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Noncommutative conformally coupled scalar field cosmology and its commutative counterpart
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We study the implications of a noncommutative geometry of the minisuperspace variables for the
Friedmann-Robertson-Walker universe with a conformally coupled scalar field. The investigation is
carried out by means of a comparative study of the universe evolution in four different scenarios: classical
commutative, classical noncommutative, quantum commutative, and quantum noncommautative, the last
two employing the Bohmian formalism of quantum trajectories. The role of noncommutativity is
discussed by drawing a parallel between its realizations in two possible frameworks for physical
interpretation: the NC frame, where it is manifest in the universe degrees of freedom, and in the C
frame, where it is manifest through #-dependent terms in the Hamiltonian. As a result of our comparative
analysis, we find that noncommutative geometry can remove singularities in the classical context for
sufficiently large values of #. Moreover, under special conditions, the classical noncommutative model
can admit bouncing solutions characteristic of the commutative quantum Friedmann-Robertson-Walker
universe. In the quantum context, we find nonsingular universe solutions containing bounces or being
periodic in the quantum commutative model. When noncommutativity effects are turned on in the
quantum scenario, they can introduce significant modifications that change the singular behavior of the
universe solutions or that render them dynamical whenever they are static in the commutative case. The
effects of noncommutativity are completely specified only when one of the frames for its realization is
adopted as the physical one. Nonsingular solutions in the NC frame can be mapped into singular ones in

the C frame.
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L. INTRODUCTION

Over the last years a great deal of work and effort has
been done in the direction of understanding canonical
noncommutative field theories and quantum mechanics
(see [1,2] and references therein). The recent interest in
these theories is motivated by works that establish a con-
nection between noncommutative geometry and string the-
ory [3]. Intensive research is carried out to investigate their
interesting properties, such as the IR-UV mixing and non-
locality [4], Lorentz violation [5], new physics at very
short distances [1,2], and the equivalence between trans-
lations in the noncommutative directions and gauge trans-
formations (see, e.g., [2,6]).

Several investigations have been pursued to verify the
possible role of noncommutativity in a great deal of cos-
mological scenarios. Among them we quote Newtonian
cosmology [7], cosmological perturbation theory and infla-
tionary cosmology [8], noncommutative gravity [9], and
quantum cosmology [10,11]. In a previous work [11], an
investigation into the influence of noncommutativity of the
minisuperspace variables in the early universe scenario was
carried out for the Kantowski-Sachs universe. Although
noncommutativity effects proved to be relevant to the
universe history at intermediate times, they were shown
not to be capable of removing the future and past cosmo-
logical singularities of that model in the classical context.
In the quantum context, on the other hand, nonsingular
universe solutions were shown to be present. However,
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since they exist for the commutative quantum
Kantowski-Sachs universe, their presence in the ensemble
of solutions of the noncommutative quantum model cannot
be attributed to the noncommutativity effects.

Although the investigation carried out in [11] was re-
stricted to a particular model, one expected that some of
the results obtained there could be of general validity.
Indeed, in this work we shall show that noncommutativity
can appreciably modify the evolution of the Friedmann-
Robertson-Walker (FRW) universe with a conformally
coupled scalar field [12,13]. As in Ref. [11], our investi-
gation is carried out by means of a comparative study of the
universe evolution in four different scenarios: classical
commutative, classical noncommutative, quantum com-
mutative, and quantum noncommutative. The main moti-
vation for the choice of the conformally coupled scalar
field is that it admits exact solutions in the simpler cases
discussed along this work and it is rich enough to be useful
as a probe for the significant modifications noncommuta-
tive geometry introduces in classical and quantum cosmol-
ogies. The analytical treatment renders easy the study of
the singular behavior of the model in its four versions. As
we shall show later, even in the classical context non-
commutative geometry can remove singularities.
Moreover, depending on the value of the noncommutative
parameter, noncommutative classical models can mimic
quantum effects.

The application of the Copenhagen interpretation in
quantum cosmology has many difficulties, as stressed
along the years, e.g., by Everett [14], Gell-Mann, Hartle,
Omnes and Griffiths [15], Bell [16], and 't Hooft [17].
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Among the variety of technical and conceptual problems
that are present in quantum cosmology are the issue of time
and the definition of probability [13,18,19], the latter re-
lated to the fact that the Wheeler-DeWitt equation is of
Klein-Gordon type. One way to circumvent these problems
is by adopting a nonepistemological interpretation for
quantum theory, such as the one proposed by Bohm in
1952 [20,21]. This interpretation was further developed by
several followers (see [22-26] and references therein),
applied in quantum cosmology and quantum gravity [27],
and is presently an object of interest for broad community
(see, e.g., [28]). In addition to its capability to circumvent
problems in quantum cosmology, a motivation for the
adoption of the Bohmian interpretation in this work is
the efficient framework it provides for comparison between
the classical and quantum counterparts of a physical model
in the common language of trajectories. We shall benefit
from this facility in our study of the four versions of the
FRW universe.

This work is organized as follows. Sections II and III are
devoted to a comparative study of the classical FRW uni-
verse with a conformally coupled scalar field and its non-
commutative counterpart. In Sec. IV we present a brief
review of Bohmian formalism of quantum trajectories and
apply it in the analysis of the commutative quantum ver-
sion of the universe. A similar study is carried out in
Secs. Vand VI, which are concerned with the noncommu-
tative quantum version of the model. In Sec. VII we end up
with a general discussion and summary of the main results.

II. THE CONFORMALLY COUPLED SCALAR
FIELD MODEL

As a reference for the identification of the noncommu-
tative effects later, it is interesting to consider first the
commutative classical FRW universe, which we describe
as follows. We shall restrict our considerations to the case
of constant positive curvature of the spatial sections. The
action for the conformally coupled scalar field model in
this case is [13]

1 1 1

S=[d*x/~g| —=¢.,¢'* + ——R — —RP? |,

f * g[ A A T e L T L }
(1
where g, is the four-metric, g its determinant, R is the
scalar curvature, and ¢ is the scalar field. Units are chosen
such that i =c =1 and 87G = 313, where [, is the
Planck length. For the FRW model with a homogeneous

scalar field the following ansatz of minisuperspace can be
adopted,

ds® = —N*(0de® + az(t)[ld_—’iz + 2(d6> + sinZedng)}
¢ = o(1). (2)
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By substituting (2) in (1) and rescaling the scalar field as

X = ¢al,/ /2, we have the following minisuperspace ac-
-1
tion,

ad> ay* Nx?
S=[|d{{Na— —+————"—) 3
[Ty ®
The corresponding Hamiltonian is
PZ P2 2
H=N -2+ X_ g+ X | =N3, @
4a  4da a
where the canonical momenta are
2aa 2ay
P,=——, P, =—. 5
a N Y TN ®)

As the Poisson brackets for the classical phase space
variables we have

{a, x} =0,
{/\/r P)(} =1,

The equations of motion for the metric and matter field
variables a, P,, x, and P, that follow from (4) and (6) are

{a, P} =1,

6
{P, P} =0 ©

a={a, H = —NP,/2a,
P, =1{P, H} = 2N,

x ={x. H} = NP,/2aq,
P, ={P,,H} = —2Ny/a.

