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Cosmology of generalized modified gravity models
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We consider general curvature-invariant modifications of the Einstein-Hilbert action that become
important only in regions of extremely low space-time curvature. We investigate the far future evolution
of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate
destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting
set of attractor solutions which, in some cases, provide alternatives to dark energy models.
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I. INTRODUCTION

The acceleration of the Universe presents one of the
greatest problems in theoretical physics today. The increas-
ingly accurate observations of type Ia supernovae light-
curves, coupled with exquisite measurements of cosmic
microwave background (CMB) anisotropies and large
scale structure data [1–6] have forced this issue to the
forefront of those facing particle physicists, cosmologists,
and gravitational physicists alike.

This problem has been attacked head on, but no com-
pelling, well-developed, and well-motivated solutions have
yet emerged. While much work has focused on the search
for new matter sources that yield accelerating solutions to
general relativity, more recently some authors have turned
to the complementary approach of examining whether new
gravitational physics might be responsible for cosmic
acceleration.

There have been a number of different attempts [7–15]
to modify gravity to yield accelerating cosmologies at late
times. The path we are concerned with in this paper is the
direct addition of higher order curvature invariants to the
Einstein-Hilbert action. The first example of this was pro-
vided by the model of Carroll, Duvvuri, Trodden, and
Turner (CDTT) [7] (see also [8]). For subsequent work
on various aspects and extensions of this model, see [16–
32]. In particular, the simplest model has been shown to
conflict with solar system tests of gravity [19,22,25]. Our
approach is purely phenomenological. The evidence for
cosmic acceleration is very sound. In pure Einstein gravity,
as matter dilutes away in the expanding Universe, the
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expansion rate inevitably slows. Our question is can this
be avoided within the gravitational sector of the theory, as
opposed to adding new energy sources. One way is by
adding a cosmological constant. In this paper we explore
a wider class of modifications that share the feature of late-
time accelerating behavior, thus fitting cosmological
observations.

Consider a simple correction to the Einstein-Hilbert
action,
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where� is a new parameter with units of [mass] and LM is
the Lagrangian density for matter. This action gives rise to
fourth-order equations of motion. In the case of an action
depending purely on the Ricci scalar (and on its deriva-
tives) it is possible to transform from the frame used in (1),
which we call the matter frame, to an Einstein frame, in
which the gravitational Lagrangian takes the Einstein-
Hilbert form and the additional degrees of freedom ( �H
and _H) are represented by a scalar field 
. The details of
this can be found in [7]. The scalar field is minimally
coupled to Einstein gravity, nonminimally coupled to mat-
ter, and has a potential given by
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Consider vacuum cosmological solutions. We must
specify the initial values of 
 and 
0, denoted as 
i and

0
i. For simplicity we take 
i � MP. There are three

qualitatively distinct outcomes, depending on the value
of 
0

i.
1. Eternal de Sitter. There is a critical value of 
0

i � 
0
C

for which 
 just reaches the maximum of the potential
V�
	 and comes to rest. In this case the Universe asymp-
totically evolves to a de Sitter solution. This solution
requires tuning and is unstable, since any perturbation
-1  2005 The American Physical Society
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will induce the field to roll away from the maximum of its
potential.

2. Power-Law Acceleration. For
0
i > 
0

C, the field over-
shoots the maximum of V�
	 and the Universe evolves to
late-time power-law inflation, with observational conse-
quences similar to dark energy with equation-of-state pa-
rameter wDE � �2=3.

3. Future Singularity. For
0
i < 
0

C,
 does not reach the
maximum of its potential and rolls back down to 
 � 0.
This yields a future curvature singularity.

In the more interesting case in which the Universe
contains matter, it is possible to show that the three pos-
sible cosmic futures identified in the vacuum case remain
in the presence of matter.

By choosing �
 10�33 eV, the corrections to the stan-
dard cosmology only become important at the present
epoch, making this theory a candidate to explain the ob-
served acceleration of the Universe without recourse to
dark energy. Since we have no particular reason for choos-
ing this value of�, such a tuning is certainly not attractive.
However, it is worth commenting that this small correction
to the action, unlike most small corrections in physics, is
destined to be important as the Universe evolves.

Clearly our choice of correction to the gravitational
action can be generalized. Terms of the form
��2�n�1	=Rn, with n > 1, lead to similar late-time self
acceleration, with behavior similar to a dark energy com-
ponent with equation of state parameter

weff � �1�
2�n� 2	

3�2n� 1	�n� 1	
: (3)

Therefore, such modifications can easily accommodate
current observational bounds [33,34] on the equation of
state parameter �1:45<wDE <�0:74 (95% confidence
level). In the asymptotic regime, n � 1 is ruled out at this
level, while n � 2 is allowed; even n � 1 is permitted if
we are near the top of the potential.

