�4q3�4�4	; (B7)

g�p�4 � 8�p� 1�
4e
�7�t��p� 2�7A

3
p � 3�p� 2�5q1A

2
pAq � 3�p� 2�3q3ApA

2
q � q5A

3
q � 6��f�p� 2�6qA

2
p

� 2�p� 2�4q2ApAq � �p� 2�q4A
2
qg � 12�

2�2f�p� 2�5q1Ap � �p� 2�3q3Aqg � 8�p� 2�4q2�
3�3	; (B8)

h�p�4 � 8q
4e
�7�t��p� 1�6A

3
p � 3�p� 1�4�q� 1�2A

2
pAq � 3�p� 1�2�q� 1�4ApA

2
q � �q� 1�6A

3
q

� 6��f�p� 1�5�q� 1�A2p � 2�p� 1�3�q� 1�3ApAq � �p� 1��q� 1�5A
2
qg

� 12�2�2f�p� 1�4�q� 1�2Ap � �p� 1�2�q� 1�4Aqg � 8�p� 1�3�q� 1�3�
3�3	; (B9)

f�q�4 � 
4e
�7�t��q� 1�8A

4
q � 4�q� 1�6p1A

3
qAp � 6�q� 1�4p3A

2
pA
2
q � 4�q� 1�2p5AqA

3
p � p7A

4
p

� 8��f�q� 1�7pA3q � 3�q� 1�5p2A2qAp � 3�q� 1�3p4AqA2p � �q� 1�p6A3pg � 24�2�2f�q� 1�6p1A2q

� 2�q� 1�4p3ApAq � �q� 1�2p5A2pg � 32�3�3f�q� 1�5p2Aq � �q� 1�3p4Apg � 16�q� 1�4p3�4�4	; (B10)

g�q�4 � 8�q� 1�
4e�7�t��q� 2�7A3q � 3�q� 2�5p1A2qAp � 3�q� 2�3p3AqA2p � p5A3p � 6��f�q� 2�6pA2q

� 2�q� 2�4p2ApAq � �q� 2�p4A2pg � 12�2�2f�q� 2�5p1Aq � �q� 2�3p3Apg � 8�q� 2�4p2�3�3	; (B11)

h�q�4 � 8p
4e�7�t��q� 1�6A3q � 3�q� 1�4�p� 1�2A2qAp � 3�q� 1�2�p� 1�4AqA2p � �p� 1�6A3p

� 6��f�q� 1�5�p� 1�A2q � 2�p� 1�3�q� 1�3ApAq � �q� 1��p� 1�5A2pg

� 12�2�2f�q� 1�4�p� 1�2Aq � �q� 1�2�p� 1�4Apg � 8�p� 1�3�q� 1�3�
3�3	; (B12)

FS � �e�7�t��7 ~L4 � ��7�� p�� q���p�MX � q�MY� � 2 ~�pe2�����tpfNp �������PpXg

� 2~�qe
2�����tqfNq � ���� ��PqYg	; (B13)

F�p�
S � �e�7�t� ~L4 � ��7�� p�� q��f��� 2��MX � 2�Np � q�U� 4�����~�pe

2�����tPpXg

� ��7�� p�� q��2MX � 2 ~�pe2�����tf�Np � ��������� 2��PpX � 2�Qpp � �p� 1�q�Vp	g

� 2��� ��~�qe
2�����tq1�Vq � 4�����2 ~�pe

2�����tPpX � 4�����2 ~�2pe
4�����tRpX	; (B14)
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F�q�
S � �e�7�t� ~L4 � ��7�� p�� q��f��� 2��MY � 2�Nq � p�U � 4��� ��~�qe

2�����tPqYg

� ��7�� p�� q��2MY � 2 ~�qe2�����tf�Nq � ��� ������ 2��PqY � 2�Qqq � p�q� 1��Vq	g

� 2�����~�pe2�����tp1�Vp � 4��� ��2 ~�qe2�����tPqY � 4��� ��2 ~�2qe4�����tRqY	; (B15)

where

~L4 � p1X
2�X� 2Ap�

2 � q1Y
2�Y � 2Aq�

2 � 2pq�XY � �X� Y����2 � 3p2A
4
p � 3q2A

4
q

� p1q�
2�2���� 2Ap�

2 � pq1�
2�2���� 2Aq�

2; (B16)

MX � 4��p� 1�X�X� Ap��X� 2Ap� � q�Y �����XY � �X� Y����	; (B17)

MY � 4��q� 1�Y�Y � Aq��Y � 2Aq� � p�X�����XY � �X� Y����	; (B18)

Np � 4�p� 1��X2�X� 2Ap� � 3�p� 2�A3p � q�2�2���� 2Ap�	; (B19)

Nq � 4�q� 1��Y2�Y � 2Aq� � 3�q� 2�A3q � p�2�2���� 2Aq�	; (B20)
PpX � 4�p� 1�X�3X� 4Ap�; (B21)

PqY � 4�q� 1�Y�3Y � 4Aq�; (B22)