)

From now on we shall adopt conformal time gauge N = a.
The general solution of (7) for a and y in this gauge is

{a(t) = (A + C)cos(t) + (B + D) sin(z),

x(®) = (A — C)cos(r) + (B — D)sin(z), ®)

where the super-Hamiltonian constraint { =~ 0 imposes
the relation

AC+ BD =0. )

As it can be seen, the classical commutative solutions
are necessarily singular in the past and in the future.
Figures 1(a)—1(d) present plots of the solution for a(r) in
the dashed lines for given values of A, B, and C [D is fixed
by 9)].

III. NONCOMMUTATIVE DEFORMATION OF THE
CLASSICAL MODEL

Let us introduce a noncommutative classical geometry
in our universe model by keeping the Hamiltonian with the
same functional form as (4), but now valued on noncom-
mutative variables,

'"We have discarded total time derivatives and integrated out
the spatial degrees of freedom since they are not relevant for the
equations of motion.
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P2 P2 2
"= N[_ b T ag e X} (10)
anc 4aVLC anc

where a,, Xye» Pg,,» and P, satisfy the deformed Poisson
brackets

{anC’ ch} = 6’ {ancr Pa,,c} = 1! (11)
{/\/Vlc" P)(m} = 1’ {Panc’ PXM} = O
By making the substitution
0 0
anc:ac_ip)((.! ch:/\/c—i_ipa(g (12)

Paﬂ(‘ = PaC’ P = PXC’

Xne

the theory defined by (10) and (11) can be mapped into a
theory where the metric and matter variables satisfy the
Poisson brackets

{ac’ XC} = 0’
{Xc’ P)(,y.} = 1’

Written in terms of a, x,, P,_, and P, , the Hamiltonian
(10) exhibits the noncommutative content of the theory
through 6-dependent terms. Two distinct physical theories,
one considering a. and y,, and the other considering a,,.
and y,., as the physical scale factor and matter field can be
assumed to emerge from (10)—(13). In the case where a,
and y. are assumed as the preferred variables for physical
interpretation, the theory can be interpreted as a ““‘commu-
tative” one with a modified interaction. We shall refer to
this theory as being realized in the “C frame.” The other
possible theory, which assumes a,,. and y,,. as the constit-
uents of the physical metric and matter field, we shall refer
to as realized in the “NC frame.” There are works that
adopt the C-frame approach (e.g., [10]), and others the NC
frame (e.g., [11,29,30]). Some works rely on the assump-

|

{ae P} =1,
{Pa{) P,\/l.} =0.

13)
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tion that the difference between C and NC variables is
negligible (e.g., [31]). However, as shown in [30], even in
simple models the difference in behavior between these
two types of variables can be appreciable. In what follows
we will show that in the cosmological scenario the assump-
tion of the NC- or C-frame point of view as preferential for
physical interpretation leads to dramatic differences in the
analysis of the universe history. A parallel between the
theories in both frame realizations is drawn in the classical
context here, and in the quantum context in Sec. VI.

Methodologically, the route we shall follow in the com-
putation of the configuration variables in this classical
context is the same as that adopted in the noncommutative
quantum case discussed later on. We shall depart from the
C frame and calculate a(¢), x.(¢), P, (¢), and P, (). After
that, we shall use (12) to obtain the corresponding a,,.(7)
and y,.(r) in the NC frame. The computation of the
physical quantities is rendered simpler by the gauge choice
N = a,,,, which from now on will be assumed as the gauge
employed in all calculations.

The equations of motion for the variables a.(r), x.(7),
P, (1), and P, (1) are

a, = {a, HY = —(1/2)(1 — )P, + Ox,,

P, ={P, H}=2a,— 6P, (14)
Xe = (e Hy = (1/2(1 = 0P, + ba,,

PXe = {P/\/C’ H} = _2XL - apag'

According to the values of 6, the system (14) allows three
types of solutions, which we describe below.

A. Case |0]| <1

The general solutions for a.(7), x.(), P, (1), and P, (t)
in the |6] < 1 case are

a.(t) = (Ae? + Ce %)k cos(kt) + (Be + De ")k sin(kt),
xo(t) = (A% — Ce ")k cos(kt) + (Be% — De %)k sin(kt),

15
P, = —2(Be” + De™ %) cos(kt) + 2(Ae? + Ce™"")sin(k1), (15)
P, =2(Be? — De™%)cos(kt) + 2(—Ae?” + Ce™ %) sin(1),
where k = +/|1 — 6?|. From (12) and (15) we can calculate a,,.(f) and x,.(f) as
a,.(t) = [e?”(Ak — BO) + e (Ck + DO)]cos(kt) + [e?(Bk + AB) + e 9 (Dk — CO)]sin(kt), (16)
Xne() = [e”(Ak — BO) — e % (Ck + DO)]cos(kt) + [e”(Bk + AB) — e (DK — CO)]sin(«t).

The constraint 4 = 0 in the present case can be written
as

(AC + BDW1—6*+ (AD —BC)§ =0. (17)

The exponential factors that appear in (15) and (16) can
model the shape of these solutions at intermediate times

\
giving rise to bounces, as is depicted in the thin and thick
solid lines in Fig. 1(a) for representative values of A, B, and
C [D is fixed by (17)]. However, as in the commutative
case, a,.(f) and a.(z) are unavoidably singular in the past
and in the future. In the limit where 6 — 0, Eq. (17) is
reduced to Eq. (9). In the same limit, the NC- and C-frame
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FIG. 1. The typical behavior of the scale factor of the non-
commutative FRW universe in the NC-frame realization (thick
lines) in contrast with C-frame realization (thin lines). The scale
factor of the commutative counterpart appears plotted in the
dashed lines. (a): 6 =3/4, A=5 B=3, and C=6.
(b):0=1,A=3,B=2,andC=1.(c):0=3/2,A=4,B=
3,andC=1.(d): §=3/2,A=—12,B=2,and C = —1.

solutions for the scale factor and matter field given by (15)
and (16) coincide and match with the commutative solu-
tions (8).