In this paper we seek to extend this approach. For the
actions considered in this paper, a transformation between
the matter and Einstein frames does not necessarily make
sense. Therefore, we would like to analyze the dynamics in
the matter frame itself. A technique for this analysis is
presented here.

As an example, we begin by applying this technique to
the CDTT model. We will work in the matter frame with a
spatially flat Robertson-Walker metric

ds2 � �dt2 � a�t	2d~x2; (4)

with a�t	 being the scale factor. The time-time component
of the field equations, the Friedmann equation in this
nonstandard cosmology, is

3H2�
�4

12� _H�2H2	3
�2H �H�15H2 _H�2 _H2�6H4	�

�M
M2

P

;

(5)
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where an overdot denotes differentiation with respect to
cosmic time, and H � _a=a.

To perform a phase-space analysis of such equations we
write _H as a function of H. Let

x � �H�t	; y � _H�t	; (6)

so that

�H �
d _H
dt

�
d _H
dH

dH
dt

� �y
dy
dx
: (7)

In this way we may write (5), a third-order equation in
a�t	, as a second-order equation in H�t	, and hence as a
first-order equation in y�x	. The fact that the Friedmann-
Robertson-Walker (FRW) equation for any f�R	 theory can
be reduced to the first-order equation for the spatially flat
case (second order in case of a nonzero spatial curvature)
was first introduced in [35,36].

Many cosmologically interesting solutions, including
accelerating ones, are power-law solutions of the form
a�t	 / tp. In such cases _H � �H2=p (i.e. y � �x2=p).
In anticipation of finding such solutions as asymptotic
solutions to our equations, we define a new function v�x	
by

v�x	 � �
x2

y
; (8)

with v � 0. Power-law solutions in the asymptotic
future are then easily identified as v�x	 ! p � constant
as H ! 0.

Furthermore, if

j _Hj � jyj ! 1; then jvj ! 0 if x � 0: (9)

So if x is not zero, as v! 0 we approach the singularity
j _Hj ! 1. This trick is invoked throughout this paper.

Here, let us apply it to the simple case of (5). The
relevant first-order equation is

x
dv
dx

� 2v�
1

2�4 �x
4�36� 216v� 432v2 � 288v3	

��4�2v� 15v2 � 6v3	�; (10)

with the resulting phase plot shown in Fig. 1.
Since the x-axis on this plot is (minus) the Hubble

parameter, earlier times in the Universe lie to the (negative)
left and late times lie closer to x � 0 (in all but exponential
or phantom evolution).

Note that the numerical solution shows the accelerating
attractor a�t	 / t2, corresponding to v�x	 ! 2 as x! 0, as
expected from the analytic, Einstein-frame method.
Indeed, for general n this attractor, at v � �2n� 1	�n�
1	=�n� 2	 can be obtained directly from the asymptotic
form of the generalization of Eq. (10). In addition, our
method pinpoints a singularity in the phase space, corre-
sponding to a power-law evolution with exponent p � 1=2
(that of radiation). Both features are also evident from the
-2
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FIG. 1 (color online). Two phase portraits for the modified gravity model proposed in [7]. The left portrait is in the coordinates �x; v	,
for which an attractor at constant v � p corresponds to a power-law solution with a�t	 / tp. The right portrait is for the same theory in
the � _H;H	 plane, with the unstable de Sitter solution at (0, 1).
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study of the asymptotically late-time behavior of Eq. (10).
In order to have a constant v0 as a solution, we need

2v20 � 5v0 � 2 � 0; (11)

which has two real solutions: v0 � 1=2, 2, as expected.
The singularity at p � 1=2 occurs because the Ricci

scalar vanishes for this particular power. One might worry
that this is problematic for describing the radiation-
dominated phase in standard cosmology, since nucleosyn-
thesis occurs during this epoch and provides a particularly
strong constraint on deviations from the standard
Friedmann equation at that time. However, as we shall
see later, this is not a problem when matter sources are
included explicitly, since even during radiation domination
the Ricci scalar does not vanish exactly, but rather, has a
small contribution from nonrelativistic matter.

Nevertheless, the singularity is a new feature that was
not found in the Einstein-frame analysis [7]. This is pre-
sumably because R � 0 is a singular point of the confor-
mal transformation used to reach the Einstein frame. We
shall see similar singularities for some of the more general
actions we consider in this paper.

Another way to visualize the solutions to our models is
to use a more traditional phase portrait in the � _H;H	 plane.