Qpp � 4�p� 1��2X2 � 9�p� 2�A2p � 2q�2�2	; (B23)

Qqq � 4�q� 1��2Y2 � 9�q� 2�A2q � 2p�2�2	; (B24)

RpX � 16�p� 1�X; (B25)

RqY � 16�q� 1�Y; (B26)

U � 4��X� Y��XY � �X� Y����

� �p� 1������� Ap����� 2Ap�

� �q� 1������� Aq����� 2Aq�	; (B27)

Vp � 4���3��� 4Ap�; (B28)

Vq � 4���3��� 4Aq�: (B29)

APPENDIX C: GENERALIZED DE SITTER
SOLUTIONS WITH FLAT SPACES

If we assume � � 0, �p � 0, and �q � 0, we find two
independent basic equations without constraint. Setting
X � �2 � Ap and Y � �2 � Aq, we obtain the following
terms:

F1 � 
1�p1�2 � q1�2 � 2pq��	; (C1)

F�p�
1 � F1 � q�H1; (C2)

F�q�
1 � F1 � p�H1; (C3)
063520
F2 � 
2�p3�
4 � 4���p2q�

2 � pq2�
2�

� 6p1q1�
2�2 � q3�

4	; (C4)

F�p�
2 � F2 � q�H2; (C5)

F�q�
2 � F2 � p�H2; (C6)

F4 � 
4�p7�
8 � 8p6q�

7�� 28p5q1�
6�2

� 56p4q2�
5�3 � 70p3q3�

4�4 � 56p2q4�
3�5

� 28p1q5�
2�6 � 8pq6��

7 � q7�
8	; (C7)

F�p�
4 � F4 � q�H4; (C8)

F�q�
4 � F4 � p�H4; (C9)

FS � ���7 ~L4 � �p�� q���p�MX � q�MY�	; (C10)

F�p�
S � FS � �q�HS (C11)

F�q�
S � FS � �p�HS; (C12)

where

H1 � 2
1��� ��; (C13)

H2 � 4
2��� ����p� 1�2�
2 � 2�p� 1��q� 1���

� �q� 1�2�
2	; (C14)
-24
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H4 � 8
4��� ����p� 1�6�
6 � 6�p� 1�5�q� 1��5�

� 15�p� 1�4�q� 1�2�4�2

� 20�p� 1�3�q� 1�3�3�3

� 15�p� 1�2�q� 1�4�2�4 � 6�p� 1��q� 1�5��5

� �q� 1�6�6	; (C15)

~L4 � 3�p� 1�1�
8 � 3�q� 1�1�

8

� 2pq��2 � �2 ����2�2�2 � p1q�
4�2�2�� ��2

� pq1�
2�4��� 2��2; (C16)

MX � 4�6�p� 1��6 � q��2��� ����2 � �2 ����	;

(C17)

MY � 4�6�q� 1��6 � p�2���� ����2 � �2 ����	;

(C18)

HS � 4���� ���6�p� 1��6 � �p� 1��p� 6q� 6��5�

� �2p2 � 7p� 3q� 6��4�2 � fp2 � �4q� 3�p

� q2 � 3q� 6g�3�3 � �2q2 � 7q� 3p� 6��2�4

� �q� 1��q� 6p� 6���5 � 6�q� 1��6	: (C19)
TABLE VII. Type II superstring: exact solutions
a static space with positive (or negative) curvatur
respectively.

� �p �q � �

IIE1
 0 0 0 
0:7999 
0:1299
IIE2
 0 0 0 
0:5075 
0:5075
IIE3
 0 0 0 
0:4962 
0:5131
IIE4
 0 0 1 
0:7655 0
IIE5
 0 0 �1 
0:6200 0
IIE6
 0 1 0 0 
0:6201
IIE7 1 0 �1 0 1
IIE8 1 �1 0 1 0

TABLE VIII. Type II superstrings: future asym
type space.

� �p �q � � a0

IIF1 0 1 
1 0 0.6201 1.078
IIF2 0 
1 1 0:7655 0 
 
 


IIF3 0 
1 �1 0:6200 0 
 
 


IIF4 0 
1 
1 0:7999 0.1299 
 
 


IIF5 0 
1 
1 0:5075 0.5075 
 
 


IIF6 0 
1 
1 0:4962 0.5131 
 
 


IIF7 1 0 0 0.5556 �0:1111 
 
 


IIF8 1 0 0 �0:3333 0.3333 
 
 


IIF9 1 �1 �1 1 1 0.5
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Since the second and third equations are given in the form

F�p� � F� q�H; and F�p� � F� p�H (C20)

those are equivalent if � � 0 and � � 0. Then we can take
the following two algebraic equations as our basic equa-
tions.

X4
n�1

Fn � FS � 0; (C21)

X4
n�1

Hn �HS � 0: (C22)
D. SOLUTIONS IN TYPE II STRING

Here we summarize the case of type II string. Exact
solutions are in Table VII, future asymptotic solutions in
Table VIII, and past asymptotic solutions in Table IX.