B. Case 6 = +1

When 6 = *1, the solutions for a (), x.(1), P, _(t), and

P, (1) are ‘

PHYSICAL REVIEW D 71, 063511 (2005)

a.(t) = Acoshr + Bsinht,
X.(t) = =B coshr * Asinhg,

P, =2(D + At) cosht + 2(C + Bi)sinhy, (18)
P, = F2(C + Bt)cosht = 2(D + At) sinht.
As the corresponding a,,.(¢) and yx,,.(7), we have
a,.(1)=(A+ C+ Br)cosht + (B + D + Af)sinht, 19)
Xne(t) = =(B+ D+ At)coshr = (A + C + Bi)sinht.

The constraint /4 = 0 in the present case can be written as
A? — B> + 2(AC — BD) = 0. (20)

As it can be seen, when 6 = *1 the universe solutions
are characterized by a qualitative behavior that differs from
the one corresponding to the case where |0 < 1. There
exist nonsingular bouncing solutions for both a,.() and
a.(t), as depicted in Fig. 1(b). However, the correspon-
dence between the NC and C frames can be broken for
some values of the integration constants. Nonsingular so-
lutions in the NC frame can correspond to singular solu-
tions in the C frame. An interesting example is the case
where A = B =0 and C > |D|. This corresponds to a
bouncing universe in the NC frame that has no counterpart
in the C frame, where the universe is singular at all times.

C. Case 0] >1

The general solutions for a (), x.(¢), P, (1), and P, ()
when |6| > 1 are

a.(t) = (Ake’ + Cke %) cosh(kt) + (Bke? + Drxe %) sinh(«t),
xo(t) = (Ake — Cre™ %) cosh(kt) + (Bre? — Dke™ %) sinh(kt),

21
P, =2(Be” + De™%)cosh(kt) + 2(Ae? + Ce™?)sinh(«1), @D
P, =2(—Be" + De %) cos(kt) + 2(—Ae? + Ce™%)sin(«1),
where k = +/|1 — 6?| as before.
From (12) and (21) we can calculate the corresponding a,,.(f) and y,.(¢) as
a,.(t) = [e?(Ak + BO) + e 9 (Ck — DO)]cosh(kt) + [e?(Bk + Af) + e % (Dk — C6)]sinh(«kt), 22)
Xne(t) = [e”(Ak + BO) — e % (Ck — DO)]cosh(kt) + [e?(Bk + AO) — e 9 (Dk — C6H)]sinh(k?).

When |6] > 1, the constraint H{ = 0 is reduced to

(BD — ACW6*— 1+ (AD — BC)§ =0. (23)

As in the case where # = =1, there are present non-
singular bouncing solutions in both NC and C frames.
Figure 1(c) depicts one example. Again we found that,
depending on the values of the integration constants, non-
singular universes in the NC frame can correspond to
singular universes in the C frame [Fig. 1(d)]. After this
last case it is now clear that & = *1 establishes a division

‘between qualitatively different ensembles of noncommu-
tative universe solutions: one admitting only singular so-
lutions (]@| < 1) and the other admitting singular as well as
nonsingular solutions (|| = 1).

IV. MINISUPERSPACE QUANTIZATION

Here we present the quantum version of the commuta-
tive universe model discussed in Sec. II. The FRW universe
with a conformally coupled scalar field has already been
investigated on the basis of the Wheeler-DeWitt equation
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in [12,13], the latter using Bohmian trajectories. However,
in Ref. [13] there was a restriction to the regime of small
scale parameter, and the wave functions considered were
different from the ones studied in this work.

The quantization of the minisuperspace model is carried
out here by employing the Dirac formalism (for details see
[13]). By making the canonical replacement P, = —id/da
and P, = —id /dx in (4) we obtain, applying the Dirac
quantization procedure,

92 92 o
[_Eﬁ+5}5+4w —x)}ﬂax0=o, (24)

which is the Wheeler-DeWitt equation for the conformally
coupled scalar field model.” This equation can be solved by
separating the a and y variables, as it has been done in the
literature (see [13,18] and references therein). Here, how-
ever, we shall follow an alternative route that is interesting
because of the ensemble of solutions it generates in this
case and is also suitable for the noncommutative case later
on.

By making the coordinate change
a = &coshy, x = &sinhy, (25)

we can rewrite (24) as

By plugging in the ansatz
V(& n) = R(§)e', 27

in (26) we obtain, after simplification,

92R 1 dR

2
a_§2+§a§+<“—4§2>R=0. (28)

&
A solution to (28) is
R(€) = AK;o2(£%) + Bl p(£7),
where K, (x) and I,(x) are Bessel functions of the second

kind, A and B are constants, and « is a real number. The
solution of the Wheeler-DeWitt equation (26) is therefore

V(& 1) = AKj0)a(€2)e'*" + Bliop(£2)e M. (29)

Such a kind of wave function also appears, e.g., in the study
of quantum wormholes [32] and in quantum cosmology of
the Kantowski-Sachs universe [10,33]. The contribution
corresponding to I, (x) is usually discarded because it leads

%A particular factor ordering is being assumed.
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to a solution that is divergent in the classically forbidden
region of the potential.> We shall therefore consider only
the K, (x) contribution and write the solution of (26) as*

‘P('fr 7’) = ZAaKia/2(§2)eian' (30)

A. Bohmian trajectory formalism

In order to establish a framework where all versions of
the universe model can be compared, it is interesting to
appeal to a common language. This is provided by the
Bohmian formalism of quantum trajectories, which we
briefly describe in this section (a detailed account of the
subject may be found in the references given in the intro-
duction). In the formulation presented here, we shall bene-
fit from ideas proposed in [24]. The wave function will be
assumed not as a constituent of the physical system (as
originally assumed by Bohm [20]), but as a generator of its
evolution law. Quantum information theory tells us that the
wave function has a nonphysical character [34]. Bohmian
quantum physics should in some way be in accordance
with this fact. As the object of ontology of the Bohmian
interpretation in this work we have the primordial quantum
universe characterized, in the minisuperspace formalism,
by the configuration variables a and y.” With the aid of the
wave function, we can determine how they evolve in time.
The procedure is best illustrated in the context of non-
relativistic quantum mechanics.