The outline of this paper is as follows. In the next section
we shall introduce the general class of actions we are
interested in. In section III we analyze the vacuum equa-
tions, describing the singularity and attractor structure in
detail before moving on to some simple special cases. In
section IV we introduce matter into the equations, demon-
strating briefly that the late-time attractor solutions of the
system remain unchanged and setting up the formalism
used in the appendices to establish stability of the system.
In section V we summarize our findings and comment on
the status of these models as origins of cosmic accelera-
tion. The paper contains two appendices. Appendix A
contains definitions of a number of functions used in the
063513
body of the paper and Appendix B consists of a proof of the
stability of the vacuum solutions under the addition of
matter.
II. A GENERAL NEW GRAVITATIONAL ACTION

We now generalize the action of [7] to include other
curvature invariants. There are, of course, any number of
terms that we could consider. We have chosen to consider
those invariants of lowest mass dimension that are also
parity-conserving

P � R��R��; Q � R !"#R !"#: (12)

Since we are interested in adding terms to the action that
explicitly forbid flat space as a solution, we will, in a
similar way as in [7], consider inverse powers of the above
invariants.

It is likely that such terms introduce ghost degrees of
freedom. We shall not address this problem here, since it is
beyond the scope of this paper. Rather, if ghosts arise we
shall require that some as yet unknown mechanism (for
example, extra-dimensional effects) cut off the theory in
such a way that the associated instabilities do not appear on
cosmological time scales [37] (see [14] for an example of a
concrete model where ghosts are brought under control by
higher-derivative terms). We therefore consider actions of
the form

S �
Z
d4x

�������
�g

p
�R� f�R;P;Q	� �

Z
d4x

�������
�g

p
LM;

(13)

where f�R;P;Q	 is a general function describing devia-
tions from general relativity.

It is convenient to define

fR �
@f
@R

; fP �
@f
@P

; fQ �
@f
@Q

; (14)
-3
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in terms of which the equations of motion are
R�� �
1
2g��R� 1

2g��f� fRR�� � 2fPR
 
�R � � 2fQR !"�R

 !"
� � g���fR �r�r�fR � 2r r!�fPR

 
��#

!
�	�

� ��fPR��	 � g��r r!�fPR
 !	 � 4r r!�fQR

 
���	 � � 8%GT��: (15)
1Another potentially interesting possibility is a correction of
form f�R;P;Q	 � �4R

P . This term has the same mass dimension
as the �4=R term of CDTT. However, it turns out that this model
does not possess any accelerating attractors. Specifically, the
scale factor asymptotically approaches a�t	 / t0:37.
It is straightforward to check that these equations reduce
to those of the simple model of [7] for f�R	 � ��4=R.

We would like to obtain constant curvature vacuum
solutions to these field equations. To do so, we take the
trace of (15) and substitute Q � R2=4 and P � R2=6
(which are identities satisfied by constant curvature
space-times) into the resulting equation to obtain the alge-
braic equation:

�2fQ � 3fP	R2 � 6�fR � 1	R� 12f � 0: (16)

Solving this equation for the Ricci scalar yields the con-
stant curvature vacuum solutions.

Evidently, actions of the form (13) generically admit a
maximally-symmetric solution: R � a nonzero constant.
However, an equally generic feature of such models is that
this de Sitter solution is unstable. In the CDTT model the
instability is to an accelerating power-law attractor. This is
a possibility that we will also see in many of the more
general models under consideration here.

Before we leave this section, note that, in analyzing the
cosmology of these general models, it is useful to have at
hand the following expressions, which hold in a flat FRW
background

R � 6
�
_a2

a2
�
�a
a

�
� 6� _H� 2H2	 (17)

P � 12
�
_a4

a4
�
�a2

a2
�

_a2

a2
�a
a

�
� 12�� _H�H2	2 �H4 �H2� _H �H2	� (18)

Q � 12
�
_a4

a4
�
�a2

a2

�
� 12�� _H �H2	2 �H4�: (19)

We have provided these both in terms of the scale factor
a�t	 and in terms of the Hubble parameter H�t	 �
_a�t	=a�t	, since they will be separately important in this

paper.

III. VACUUM SOLUTIONS

In this section we study cosmological solutions to the
field equations (15) in the absence of matter sources.
Physically, this is important because we are hoping to find
novel cosmological consequences arising purely from the
gravitational sector of the theory. Mathematically, this
provides us with valuable insight into the structure of the
equations, which take a significantly simplified form
wherein the Hubble parameter may be treated as the inde-
pendent variable.
063513
As mentioned in the previous section, we will consider
inverse powers of our curvature invariants and, for sim-
plicity, we will specialize to a class of actions with

f�R;P;Q	 � �
�4n�2

�aR2 � bP� cQ	n
; (20)

where n is a positive integer, � has dimensions of mass,
and a, b, and c are dimensionless constants.1 We will focus
on the case n � 1 for most of the paper, because the
analysis is less involved for that case. For general n the
qualitative features of the system are as for n � 1 and we
discuss the quantitative differences in our conclusions.

