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The gravitational wave (GW) signals emitted by a network of cosmic strings are reexamined in view of
the possible formation of a network of cosmic superstrings at the end of brane inflation. The reconnection
probability p of intersecting fundamental or Dirichlet strings might be much smaller than 1, and the
properties of the resulting string network may differ significantly from those of ordinary strings (which
have p � 1). In addition, it has been recently suggested that the typical length of newly formed loops may
differ by a factor � � 1 from its standard estimate. Here, we analyze the effects of the two parameters p
and � on the GW signatures of strings. We consider both the GW bursts emitted from cusps of oscillating
string loops, which have been suggested as candidate sources for the LIGO/VIRGO and LISA interfer-
ometers, and the stochastic GW background, which may be detectable by pulsar-timing observations. In
both cases we find that previously obtained results are quite robust, at least when the loop sizes are not
suppressed by many orders of magnitude relative to the standard scenario. We urge pulsar observers to
reanalyze a recently obtained 17-yr combined data set to see whether the large scatter exhibited by a
fraction of the data might be due to a transient GW burst activity of some sort, e.g., to a near cusp event.
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I. INTRODUCTION

Cosmic strings can be formed as linear defects at a
symmetry breaking phase transition in the early universe
and can give rise to a variety of observable phenomena at
the present cosmic age. String formation, evolution, and
observational effects have been extensively studied in the
1980’s and 90’s (for a review see [1,2]). This exploration
was to a large degree motivated by the string scenario of
structure formation [3,4], which requires strings of the
grand unification energy scale, �� 1016 GeV or G��
��=Mp�

2 � 10�6. (Here, G is Newton’s constant, � is
the string tension, and Mp � 1019 GeV is the Planck
mass. G� is a dimensionless parameter characterizing
the gravitational interactions of strings.) This scenario is
now disfavored by the cosmic microwave background
(CMB) observations, but strings of a somewhat lower
energy scale would be consistent with the data, and their
detection would of course be of great interest. The current
CMB bound on strings is [5,6] G�< 6:1 � 10�7. There is
also a case of potential string detection with a similar value
of G�. Two nearly identical galaxies are observed at
angular separation of 1.9 arc sec, suggesting gravitational
lensing by a cosmic string with G�� 4 � 10�7 [7].

Cosmic strings can also be detected through the gravi-
tational wave (GW) background produced by oscillating
string loops [8]. This background, which ranges over many
decades in frequency, has been extensively discussed in the
literature [8–13]. The analysis of 8 yr of millisecond
pulsar-timing observations has led to setting rather strin-
gent (95% confidence level) limits on the GW contribution
to the cosmological closure density �g � �g=�c �

8
G�g=�3H2
0�: �gh2 < 6 � 10�8 according to the origi-
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nal analysis [14], or �gh2 < 9:3 � 10�8 according to
the Bayesian approach of [15]. [Here, h � H0=
�100 km=s=Mpc�. Note that h2 ’ �65=100�2 ’ 0:42.] As
we shall review below, the corresponding bound on G�
is c3=2G�< 10�7, where c denotes the (mean) number of
cusp events per oscillation period of a string loop.

Until recently, it appeared that the gravitational effects
of strings with G� � 10�7 are too weak to be observable.
However, it has been shown in [16,17] (following a sug-
gestion in [18]) that GW bursts emitted from cusps of
oscillating loops should be detectable by LIGO and LISA
interferometers for values of G� as low as 10�13.