Bohmian nonrelativistic quantum mechanics is con-
cerned with the behavior of point particles that move in
space describing quantum trajectories. An evolution law is
ascribed to them according to the rule

(1 [W(—ira)W]) VS
x—R%nqmy}—m, 31)

where W is the wave function and § is obtained from the
polar decomposition ¥ = A exp(iS). As in the orthodox
interpretation, the wave function satisfies the Schrodinger

3From the point of view of the quantum trajectories, as it will
be clear in the next subsection, there is no fundamental reason
for the solution /,(x) to be discarded. However, since in this
work our main interest is in the influence of noncommutativity in
cosmology, rather than in the foundations of quantum theory, we
shall give preference for wave functions that are also admissible
in interpretations other than the Bohmian one.

“Since a is a continuous index, in the most general case the
summation can be replaced by an integral.

>When dealing with a quantum theory one must have a clear
picture of what it is essentially about, the primitive ontology of
the theory [21]. The orthodox quantum theory based on the
Copenhagen interpretation, e.g., is about observers that realize
measurements. In the Bohmian interpretation, on the other hand,
quantum theory is concerned with the physical systems, which
can be particles, waves, strings, etc.

063511-5
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equation

v
ih— =
ot

2
— ﬁ—Vz\I’ + V. (32)

2m

Equations (31) and (32) specify completely the theory.
Without any other axiom, all phenomena governed by
nonrelativistic quantum mechanics, from spectral lines
and quantum interference phenomena to scattering theory,
superconductivity and quantum computation follow from
the analysis of the dynamical system defined by (31) and
(32) [23]. The expectation value of a physical quantity
associated with a Hermitian operator AR p') in the stan-
dard formalism can be computed in the Bohmian formu-
lation by ensemble averaging the corresponding ‘‘beable’

[W*A(%, —iho,) V]

B(A) = Re T

} = A(x!, 1), (33)

which represents the same quantity when seen from the
Bohmian perspective.® In the context of nonrelativistic
quantum mechanics, it can be shown from first principles
that for an ensemble of particles obeying the evolution law
(31) the associated probability density in the configuration
space must be given by p = |W|? [23]. This is why by
computing the ensemble average of A(x', 1),

f BxpAlxi, 1) = f BxVAGR, —iho,)V = (A), (34)

we arrive at the same results of the standard operatorial
formalism. Notice that the law of motion (31) can itself be
obtained from (33) by associating i’ with the beable cor-
responding to the velocity operator

%' = B([A, ) = %. (35)

As a consequence of being an objective theory of point
particles describing trajectories in space, Bohmian quan-
tum mechanics does not give probability a prominent role.
Instead, as discussed in [23], such a formulation probabil-
ity is a derived concept, a decurrent of the law of motion of
the point particles. The Bohmian formulation is therefore
eminently suitable for the study of individual systems, such
as the primordial quantum universe. In what follows we
will be concerned with the application of the theory to the
commutative quantum universe discussed in the beginning
of this section. In the next sections a similar study will be
carried out for the noncommutative quantum case.

“Holland [22] calls the procedure defined in Eq. (33) as
“taking the local expectation value” of the observable A. Such
a nomenclature is not adopted here because it is unsuitable to be
used in theories where the object of ontology is an individual
system, as in quantum cosmology.

PHYSICAL REVIEW D 71, 063511 (2005)

B. Application to quantum cosmology

This subsection is devoted to the application of Bohmian
formalism in the determination of the evolution of the
quantum FRW universe with a conformally coupled scalar
field. In the description of quantum cosmology employing
quantum trajectories we shall extend the evolution law (35)
to the minisuperspace variables. In the commutative case
the resulting Bohmian minisuperspace formalism matches
with the minisuperspace version of the Bohmian quantum
gravity proposed in [22], and employed to study the con-
formally coupled scalar model in [13]. From (35) we find,
in the gauge N = a,

. _ pe| ¥ (i, /W] _ 1S
a=Re vy T T 2%a
(36)
o[l i /W) 1 as
S R 20y

By changing (36) into the (&, 1) coordinates defined by
(25) we obtain

aS(¢&, m)

¢ _ _1 dn _ 1 45(&n)
a2 € dt 28 oy 7)

In what follows we shall solve the system (37) in two
examples of a universe characterized by a wave function of
the type (30).

1. Case 1

Let us consider first the example where there is a single
Bessel function in (30). In this case the wave function is
given by

\I,(é:’ 77) = AKia/2(‘§:2)eianr (38)

where A is a constant. Since the Bessel function K, (x) is
real for v real and x > 0,’ the phase can be read directly
from the exponential in (38): § = an. The equations of
motion (37) in this state are therefore reduced to

¢ _ o dn_ «

= [ 28 (39)

whose solutions are

a

§=§0’ n 2{_%

The corresponding a(f) and y(r) obtained from (25) are

"This can be verified by looking at the integral representation
(8.432) on page 958 of Ref. [35].
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given by

a(t) = & cosh(zifzt + 770),
! 41)
X(t) = fo Slnh(z—gzt + 7]0)
0

Quantum effects can therefore remove the cosmological
singularity, giving rise to bouncing universes. Under suit-
able conditions, solution (41) can represent a quantum
universe that is indistinguishable from a noncommutative
classical universe. This is seen by noting that it can be
mapped into the solution for a.(¢) in the case where § =
*+1 [Eq. (18)] by identifying «/2&3 =1, & = A, and
19 = B =0, or to the solution for a,.(r) [Eq. (19)] by
identifying a/2&5 =1, ¢y =C,and gy =A =B =D -

PHYSICAL REVIEW D 71, 063511 (2005)

0. However, since (41) differ radically from circular trigo-
nometric functions that characterize the classical commu-
tative solutions, no classical commutative limit is
admissible for the universe under consideration.

In the case where a = 0, Eq. (41) describes a static
universe with an arbitrary large scale factor, a highly non-
classical behavior.

2. Case 2

Let us now consider a wave function that is a superpo-
sition of two Bessel functions in (30), that is

V(£ m) = A1Kiu 2 (D)™ + AyK,, p(£2)e™ M. (42)

As the corresponding phase we find

_ ALK, 0 (89 sin(un) + AyK;,2(€2) sin(vn)
S(&m) = man[Ale/z(ﬁ)coswn) T AzKiu/z(fz)COS(Vn)} 43

where the A; and A, were chosen as real coefficients. The equations of motion (37) for this state are

d¢ _ A1A2[K1{M/2Kiv/2 - Km/zK,{,,/z]f sin[(u — »)n] (44
dt AIK, ), + MK, ) + 240K, Ky pp cos[(w — v)m]’
dn _ 1 MA%K?,L/Z + VA%K?,,/Z + (u + V)AL ALK Ky p cos[(n — v)7] 43)
dt  2& A,ZLKI?# n T ALK, 5 T 241K 0Ky cos[( — v)n]

where prime means derivative with respect to the argu-
ment. The system (44) and (45) is a set of nonlinear
coupled differential equations. Analytical solutions are
difficult to find. Numerical solutions, on the other hand,
can be easily computed for £(¢) and 7(z). Once the solu-
tions for £(¢) and n(¢) are found, the corresponding a(r)
and y(f) are determined from (25).