A. Distinguished Points of the Action (and Equations)

In general, the analogue of the Friedmann equation may
be written in the following convenient form

A� B �H
C

� M; (21)

where A � A�H; _H	, B � B�H; _H	, and C � C�H; _H	
arise from the gravitational part of the action and M �
M�a	 describes the possible inclusion of matter.

It is also convenient to write this schematically in terms
of our variables of the previous section as

x
dv
dx

�
x6f�v	 ��6v2g�v	

2�6vh�v	
; (22)

where f�v	, g�v	, and h�v	 are 6th, 4th, and 2nd degree
polynomials, respectively, in the variable v, whose explicit
form is given in Appendix A. We are often interested in a
particular subset of the phase space, the region where v >
1=2. This is because from nucleosynthesis to the matter-
dominated epoch, we expect Einstein’s equations to pro-
vide a good approximation to the dynamics, and therefore,
when matter becomes subdominant we should have 1=2<
v< 2=3.

There are three types of special points in the phase-space
plots of these equations:
(1) S
-4
ingular Points of the Friedmann Equation—In our
introduction we reconsidered the model of [7] and
discovered a singular point of both the action and
the equations of motion, corresponding to a power-
law evolution with exponent p � 1=2. In this par-
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ticular case the singularity occurred because R � 0
for p � 1=2. In our more general models, analogous
singularities occur whenever the denominator of the
Friedmann equation blows up; i.e., at zeros of C,
where C is defined by (21). For the flat cosmological
ansatz this occurs when

_H �H2 � �
 
4

� _H
H

�
2
; (23)

where we have defined

 �
12a� 4b� 4c
12a� 3b� 2c

: (24)

Recall that a, b, and c are parameters in the
Lagrangian (20). In our variables of the previous
section this becomes

v � p1;2 �
1

2
�1�

�������������
1�  

p
	; (25)

each zero having multiplicity 3.
These singularities only exist if p1;2 are real, i.e.
 � 1 and therefore there are many invariants that
do not admit this type of singularity. In the simple
case of [7], corresponding to b � c � 0, note that
we have  � 1 and recover pc � 1=2 as expected.
If  � 1

p1 � 1=2; p2 � 1=2: (26)
(2) S
ingular Points at which �H ! 1—Points at which
�H ! 1 occur at zeros of B and, in our variables of

the previous section, correspond to								dvdx
								! �1 (27)

at finite x and v. We denote the zeros by v�x	 �
v1; v2, where the vi are (in general complex) con-
stants constructed from a, b, and c.
If g�v	 � 0 one singular point is at x � 0.
Otherwise the singularities occur at solutions of
vh�v	 � 0, i.e.

v��108a2 � 51ab� 7bc� 30ac� 2c2 � 6b2	v2

� �63ab� 6c2 � 9b2 � 108a2 � 15bc� 54ac	v

� 18ab� 3c2 � 6bc� 27a2 � 18ac� 3b2� � 0;

(28)

which are given by

v1;2 �
3 

2�4�  	

�
1�

�������������
 � 1

3

s �
; v3 � 0:

(29)
(3) L
ate-time Stable Points.—Finally, we look for late-
time power-law attractors. This happens if v�x	 !
063513-5
constant (distinct from our previously mentioned
singular values). Taking an asymptotic limit of the
equations of motion yields

v��288a2� 18b2� 8c2� 144ab� 96ac� 24bc	v4

��1512a2� 90b2� 36c2� 738ab� 468ac

� 114bc	v3��1836a2� 123b2� 62c2� 951ab

� 678ac� 175bc	v2��846a2� 69b2� 44c2

� 489ab� 414ac� 113bc	v� 135a2� 15b2

� 15c2� 90ab� 90ac� 30bc� � 0; (30)

with solutions

s1;2 �
20� 3 

8

�
1�

��������������������������������
1�

120 

�20� 3 	2

s �
;

s3 � p1;

(31)

s4 � p2; (32)

s5 � 0; (33)

and s2 > s1.
It is clear that only s1 and s2 can be late-time power-
law solutions. The other ones represent singular-
ities; v � 0 implies that y � _H ! 1, whereas s3
and s4 are the singular points we discussed earlier.
B. Summary of Possibilities

Here we summarize the different vacuum possibilities. It
is useful to define the following two constants

-1 �
280� 60

���
3

p

111� 60
���
3

p � 1:78 (34)

-2 �
280� 60

���
3

p

111� 60
���
3

p � 24:9: (35)
(1)  
< 1. In this case vi are complex, whereas pi and
si are real. It is straightforward to show that s2 >
p2 > 1=2 and s2 > 1.