During the last few years, there have been several im-
portant developments that motivate us to reexamine the
GW signatures of strings. First, there has been a renewed
interest in the possibility [19] that fundamental strings of
superstring theory may have astronomical sizes and play
the role of cosmic strings. In particular, it has been argued
[20–22] that fundamental (F-) and D-string networks can
naturally be formed at the end of brane inflation. In this
scenario [23], inflation is driven by the attractive potential
between a D brane and an anti-D brane, and strings are
produced when the branes eventually collide and annihi-
late. The rather stringent requirements allowing for the
stability of such cosmic superstrings can be met in some
scenarios [22,24,25]. The predicted string tensions are
[20,21,26,24] 10�11 & G� & 10�6 and appear to be
comfortably within the range of detectability by LIGO
and LISA. However, the analysis of GW bursts in [16,17]
may not be directly applicable in this case, since the
properties and evolution of F- and D-string networks
may differ in significant ways from those of ‘‘ordinary’’
cosmic strings.
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If both F and D strings are produced, they can form an
interconnected network, in which F and D strings join and
separate at three-way junctions [24,22]. Each junction
joins an F string, a D string, and a (1,1) string, which is
a bound state of F and D. �p; q� strings, which are bound
states of p F strings and q D strings with p; q > 1 can also
be formed. The evolution of FD networks is similar to that
of monopole-string Z3 networks, in which each monopole
is attached to three strings. Simulations of Z3 network
evolution suggest [27,28] that the typical distance between
the monopoles scales with the cosmic time, L� �t, where
the coefficient � depends on the rate of energy loss by the
network. But if the main energy loss mechanism is gravi-
tational radiation, as the case may be for an FD network,
then it has been argued in [27] that the energy dissipation
by the network is rather inefficient, so it quickly comes to
dominate the universe. If this picture is correct, then mod-
els predicting FD networks are ruled out. It is conceivable,
however, that the main energy loss mechanism of FD
networks is not GW emission but chopping off of small
nets, similar to closed loop production by ordinary strings.
The negative verdict on this type of models can then
be avoided. This issue can only be resolved with the aid
of new, high-resolution numerical simulations of FD
networks.

In this paper we shall focus on models where only one
type of string is formed. Still, the string evolution may
differ from that of ordinary strings, because the reconnec-
tion probability p for intersecting strings may be signifi-
cantly smaller than 1. When ordinary strings intersect, they
always reconnect [29,30]. For intersecting F strings, the
reconnection probability is suppressed by the string cou-
pling, g2

s < 1. Moreover, strings moving in a higher-
dimensional bulk can avoid intersection much more easily
than strings in three dimensions [22,21]. The string propa-
gation in the bulk is expected to be restricted by bulk
potentials, but the effective reconnection probability can
still be reduced by an order of magnitude or so. Analysis in
[25] suggests reconnection probabilities in the range

10 �3 & p & 1 (1.1)

for F strings and

0:1 & p & 1 (1.2)

for D strings. We thus need to analyze the effect of a
reduced reconnection probability on the GW burst statis-
tics and on the stochastic GW background.

Another interesting recent development has been the
analysis by Siemens and Olum [31] of the gravitational
radiation from counter-streaming wiggles on long strings.
They showed that this radiation is much less efficient in
damping the small-scale wiggles than originally thought.
This may result in much smaller sizes of closed loops
produced by the network [32] than previously assumed.
This effect can be quantified by the dimensionless parame-
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ter � defined in Eq. (2.9) below. References [16,17] had
assumed (besides p � 1) the ‘‘standard’’ value � � 1, and
we need to see how a different value of � might affect the
GW burst statistics.

Last, but certainly not least, on our list of recent develop-
ments is the potential improvement in the sensitivity to a
GW background of pulsar-timing observations. Indeed,
these have been recently extended to a 17-yr data set
[33]. We shall discuss below what kind of limits on G�
follow from this extended data set.