The qualitative properties of the solutions of an autono-
mous system such as (44) and (45) can be determined by
analyzing the associated field of velocities. From the right
hand side (RHS) of (44) and (45) we can see that the field
of velocities has its direction inverted by the substitution
m — —u, v— —v. Therefore, to have a qualitative pic-
ture of the associated flow one must be concerned only
with the relative sign of w and v. For simplicity, let us fix
A, = A, = 1/+/2, and, without loss of generality, consider
p > 0. The direction fields corresponding to the two pos-
sible combinations of relative sign between w and v are
depicted in Figs. 2(a) and 2(b) for representative values of
these constants, where the orbits of some solutions are also
plotted. As it can be seen, the case with positive u and
negative v favors the formation of closed orbits, which
correspond to nonsingular cyclic universes. The case with
positive u and », on the other hand, tends to favor the open
orbits.

The presence of the trigonometric functions in the RHS
of (44) and (45) is the reason for the repetitive pattern of

\
the direction fields observed along the 7 direction with
period 27/|u — v| =5.32 in Figs. 2(a) and 2(b). The
systematic appearance of closed orbits along the 7 direc-
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FIG. 2. The field of directions and selected orbits correspond-
ing to the Bohmian differential equations for the commutative
FRW universe in two cases: (a): u = 0.6, v = —0.58. Orbits:
(=12, no=2,and &, =12, ng=4. (b): n =06, v=
1.78. Orbits: &y = 0.2, ny = 3, andéy = 1.7, ny = 4.5.
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FIG. 3. The typical behavior of the scale factor of the commu-
tative FRW universe. (a): u = 0.6, v = —0.58, £, = 1.2, and
Mo = 4. (b) M= 06, Vv = 178, g() = 17, and No = 4.5.

tion in Fig. 2(a), and the possibility of varying their am-
plitudes with an appropriate choice of the initial conditions
and the constants u and v, show us that the cyclic universe
solutions can present a variable a,,;,. Another quantity that
is variable is the number of e folds between its maximum
and minimum size configurations. This information can be
read directly from the logarithmic plot of a() in Fig. 3(a),
where the solution depicted corresponds to one of the
closed orbits of Fig. 2(a). Another interesting nonsingular
solution type is depicted in Fig. 3(b). This corresponds to
one of the open orbits of Fig. 2(b), and is an example of a
universe that undergoes a sequence of bounces starting in
the infinite past and never ending.

A different nonsingular solution type is present in the
case where u = —v. Since the phase of such a kind of state
is § = 0, the corresponding universe is necessarily static.

V. THE NONCOMMUTATIVE QUANTUM MODEL

After having studied the individual manifestation of
noncommutative and quantum effects in the conformally
coupled scalar field universe, we now study the combina-
tion of them in a unique model. This is achieved by con-
sidering the quantum version of Eq. (11):

[anC’ ,f(nc] = i0, R A ne (46)
[i/nc’ P/\/m,] =1, [Pa,,(.r me,] =0.

According to the Weyl quantization procedure [2,3], the
commutation relation above between the observables @ and
X can be realized in terms of commutative functions by
making use of the Moyal star product defined as

flac xo) * glac x)
= f(ag, x)e PP gla,, x.).  (47)
The commutative coordinates a, and y, are called Weyl
symbols of the operators @ and Yy, respectively. A Wheeler-
DeWitt equation that can be adopted for the noncommu-
tative scalar field universe is
[ﬁi — ﬁic]\lf(ac, xe) + 4@z — x2) *¥a, x.) =0,
(48)
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which is obtained by Moyal deforming8 (24). By using the
properties of the Moyal product, it is possible to write (48)
as

[P2 — P21¥(a,, x.) + 4(a* — ) ¥(a. x.) =0, (49)

where

N A 0 A . . 0 .
anc:ac_EPX(;’ ch_/\/c"_EPa(J (50)
]Sam; = Isau ﬁxm- = 13)(1-'

Equation (50) is nothing but the operatorial version of
Eq. (12). The notations a, and Y. are now justified.
These symbols match exactly with the canonical variables
defined by (12). Here we are faced with the same situation
as in the classical case. Two consistent cosmologies are
possible. One considering d. and Y. as the operators
associated with the physical metric and matter field, and
the other considering @ and y. In the worked examples we
shall consider the two possibilities.

A. Noncommutative Bohmian formalism

In order to draw a parallel between the noncommutative
quantum universe and the other three universe types, it is
necessary to have a prescription of how to compute
Bohmian trajectories in noncommutative quantum cosmol-
ogy. The simplest way to do this is by extending the
Bohmian formulation discussed in Sec. IV along the
same lines proposed in [11]. The procedure consists of
departing from the C frame and using the beable mapping
(33) to ascribe an evolution law to the canonical variables.
In our time gauge for the noncommutative cosmology,
N = a,, (see Sec. III), the Hamiltonian (10) reduces sim-
ply to

2

2
h — [_ Panc + PXrn —

2t Xk | 1
Proesacrd] oy

We can therefore use & to generate time displacements and
obtain the Bohmian equations of motion for a.(¢) and y.(z)
as

a.=B(ilha))=—(1/2)(1-6%d, S+ 0x.,

52

X.=B(ilh g ) =(1/2)(1-6%d, S+ 0a,. 62
The connection between the C- and NC-frame variables is
established by applying the beable mapping to the oper-
atorial equations (50), that is, by defining @ = B(a) and
x = B(}). Once the trajectories are determined in the C
frame, one can find their counterparts in the NC frame by
evaluating the variables a and y along the C-frame trajec-
tories,

8For details about this procedure see [10,11].
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anc(t) = B(&)l;uziu((’l‘) = ac(t) - (0/2)6/‘/(31[616(1‘), Xc(l)])
Xe®) = B = xe(0) + (6/2)0,, S[ac (0, x(0).

In what follows we shall illustrate the application of the
formalism in noncommutative quantum cosmology.