(a) 0< < 1. In this case 1=2> s1 >p1 > 0
and 1> p2 > 1=2. Solutions close to p2 are
repelled from it, whereas s1 is an attractor.
This leads to decelerating late-time behavior.

(b) 0> >�160=9. Here s1 <p1 < 0 and so-
lutions are attracted to (x � 0, v � 0).
Furthermore p2 > 1.

(c)  <�160=9. In this case p1 < s1 < 0 and
again we have that solutions are attracted to
(x � 0, v � 0). Again, p2 > 1.
(2)  
> 1. In this case vi are real, whereas pi are
complex.



 0
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 4

 5

 0

FIG. 2.
varied.
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(a) 1< < 4=3. Here v1 < 1=2 and 1=2< s1 <
v2 < 1. Furthermore s2 > 1. Both s1 and s2
are attractors, but s1 describes a decelerating
phase.

(b) 4=3< < -1. Here 1=2< v1 < 1 and v2 >
1. Both (x � 0, v � 0) and s1;2 are attractors,
with the separatrix being at v1;2.

(c) -1 < < 4. In this case 1=2< v1 < 1 and
v2 > 1. Again, both (x � 0, v � 0) and v2
are attractors and the separatrix is at v1.
There are no real solutions for s1;2.

(d) 4< < -2. Here there are no real late-time
attractors since the si are complex. We also
have v2 < 0 and v1 > 1. Solutions either
evolve to (x � 0, v � 0) or to v � �1,
with separatrix at v1.

(e)  > -2. In this case v2 < 0, v1 > 1, and s1 <
s2 < 0. Evolution is to a decelerating
attractor.
 

The
(3)  
� 1. This yields a promising class of solutions.
We have

p1 � p2 � v1 � v2 � s1 �
1

2
: (36)

All singularities occur as v�x	 ! 1=2. However,
from nucleosynthesis onwards we never encounter
this point. It is simple to show that solutions evolve
to a late-time power-law attractor describing an
accelerating phase, with

s2 �
15

4
� 3:75; (37)

which is otherwise independent of a, b, c.

The results of this section may be summarized in Fig. 2,

showing the values of the various distinguished points as  
is varied.
0.5  1  1.5  2  2.5

α

s2

s1

p1

p2

v2

v1

values of the various distinguished points as  is

063513
C. Inverse Powers of P � R��R
��

Let us begin by dealing only with actions containing
modifications involving P � R��R

��. Our prototype is to
consider f�P	 � �m6=P, with m a parameter with dimen-
sions of mass.

Using (16) we can see that there is a constant curvature
vacuum solution to this action given by

R�P	
const � �16	1=3m2: (38)

However, we would like to investigate other cosmological
solutions and analyze their stability.

From (15), with the flat cosmological ansatz, the ana-
logue of the Friedmann equation becomes

3H2 �
m6

8�3H4 � 3H2 _H � _H2	3
� _H4 � 11H2 _H3 � 2H _H2 �H

� 33H4 _H2 � 30H6 _H � 6H3 _H �H�6H8 � 4H5 �H� � 0:

(39)

We analyze this equation using the same technique, with
the same definitions, as in the example of the previous
section. The relevant equation is

x
dv
dx

� 2v2 �
1

2m6v�2v2 � 3v� 1	

� ��x6�24� 216v� 864v2 � 1944v3 � 2592v4

� 1944v5 � 648v6	 �m6�v2 � 11v3 � 33v4

� 30v5 � 6v6	�: (40)

The solution to this equation is displayed graphically in
Fig. 3. We identify four fixed points of the system; two
attractors at v ’ 0:77 and v ’ 3:22 and two repellers at v ’
0:5 and v � 1. Clearly, in order to obtain a late-time
accelerating solution (p > 1), it is necessary to give accel-
erating initial conditions ( �a > 0), otherwise the system is
in the basin of attraction of the nonaccelerating attractor at
p ’ 0:77.

The exact exponents of the two late-time attractors of the
system are obtained by studying the asymptotic behavior of
(40). Substituting in a power-law ansatz and taking the
late-time limit we find that, in order to have a constant v �
v0 as a solution, the exponent must satisfy

6v40 � 30v30 � 41v20 � 23v0 � 5 � 0: (41)

This equation has two real solutions (and two complex
ones). The real solutions are: v0 � 2�

���
6

p
=2 ’ 0:77 and

v0 � 2�
���
6

p
=2 ’ 3:22.