The main goal of the present paper is to analyze how the
amplitude and frequency of GW bursts from strings and the
intensity of the stochastic GW background depend on the
parameter � measuring the characteristic size of closed
loops, and on the string reconnection probability p. The
paper is organized as follows: In the next section we out-
line the relevant features of string evolution. GW bursts
from cusps are discussed in Sec. III. The stochastic back-
ground is discussed in Sec. IV, where we also discuss
bounds on G� based on millisecond pulsar observations.
Our conclusions are summarized in Sec. V.
II. STRING EVOLUTION

A. Standard scenario

An evolving string network consists of two components:
long strings and subhorizon closed loops. The long string
component is characterized by the following parameters:
the coherence length ��t�, defined as the distance beyond
which the directions along the string are uncorrelated, the
average distance between the strings L�t�, and the charac-
teristic wavelength of the smallest wiggles on long strings,
lwiggles�t�. The standard picture of cosmic string evolution
(based on the assumptions p � 1 and � � 1) asserts that
(in units where the velocity of light is set to one)

Lst�t� � �st�t� � t; (2.1)

and

lwiggles�t� � �t; (2.2)

where � is a constant whose value is specified below.
Strings move at relativistic speeds, and each long string

intersects itself or another long string about once every
Hubble time t. As a result, one or few large loops of size
Lst�t� � t are produced per Hubble time, which then shat-
ter, through multiple self-intersections, into a large number
of small loops, whose size is comparable to the wavelength
of the wiggles (2.2). In other words, when loops are just
formed they have a typical size

l�t� � �t: (2.3)

This equation, referring to the typical size of just formed
loops, will hold throughout this paper (including in the
‘‘non standard’’ cases discussed below) and defines the
meaning of the dimensionless loop-length parameter �.
-2
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Note that in order for the characteristic length of the
network to scale with cosmic time as in (2.1), it is neces-
sary for long strings to discharge a sizeable fraction of their
length ( � t per Hubble volume per Hubble time) in the
form of closed loops. In other words, the number of loops
formed per Hubble volume per Hubble time, say Nl, is on
the order of

Nst
l �

t
l�t�

�
1

�
: (2.4)

The loops oscillate and lose their energy by gravitational
radiation at the rate

dE=dt� �G�2; (2.5)

where � � 50 [1] is a numerical coefficient. The lifetime of
a loop of length l�t� � �t and energy E ��l���t is

�� ��=�G��t: (2.6)

The standard scenario assumes that the value of � is
determined by the gravitational damping of small-scale
wiggles. With the naive, old estimate of the damping,
one finds [11]

�st � �G�: (2.7)

Then the lifetime of loops formed at time t is �� t, so that,
at any moment, the number of loops per Hubble volume is
the same as the number of loops formed per Hubble
volume per Hubble time, as given by Eq. (2.4). Therefore
the number density of loops in the standard scenario is

nst�t� � ��1
st t�3 � ��G���1t�3: (2.8)

In the following subsections we shall consider the modifi-
cations to the result Eq. (2.8) of the standard scenario
brought by two possible effects: (i) a small reconnection
probability p � 1, and (ii) a value of the loop-length
parameter � differing from the standard value Eq. (2.7)
by being either smaller, or larger, than it. We can quantify
the effect (ii) with a new parameter

� � �=�st � �=�G�: (2.9)

Note again that we shall always define � by Eq. (2.3)
(concerning the typical length of newly formed loops),
which therefore holds true both in the standard scenario
and in the extended scenarios studied here. On the other
hand, Eq. (2.7) will cease to hold in the extended scenarios.

B. Small reconnection probability: p � 1

On subhorizon scales, the strings are straightened out by
the expansion of the universe, and thus we expect, as
before, that the string coherence length is

��t� � t: (2.10)

If the reconnection probability is p � 1, then one inter-
section per Hubble time is not sufficient for ensuring the
scaling of long strings. In order to have one reconnection, a
063510
long string needs to have �p�1 intersections per Hubble
time. This means that the number of such strings per
Hubble volume should be �p�1.