VI. APPLICATION TO NONCOMMUTATIVE
QUANTUM COSMOLOGY

By using the representations P, = —id, and P, =
—1id,._, we can write the noncommutative Wheeler-DeWitt
equation (49) as

92 92
[(1 - 92)(‘ Y + 6—)(2> +4(a? — xH)+

d d
4i0</\/ca— + a, a—)}‘l’(ac, x.)=0. (54)
aC XC

The separation of variables can be made by changing to the
new set of coordinates

a, = &coshny, X = &sinhny, (55)
|

ane(t) = a (1) + (6/2) sinhnd S[£(2), n(1)] — (6/2€) coshna, S[£(1), n(1)],
Xne(t) = x(t) + (6/2) coshnd S[£(1), n(1)] — (6/2§) sinhna,, S[£(2), n()]

Before starting our comparative study by computing
Bohmian trajectories corresponding to specific solutions
of (56), let us discuss the case of real wave functions.’
While in the commutative Bohmian quantum cosmology
real wave functions always represent static universes, in
the noncommutative Bohmian quantum cosmology they
can represent dynamical universes, a property pointed out
in [11] for the Kantowski-Sachs model. In the FRW with a
conformally coupled scalar field under consideration,
Egs. (57) tell us that real wave functions always correspond
to a nontrivial and identical dynamics. Moreover, from (58)
we can see that when S = 0 the NC- and C-frame realiza-
tions are indistinguishable, representing the same universe.
This universe is determined by solving Egs. (57) and
substituting the solutions in (55). As a result, we find

ane(t) = a (1) = & cosh(6r + np), 59)
/\/nc(t) = /\/c(t) = §0 Sinh(et + 770)

Real wave functions therefore always represent nonsingu-
lar bouncing universes. Complex wave functions, on the
other hand, can give rise to a great variety of dynamics,

This particular case can be of special interest, since real wave
functions are favored, e.g., by the nonboundary proposal for the
initial conditions of the universe [18].
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(33)

\
which allow us to rewrite (54) as

2 19 1 92
1= )t o= — )=
[( )<6§2+§8§ 2 8772)
4ig L~ 452}\?(5, 7 =0. (56)
an

The computation of the Bohmian trajectories is rendered
easy by expressing the equations of motion (52) in the
same hyperbolic coordinates as the wave function. After
the change of variables, the Bohmian equations of motion
can be written as

d¢ 1 aS(&, )
—=—=(1-6)—,

jt 12 aS(agf ) o7
an_ 1 g - pyRe

g 252(1 62) k. 0.

Equations (53), responsible for the NC-C-frame correspon-
dence, can be written in the new set of coordinates as

(58)

‘where the distinction between the frames of physical real-
ization can be crucial. In the same way as in the classical
analog, we can distinguish three cases: || <1, § = =1,
and @] > 1.

A. Case |0] <1
In this case, Eq. (56) can be solved by using the ansatz
V(& 1) = R(£)e' . (60)

As a result, we find

9’R . 1 0R <a2 40 4£2

- —_ 4" —_ > \R=
ER— 1_92>R 0, (61)

- —+
9082 £ 9¢
whose solution is
m\! 2§2>

R(§) = Aa<§> /zleae/zx,mm(T

\1/2 282
+ Ba<_> f_lMa9/2K,ia/2<%>! (62)

2
where k = /|1 — 6*. W, ,(x) and M, ,(x) are Whittaker
functions, A, and B, are constants, and « is a real number.
The piece corresponding to the M, ,(x) contribution leads
to a divergent wave function in the classically forbidden
region. We shall therefore discard its contribution in a
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similar way as in the commutative model discussed before.
We can thus write the solution of (56) as

m\1/2 282
V(¢ n) = All= “lw, ol — e |.
(5 T]) ;[ a<2> é‘: aﬁ/ZK,la/Z( K )6 i|
(63)
In the limit where # = 0, the Whittaker functions W,, ;,(x)
are reduced to the Bessel functions K, through the relation

£ W 0p(280) = <%>1/2Km/2(§2), (64)

and therefore the wave function (63) matches with the
commutative wave function (30).

In the sequel we present two examples of application of
the Bohmian formalism in the investigation of the proper-
ties of the universe solutions.

1. Example 1

The wave function is of the type

. 282\
V(¢ n) = Aé Wat‘)/2x,ia/2<7>emn’ (65)

where A is a constant. Since the Whittaker function
W, iv(x) is real for u and v real and x > 0,'° the phase
can be read directly from the exponential: S = an. The
equations of motion for ¢ and 7 in this state are

dn aK’?

dé
— =0 iy ) (66)

As the solutions for a,(¢) and y (), we have

a.(t) = a,, cosh(o), X.(t) = a,, sinh(ot),  (67)

where o = ax?/2a2, + 0 and 7, was absorbed by rede-
fining the origin of time.
From (58) we can write
anc(t) = aVlCU COSh(Ut)’ ch(t) = anco Sinh(a-t)’ (68)
where a,,,, = a., — af/2a,,. Although the solutions (67)
and (68) in this case differ radically from their classical
counterparts with |8 < 1 [see Egs. (15) and (16)], they can
be mapped into the noncommutative classical solutions
with 8§ = =1 [Egs. (18) and (19)] with a suitable identi-
fication of the integration constants. But this is not the only
interesting property exhibited in this case. From (68) we
can see that to each universe in the NC frame there corre-
sponds at least one universe in the C frame, as it is shown in
Fig. 4. For a# positive, the correspondence is one-to-one

and exists only for a. > /|af|/2. Smaller values of a,,
would imply a singular universe in the NC frame.

'OThis can be verified by looking at the integral representation
(9.223) on page 1060 of Ref. [35].
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FIG. 4. The minimum value of the scale factor of the non-
commutative quantum FRW universe with || <1 in the NC
frame y = a,,, as a function of its value in the C frame x = a,.
The thick line refers to the case where awf < 0, and the thin line
to that where af > 0. The values adopted for af are af = —1
and af = 1. The diagonal line is also plotted.