Even the nonaccelerating attractor is of some interest in
this model. In order for structure to form in the Universe,
there must be a sufficiently long epoch of matter domina-
tion, for which a�t	 / t2=3. As matter redshifts away, how-
ever, since the Universe is decelerating, we expect the
Universe to approach the attractor at p ’ 0:77. This corre-
sponds to an effective equation of state weff ’ �0:13; i.e.,
-6
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negative pressure, although not negative enough to provide
a good fit to the supernova observations.

D. Inverse Powers of Q � R���	R
���	

Now let us move on to actions containing modifications
involving only Q � R !"#R !"#. Our prototype example
is f�Q	 � �M6=Q, withM another parameter with dimen-
2
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-0.03 -0.02-0.04 0

FIG. 4 (color online). Phase portrait for the f�R;P;Q	 �
�M6=Q modification in the coordinates �x; v	, for which an
attractor at constant v � p corresponds to a power-law solution
with a�t	 / tp.
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sions of mass, and the analysis follows much the same as in
the previous subsection, albeit with different results.

Again, (16) demonstrates that there is a constant curva-
ture vacuum solution to this action given by

R�Q	
const � �24	1=3M2: (42)

What about other possible cosmological solutions?
From (15), with the flat cosmological ansatz, the analogue
of the Friedmann equation becomes

3H2 �
M6

24� _H2 � 2H2 _H � 2H4�3

� �8H8 � 36H6 _H � 54H4 _H2 � 20H2 _H3 � 3 _H4 � 4H5 �H

� 12H3 _H �H�6H _H2 �H� � 0: (43)

Employing our phase-space technique once more, in the
variables best-suited for analyzing power-law behavior, the
relevant equation is

x
dv
dx

� 2v�
1

2M6v�2v2 � 6v� 3�

� ��x6�576v6 � 1728v5 � 2592v4 � 2304v3

� 1296v2 � 432v� 72	 �M6�8v6 � 36v5

� 54v4 � 20v3 � 3v2	�: (44)

It is clear from this that our action consisting of
f�R;P;Q	 � �M6=Q does not admit any late-time
power-law attractors (see Fig. 4).

This is consistent with a study of the late-time asymp-
totics of (44). As in our previous analysis, late-time power-
law solutions correspond to real solutions to the equation

8v40 � 36v30 � 62v20 � 44v0 � 15 � 0: (45)
-7
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However, no such real solutions exist, confirming our
phase-space analysis.
IV. INCLUDING MATTER

We now show that the late-time behavior of our vacuum
solutions remains unaltered upon the inclusion of matter.

We begin by rewriting the equation of motion in a more
convenient form. Let ��� be the tensor defined by the left-
hand side of (15). Then, the generalized Friedmann equa-
tion takes the form

�00 � 8%G�; (46)

where � is the energy density of a perfect fluid with
equation of state p � w�. Now, since x � �H, y � � _x,
and � / a�3�1�w	, we have d ln��=�0	

dx � 3�1� w	 vx .
Combining this relation with (46) yields the equation of
motion

x
d�00

dx
� 3�1� w	v�00: (47)

Thus far, we have not imposed any dynamics.
Specializing to a theory with f�R;P;Q	 � �6=�aR2 �
bP� cQ	 gives

�00 �
1

24x4
F�x; v; s	; (48)

with

F � 72x6 ��6 v
2g�v	 � 2xvh�v	s

�d�v	�3
; (49)

where s � dv
dx . The explicit forms of the functions h�v	,

g�v	, and d�v	, defined in Appendix A, are not needed in
this section. Substituting (48) and (49) into (47) gives the
equation governing the dynamics of our theory in the
presence of matter:

x
dF
dx

� "�v	F; (50)

where "�v	 � �3�1� w	v� 4�. Using the chain rule this
becomes

x�Fx � Fvs� Fss
0	 � "�v	F; (51)

where

Fx �
@F
@x

� 432x5 � 2�6 vhs

d3
; (52)
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Fv �
@F
@v

� �6 v
2gv � 2vg� 2xhs� 2xvhvs

d3

� 3�6 v
2g� 2xvhs

d4
dv;

Fs �
@F
@s

� �
2�6xvh

d3

(53)

and a prime denotes differentiation with respect to x.
Seeking late-time power-law behavior, we take the lim-

its x! 0 and s! 0 in (51). This yields the condition
g�v0	 � 0, which is solved by the same power-law fixed
points as those obtained in vacuum. This is as one might
expect, since matter redshifts away in the asymptotic fu-
ture. However, the above description proves useful for
dealing with the issue of stability. Since this is somewhat
technical, we relegate the details to Appendix B and
merely assert here that these fixed points do remain stable
in the presence of matter sources.
V. COMMENTS AND CONCLUSIONS

In the extreme low curvature regime, our only tests of
general relativity are cosmological. The discovery of new
phenomena at these scales may point to new matter
sources, but alternatively may hint at hitherto undetected
modifications of gravity.