Here we have the similar results to the case of the
M theory. Let us focus on inflationary solutions. In the
original frame, IIE1�(IIF4), IIE2�(IIF5), IIE3�(IIF6),
IIE4�(IIF2), IIE5�(IIF3) give an exponential expansion
for the external space. In the Einstein frame, we find either
a power-law inflation [IIE1�(IIF4), IIE2�(IIF5),
. K, S
, S0, and M mean a kinetic dominance,
e, a flat static space, and a Milne-type space,

a0 b0 � *1 Type


 
 
 
 
 
 3.053 
0:0433 K K

 
 
 
 
 
 1.333 
0:1692 K K

 
 
 
 
 
 1.322 
0:1710 K K

 
 
 1.480 e�tE 0 K S�

 
 
 2.763 e�tE 0 K S�

1.078 
 
 
 1 
0:2067 S� K

 
 
 1 0.75 0.25 S0 M

1 
 
 
 1 0 M S0

ptotic solutions (t ! 1). M means a Milne-

b0 � *1 tE Type


 
 
 1 0.2067 ! 1 IIE6�
1.480 e�tE 0 ! 1 IIE4�
2.763 e�tE 0 ! 1 IIE5�

 
 
 3.053 0.0433 ! 1 IIE1�

 
 
 1.333 0.1692 ! 1 IIE2�

 
 
 1.322 0.1710 ! 1 IIE3�

 
 
 0.3333 �0:1667 ! 1 Kasner

 
 
 0.3333 0.1667 ! 1 Kasner

0.7906 1 0.25 ! 1 M M
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TABLE IX. Type II superstrings: past asymptotic solutions (t ! �1). K, S
, S0, M, and C mean a kinetic dominance, a static space
with positive (or negative) curvature, a flat static space, a Milne-type space, and a constant curvature space, respectively.

� �p �q � � a0 b0 � *1 tE Type

IIP1 0 1 
1 0 �0:6201 1.078 
 
 
 1 �0:2067 ! �1 IIE6�
IIP2 0 
1 �1 �0:6200 0 
 
 
 2.763 e�tE 0 ! �1 IIE4�
IIP3 0 
1 1 �0:7655 0 
 
 
 1.480 e�tE 0 ! �1 IIE5�
IIP4 0 
1 
1 �0:7999 �0:1299 
 
 
 
 
 
 3.053 �0:0433 ! �1 IIE1�
IIP5 0 
1 
1 �0:5075 �0:5075 
 
 
 
 
 
 1.333 �0:1692 ! �1 IIE2�
IIP6 0 
1 
1 �0:4962 �0:5131 
 
 
 
 
 
 1.322 �0:1710 ! �1 IIE3�
IIP7 1 0;
1 0;
1 5:7427 5:7427 
 
 
 
 
 
 1.2602 0.3150 �0 K K
IIP8 1 0;
1 0;
1 0:3205 0:000 17 
 
 
 
 
 
 0.3208 0.000 1699 �0 K K
IIP9 1 0;
1 0;
1 0:2883 0:2883 
 
 
 
 
 
 0.6184 0.1546 �0 K K
IIP10 1 0;
1 0;
1 0:0013 0:2954 
 
 
 
 
 
 0.4705 0.1566 �0 K K
IIP11 1 0 1 4.0305 1 
 
 
 0.3375 1.7576 0.25 �0 K C
IIP12 1 0 �1 0.4484 1 
 
 
 0.8948 0.8621 0.25 �0 K M
IIP13 1 0 �1 �9:7439 1 
 
 
 0.1028 �1:6860 0.25 �0 K M
IIP14 1 1 0 1 6.1725 0.1148 
 
 
 1 0.3163 �0 C K
IIP15 1 �1 0 1 0.0358 0.9915 
 
 
 1 0.0323 �0 M K
IIP16 1 �1 0 1 �26:8744 0.0323 
 
 
 1 0.3375 �0 M K
IIP17 1 �1 
1 1 0 1 
 
 
 1 0 �0 M K
IIP18 1 
1 �1 0 1 
 
 
 1 0.75 0.25 �0 K M
IIP19 1 1 1 1 1 0.4698 0.6843 1 0.25 �0 C C
IIP20 1 �1 �1 1 1 1.127 0.7757 1 0.25 �0 M M
IIP21 1 �1 �1 1 1 0.6527 0.8733 1 0.25 �0 M M
IIP22 1 �1 1 1 1 0.1701 0.2330 1 0.25 �0 M C
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IIE3�(IIF6)] or an exponential expansion [IIE4�(IIF2),
IIE5�(IIF3)]. Just as the case of the heterotic strings, we
obtain strange solutions IIP4� 6, in which the external
space shrinks exponentially in the original frame, but it
063520
expands by a power-law in the Einstein frame. In some past
asymptotic solutions [IIP7 and IIP11], we also find a
power-law inflation both in the original and Einstein
frames.
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