For negative values of a6, on the other hand, the corre-
spondence is defined for all values of a, . To each universe
in the NC frame there correspond two universes in the C
frame. An exception occurs for ac, = JaB/2, where the
curve a,., X a., achieves its minimum and the correspon-
dence is one-to-one. This value of a. marks the division

Log [a(D)] Log [a(D]
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FIG. 5. Selected plots of the scale factor of the FRW universe
in the NC-frame realization (thick lines) in contrast with C-
frame realization (thin lines). (a): § = —0.9, u = 0.6, v = 1.78,
éo=17,andny =4.5.(b):0=0.1,u =03, v=—-03,& =
I,and 9g = 10.(c): 0 =1, £y = 5, and 1g = 0. (d): 8 = — 1.5,
a=1.5,ay=72,and ny = 0.
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between the two regimes that govern the NC-C-frame
correspondence: large a,,., and small a. , while the second
deals with large a,., =~ a.,. A similar behavior was pre-
viously found in [30] in nonrelativistic Bohmian quantum
mechanics when studying the harmonic oscillator. The
capability of the noncommutativity effects to promote the
interplay between large and small scale distances was
interpreted in that reference as manifestation of a sort of

“UR-UV mixing” in the oscillator orbits. |

Al W,U,G/2K,i/1,/2 Sin(/"(’ 77) + AZWV0/2K,1'V/2 Sin(V’ﬂ)
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2. Example 2

The wave function (63) is a sum of two functions,
. 284\
V() =Aé W,w/z;c,m/2<7>€ wa
_ 282\ .
+ A§ 1WV0/2K,[V/2<T>61V7]' (69)

The corresponding phase is

S n) = arctan[

AIW/LH/2K,1'/L/2 Cos(lu‘ 77) + AZWV0/2K,iV/2 COS(VT))

} (70)

where, as in the commutative case, A; and A, were chosen as real coefficients. The equations of motion (57) in this state are

if — ik A1A2[W;L0/2K,iﬂ/2WVG/ZK,[V/2 - WMH/ZK,iM/ZW,/,g/ZK,,',,/z] Sin[(# - V)n] 1)
dt AW einss F AWog vy T 24180 W 2 i 2 Wos i 08[ (m = v)n ]’
dn _ K_2 ,LLA%W/ZLH/MJ./L/2 + VA%W12;0/2K,1'V/2 + A1 A (e + VW a9)20i0/2Wae 2 iv/2 cOSL — )] np (72)

dt 252 A%Wig/z,(,m/z + A%W,%g/z,(,iy/z + 2AlAZW/Le/ZK,i/L/ZWVa/ZK,iV/Z COS[(M - V)77]

where prime means derivative with respect to the argu-
ment. As in the commutative counterpart, we have an
autonomous set of nonlinear coupled differential equations
to solve. In order to render easy the comparison with that
case, let us fix A; = A, = 1//2. Again its is possible to
find bouncing solutions, as it is shown in Fig. 5(a), where
the effect of noncommutativity is manifest through the
suppression of the sequence of bounces that appears in
the commutative counterpart and by shifting the time
where the universe achieves its minimum Size [see
Fig. 3(b)]. The case where uw = —v, whose commutative
counterpart is a static universe, here has a nontrivial dy-
namics. An example is depicted in Fig. 5(b), where a cyclic
solution similar to that of Fig. 3(a) is induced by non-
commutativity effects. The splitting between NC- and C-
frame evolutions in both cases mentioned here is quanti-
tatively irrelevant.

B. Case 6 = +1

As in the classical counterpart, the case 6 = *1 is

characterized by a peculiar behavior. Equation (56) in
|

{amm = (&0/2) cosh(=1 + mq) + Ey(*1 + ) sinh(Z1 + 1),

this case is reduced to the first order partial differential
equation

e e =o 73)
an
whose general solution is

V(£ m) = R(e™iem, (74)

where R(¢) is any differentiable function of &. The equa-
tions of motion (57) in this case are reduced to

d¢ dn
—= =0, — = =], 75
dt dt (75
whose solutions are
&= &, n = *r+ n,. (76)

As the solutions for a,(¢) and y.(f), we have
a.(t) = & cosh(*1 + n),

X.(1) = &osinh(£1 + no),
while the corresponding a(z) and x(z) are

(77)

(78)

ch(t) = (50/2) Slnh(it + ’)70) + fo(il + ’)70) COSh(it + T]())

In both NC- and C-frame realizations of noncommuta-
tivity we find bounce solutions whenever &, > 0, while for
&o = 0 the universe is necessarily singular [Fig. 5(c)]. The
novelty here is that these universe solutions are the most
general ones available. No matter what the wave function
is, the fate of the universe is determined uniquely by &,. At
first sight it could seem strange that the wave function
cannot have any influence on the fate of the universe,

‘independent of its functional form. However, if we realize
that the information provided by the wave function is about
the universe evolution law, we find that the wave function
is playing its role providing us Eqgs. (75) in the same way as
in all the other cases previously discussed. Since the kinetic
term is quenched by noncommutativity effects, what we
found in this case is exactly what could be expected: a poor
and highly constrained dynamics, similar to the one that
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appears when a magnetic field projects a system onto its
lowest Landau level (see [29] and references therein).

C. Case 0] >1

In this last case the most general wave function that
satisfies (54) can be written as

—1 2152 ia
‘P(é‘:’ 77) = Z|:Aa‘§: Wiaﬁ/ZK,ia/2<T>e K
22\
+ Bag_lMia()ﬂK,ia/Z(Tg)elan:|‘ (79)

Contrary to the previous cases, the contribution corre-

&=k — kab/2& — k/EIM[Wing2ce1,i0/2(2iE2 ) K) [ Wing o a2 (2i%/ k)]

{7’7 = —ak?/2&* + 6.

Equations (81) can be solved analytically in the limit of
large &, where the contribution coming from the term
containing the Whittaker functions in the right hand side
of (81) can be approximated by —2«¢. In this regime, (81)
can be simplified to

&= —«k¢

The solutions of (82) are

n=—ax?/2& + 6. (82)

£(1) = &pe ™,
{n(t) = ak(l — e*")/4&5 + 01 + 7. (83)
As the expressions for a.(¢) and x.(7) we have
a.(t) = a. e " cosh[g(1)]
{xcm — ag e sinh[g (1)) A

where 77y was absorbed by redefining the origin of time and
g(1) = ak(l — e*")/4a% + 61. The corresponding a,,(1)
and y,,.(f) obtained from (58) are

an(1) = f(t)e” "' cosh[g(1)] — (Pa.,e”"'/«) sinh[g ()]
Xne(t) = f(1)e” "' sinh[g(1)] — (Ba.,e™""/ ) cosh[g(1)]
(85)

where f(1) = a., — afe*'/2a,,.