The acceleration of the Universe provides a particular
challenge to modifications of gravity. Unlike the known
perturbative corrections to the Einstein-Hilbert action aris-
ing from string theory, late-time acceleration requires mod-
ifications that become important at extremely low energies,
so low that only today, at the largest scales in the Universe,
is the resulting curvature low enough to lead to measurable
deviations from general relativity.

These considerations led some of the current authors and
others to consider new terms in the action for gravity that
consist of inverse powers of the Ricci scalar. It is easy to
show that such an approach introduces a de Sitter solution.
However, this solution is unstable to a late-time accelerat-
ing power-law attractor. For appropriate choices of pa-
rameters, this theory is a candidate to explain cosmic
acceleration without the need for dark energy, although
the simplest such theories are in conflict with solar system
tests. For Lagrangians that are functions of only the Ricci
scalar, there exists a map to an Einstein frame, in which the
new degrees of freedom are represented by a scalar field.
As a result, such modified gravity theories share many
features in common with some dark energy models.

In this paper we have introduced a much more general
class of modifications to the Einstein-Hilbert action,
becoming relevant at extremely low curvatures.
Specifically, we have considered inverse powers of arbi-
trary linear combinations of the curvature invariants R2,
-8
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P � R��R
��, and Q � R !"#R

 !"#. Such modifications
are not simply equivalent to Einstein gravity plus scalar
matter sources.

We have performed a general analysis of the late-time
evolution of cosmological solutions to these theories.
Many of the theories exhibit late-time attractors of the
form a�t	 / tp, with p some constant power. Indeed, there
are often multiple such attractors. For a large class of
theories there exists at least one attractor satisfying p >
1, corresponding to cosmic acceleration.

The detailed structure of cosmological solutions to these
theories turns out to be quite rich and varied, depending on
the dimensionless parameters entering the particular linear
combination. Two distinct types of singularities may exist,
as well as the late-time power-law attractors. We have
identified all those theories for which the late-time behav-
ior is consistent with the observed acceleration of the
Universe, providing a whole new class of theories—gen-
eralized modified gravity theories—which are alternatives
to dark energy.

The results we have found for the modification f �
�6=�aR2 � bP� cQ	 may be generalized to modifica-
tions

f �
�4n�2

�aR2 � bP� cQ	n
; (54)

using exactly the same calculational techniques.
In general there are power-law attractors with the fol-

lowing exponents, whenever they are real

vgen1;2 �
8n2 � 10n� 2� 3 �

����
 

p

4�n� 1	
; (55)

where

 � 9n2 2 � �80n3 � 116n2 � 40n� 4	 � 64n4

� 160n3 � 132n2 � 40n� 4: (56)

Clearly, as n! 1, the smaller attractor tends to 0, whereas
the larger one increases linearly as 4n.

Two special cases are

f � �
m4n�2

Pn
; f � �

M4n�2

Qn
; (57)

for which the power-law attractors, v1;2 are

v�P	1;2

�
12n2 � 9n� 3�

�����������������������������������������������������������������������
144n2 � 120n3 � 15n2 � 30n� 3

p

2�3� 3n	

(58)

v�Q	1;2 �
4n2 � 2n� 1�

��������������������������������������������������
16n4 � 16n2 � 10n� 1

p

2n� 2
: (59)
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For n � 1, all the above expressions agree with the
values found earlier. It is interesting to note that v�Q	1;2 are
imaginary for n � 1, but are real for all n > 1.

Of course, much remains to be done. We have not
addressed solar system tests of these theories since this is
a complicated analysis that is beyond the scope of our
current paper. We have not focused on detailed compari-
sons between our models and the supernova data and it
is possible that there are specific signatures of this new
physics in such data. For example, the modified Friedmann
equations arising from the theories presented here should
directly provide information about the jerk parameter. We
intend to consider such effects, not only in the present
models, but in those proposed by us and other authors, in
a separate paper focused on the connections of these mod-
els with observations. In this context, as with the case of the
simple modifications introduced in [7], it may also be
interesting to study more complicated functions of the
curvature invariants we have considered.
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APPENDIX A: SOME DEFINITIONS

In Section III we defined

 �
4�3a� b� c	

!
; (A1)

where

! � 12a� 3b� 2c: (A2)

We should distinguish between two cases:

1. � � 0

In this case  diverges, but we may define

g�v	 � �3a� b� c	�282a� 69b� 44c	v

� 15�3a� b� c	2 (A3)

h�v	 � 3�3a� b� c	2 (A4)

d�v	 � 3a� b� c: (A5)
-9
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Note that both !, and 3a� b� c, cannot vanish simulta-
neously, as this causes the Friedmann equation to be sin-
gular for all values of x and v.