From (83) we can see that the physical meaning of the
approximation assumed is that of early times. Figure 5(d)
depicts the scale factors a,.(¢) and a.(¢) in an interval
where the approximation proposed is accurate.
Depending on the values of 6, @, and a,, the deviation
in their behavior can be very large. The f function plays
here a role similar to that of a,,., in Case 1, Sec. VI. In each
instant of time ¢ = T, the graph of f(T’) as a function of a,,
is identical in shape to that of Fig. 4. The singular behavior
of the solutions, however, can differ from that of Case 1,
Sec. VI due to the presence of the sinh[g(¢)] in the ex-
pression for a,,.(?).
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sponding to M,p/24ia/2 18 DOt divergent in the classically
forbidden region. Moreover, each of the Whittaker func-
tions W, ,(x) and M, ,(x) in this case is complex, and
therefore can give rise to a dynamics that differs from the
ones of the examples previously discussed. For simplicity,
we shall consider only the example where

2iE2\ .
W(e, ﬂ):AWiae/zx,iap( f)em’. (80)

K

For this wave function, the equations of motion (57) for
&(r) and n(r) can be shown to be

81)

VII. DISCUSSION

In this work we carried out an investigation into the role
of noncommutative geometry in the cosmological scenario
by introducing a noncommutative deformation in the alge-
bra of the minisuperspace variables along the same lines
proposed in [10] and followed in [11]. As a cosmological
model to carry out such an investigation, we chose a
Friedmann-Robertson-Walker universe with a conformally
coupled scalar field. A parallel was drawn between the
realizations of noncommutativity in two possible frame-
works for physical interpretation: the C frame, where it
manifests the Hamiltonian through #-dependent terms, and
in the NC frame, where it is manifest directly in the
universe degrees of freedom.

The influence of noncommutativity in the universe evo-
lution and its capability to remove cosmological singular-
ities was investigated by means of a comparative study of
the FRW model in four different versions: classical com-
mutative, classical noncommutative, quantum commuta-
tive, and quantum noncommutative. The confrontation
between the classical and quantum versions was rendered
easy by the Bohmian interpretation of quantum theory,
which provided a common language for comparison
through the quantum trajectory formalism. An extension
of the Bohmian formulation to comprise noncommutative
effects was previously proposed for the Kantowski-Sachs
model in [11]. In our comparative study we have dealt with
the noncommutative quantum model along the same lines.
The beable mapping commonly employed in Bohmian
quantum mechanics was extended to noncommutative
quantum cosmology. In the commutative context, our for-
mulation is reduced to the one proposed by Holland [22] in
the minisuperspace approximation.

In the classical context, the main result of our investi-
gation is that, contrary to the noncommutative Kantowski-
Sachs model, for sufficiently large € the noncommutative
FRW can be nonsingular. When |6| = 1, noncommutativ-
ity can give rise to bouncing universes in the NC- and C-
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frame realizations. The 8 = =1 case is of particular inter-
est since it reveals that the capability noncommutativity
has to mimic quantum effects under special conditions.
The bouncing solutions that appear in both NC- and C-
frame realizations [Eq. (18)] can be mapped into the com-
mutative quantum solution (41) with an appropriate iden-
tification of the integration constants. Therefore a
noncommutative classical quantum universe can be indis-
tinguishable from a commutative quantum universe.
Concerning the investigation into the NC- and C-frame
correspondence, it was shown in Sec. III that when § = *=1
there exist classical universe solutions that are nonsingular
in the NC frame and have no correspondent in the C frame,
where they are singular at all times. Therefore the descrip-
tion of the universe evolution provided by these two pos-
sible scenarios for the realization of noncommutativity can
differ radically.

While in the classical context nonsingular universe so-
Iutions can exist only in the noncommutative universe
model and for |#| = 1, in the commutative quantum con-
text one may find nonsingular universe solutions even in
the commutative case. The qualitative behavior of the
universe solutions in noncommutative quantum cosmology
was discussed in Sec. IV, where examples were presented
that contain nonsingular periodic and bouncing solutions.
As in the classical cosmology, examples involving the NC-
C frame were worked out in the noncommutative quantum
cosmology for the cases || <1, § = *1, and |6] > 1.
When noncommutativity effects are turned on in the quan-
tum scenario, they give rise to dynamical universes in
situations where Bohmian commutative quantum cosmol-
ogy admits only static universes. In the model under con-
sideration we showed that real wave functions always
represent nonsingular bouncing universes in both NC and
C frames. Complex wave functions, on the other hand, can
give rise to a great variety of dynamics, where the distinc-
tion between the frames in the noncommutative quantum
context can be crucial. An example was presented illustrat-
ing how a universe with large a,,. i, in the NC frame can
correspond to two universes in the C frame, one with large
Q¢ min = Qpemin, and the other with very small a,. ;,. Such
an interplay between small and large scale distances was
previously reported in [30], where it was interpreted as a
sort of “IR-UV mixing,” in analogy with noncommutative
field theory. As in the classical analog, the case where 6 =
*1 was shown to have peculiar properties. When § = *1
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noncommutativity effects act to drop the kinetic term from
the Wheeler-DeWitt equation. This justifies the poor and
highly constrained dynamics found in this case. No matter
what the wave function is, if the initial conditions are
nonsingular the universe is nonsingular and undergoes a
single bounce in both NC- and C-frame descriptions
[Fig. 5(c)].

If the noncommutativity of the minisuperspace variables
has in fact played a role in the evolution of the primordial
quantum universe (as proposed in [10]), the study carried
out in this work renders evident the need of an ontology for
the theory. This seems to be imperative in order that the
essential features of the noncommutative universe models
can be understood. The correspondence between degrees
of freedom in two different frames of realization is not
sufficient to define the theory completely, which is only
fixed by assuming one of them as the physical frame. This
necessity does not seem to be an exclusive feature of the
cosmological model considered here, where the dramatic
difference in the universe evolution can be attributed, in
part, to the fact that the noncommutativity in question is
that of the system’s degrees of freedom—the minisuper-
space variables. In the models where noncommutativity
does not directly involve the system’s degrees of freedom,
as the canonical noncommutative field theories that come
from string theory [3], the study of the correspondence
between NC- and C-frame descriptions is also a relevant
subject. In the context of gauge theories, where the con-
nection between the NC and C frames is via the Seiberg-
Witten map, an investigation into the properties of the
theory that have resemblance with gravity was carried
out, e.g., in [6], where the equivalence between spacetime
translations and gauge transformations is shown to occur in
the NC frame. In the C frame, on the other hand, where
such an equivalence seems to be lost, noncommutative
fields can be interpreted as ordinary theories immersed in
a gravitational background generated by the gauge field, as
shown in the interesting work by Rivelles [36], and further
in [37].
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