2. � � 0

In this case we have

g�v	 � 2!2�v� s2	�v� s1	�v� p2	�v� p1	 (A6)

h�v	 � !2�1�
 
4
	�v� v2	�v� v1	 (A7)

d�v	 � !�v� p2	�v� p1	; (A8)

where either v1;2 or p1;2 are complex unless  � 1, in
which case, v1;2 � p1;2 � s1 � 1=2 and s2 � 3:75. Also
s1;2 in general may be complex. As we saw in Section III,
si, vi, and pi are all functions of  only.
-1E-6

FIG. 5 (color online). Phase plot for the linearized equations
close to the power-law solution in the coordinates �x; v	, for
which an attractor at constant v � p corresponds to a power-law
solution with a�t	 / tp.
APPENDIX B: STABILITY OF FIXED POINTS IN
THE PRESENCE OF MATTER

Let us rewrite (51) as a system of first-order ordinary
differential equations

x0 � 1 (B1)

s0 �
"�v	F
xFs

�
Fv
Fs
s�

Fx
Fs

(B2)

v0 � s: (B3)

Treating x as a dependent variable makes the system
autonomous, facilitating a phase-space analysis.

To obtain the phase portrait of the system we define a
vector field by ~WT � �x0; s0; v0	 and plot this in the vicinity
of the fixed point. In Fig. 5 we show a 2D slice of this phase
portrait by choosing a section at constant x. Note that at the
fixed point, ~W�0	 � �1; 0; 0	.

To analyze the stability of the system, we first linearize
the system about the fixed point v � v0, s � 0, and x �
x0 � 1 (all expressions evaluated at these values of v, s,
and x will carry the superscript �0	 ).

We write the linearized system of equations as

Wi �
X
 

�M��0	i �- � -�0	
 	 �W�0	

i ; (B4)

the matrix M being defined by

�M��0	i �

�
@Wi

@- 

�
�0	
; (B5)

and

~- �

x
s
v

0
@

1
A: (B6)
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Now, introducing equilibrium coordinates

u1 � x� x0 (B7)

u2 � s (B8)

u3 � v� v0; (B9)

we finally obtain the linearized equations

u01 � 1 (B10)

u02 �
"0 � 20 � 1

x0
u2 �

"020
x20

u3 (B11)

u03 � u2; (B12)

with 20 �
v0gv;0
2h0

.
Notice that the first equation has decoupled from the

other two. Hence, it suffices to study the behavior of
the subsystem �u2; u3	. We will use standard results from
the theory of dynamical systems to do so (see [38]).

In the vicinity of the fixed point, the behavior of the
system can be classified by the eigenvalues of the subma-
trix Mij, with i; j � 2, 3, with characteristic equation

42 �M�0	
2s 4�M�0	

2v � 0: (B13)

Since we are only interested in values of v and w (the
equation of state parameter) which satisfy v > 1=2 and
�1<w � 1 (see [39–41] for arguments why this is a
-10
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sensible choice, and [42,43] for how one may be tricked
into inferring values outside this range when considering
gravitational theories other than General Relativity), we
have that "0 > 1. Furthermore if we choose v0 � s2 (see
Section III), the value of the bigger power law, typically
20 > 0. This implies that both M�0	

2s and M�0	
2v are negative,

so that s2 is either a stable node or a stable spiraling helix.
The latter case is tantamount to stability.

We have a stable spiralizing helix if

�M�0	
2s 	

2 � 4M�0	
2v < 0: (B14)

If not, we get a stable node. Relation (B14) leads to the
condition
063513
�"0 � 20 � 1	2 � 4"020 < 0; (B15)

which holds for all x0 � 1.
Applying the last condition to the case  � 1 andw � 0

(dust), we have that (see Appendix A)

20 �
4

3
s2�s2 � 0:5	 � 16:25 (B16)

and

"0 � 3s2 � 4 � 15:25: (B17)

For these values of2 and ", (B15) is easily satisfied, so that
the power-law solution s2 � 3:75 is a stable spiraling
helix.
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