The typical interstring distance L�t� can be estimated
from comparing two different estimates of the mean energy
density in long strings, say �long. On the one hand, consid-
ering that a Hubble volume �t3 contains �p�1 long
strings yields �long � p�1�t=t3 � �=�pt2�. On the other
hand, the definition of L is that there should be �1 string
segment of length L in a spatial volume �L3, so that
�long ��L=L3 � �=L2. Equating the two estimates
yields

L�t� � p1=2t; (2.11)

instead of Eq. (2.1).
There have been some conflicting claims in the recent

literature regarding the values of L�t� and ��t� in the regime
of p � 1. Jones, Stoica, and Tye [21] find that L�t� �
��t� � pt. We note, however, that they derive this result
from the one-scale model [34], which assumes from the
outset that L�t� � ��t�. This assumption is not necessarily
justified when p � 1. Sakellariadou [35] argues that
L�t� � ��t� � p1=2t. Her analysis is based on numerical
simulations of string evolution in flat spacetime.
Equation (2.11) was indeed originally obtained in such
simulations [36], but we are not aware of any results
indicating that ��t� � L�t� in this regime. On the contrary,
preliminary results of a new, high-resolution flat-space
simulation indicate that ��t� is substantially larger than
L�t� [37].

A definitive picture of string evolution with low inter-
commuting probability can only be obtained from numeri-
cal simulations in an expanding universe. Flat-space
simulations do not include the important effect of string
stretching on subhorizon scales. Simple analytic estimates
do not account for the possible effects of the wiggles. For
example, colliding wiggly strings may intersect at more
than one point, thus increasing the effective reconnection
probability. If the wiggliness of strings is increased at low
p, their velocity will be reduced, leading to a further
decrease of L�t�. String simulations with p � 1 will hope-
fully be performed in the near future. For the time being,
we shall assume that Eqs. (2.10) and (2.11) give a reason-
able approximation and use them in the rest of the paper.

As before, a significant fraction of the total string length
within a Hubble volume �p�1t should go into loops each
Hubble time, so that the number of loops formed per
Hubble volume per Hubble time is now

Nl �
p�1t
l�t�

�
1

p�
; (2.12)

i.e., p�1 larger than the standard result (2.4). In order to
estimate the corresponding loop density at any moment,
one must take into account the lifetime of these loops
-3
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(which depends on the value of �). This will be discussed in
the following subsections.

C. Small loops: � � �G�, i.e., � � 1

As we already mentioned, recent analysis in [31] has
shown that the gravitational radiation from counter-
streaming wiggles on long strings is much less efficient
in damping the wiggles than originally thought. If indeed �
is determined by gravitational backreaction, then the new
analysis shows [32] that its value is sensitive to the spec-
trum of small-scale wiggles—and is generally much
smaller than �G�. A simple model for the spectrum of
wiggles introduced in [32] yields

�� ��G��n; (2.13)

with n � 3=2 in the radiation era and n � 5=2 in the
matter era. In other words, the quantity (2.9) would be of
order �� ��G��m, with m � n� 1, i.e., m � 1=2 in the
radiation era and m � 3=2 in the matter era. As �G� is
observationally restricted to be �G� & 10�5, and might
turn out to be � 10�5, this gives very small values of � &

3 � 10�8 and � & 3 � 10�13, and � & 3 � 10�3 and � &

3 � 10�8, for radiation and matter eras, respectively. In
view of such possible drastic changes in orders of magni-
tude, it is important to assess the effect of � � 1 on string
network statistics and the corresponding GW observables.

As said above, for � � �G�, the number of loops
produced per Hubble time per Hubble volume is given by
Eq. (2.12). However, to compute the number of loops at
any moment we must now take into account the fact that
the lifetime of the loops (2.6) is � � t. Therefore, only a
small fraction of these loops will be present at any given
time, N0 � ��=t�N � 1=�p�G��. The corresponding loop
density is therefore

n�t� �
1

p�G�t3 : (2.14)

Note that, compared to the standard result Eq. (2.8), the
value of n�t� in scenarios extended by the two parameters
p � 1 and � � 1 is independent of � and exhibits a simple
dependence / p�1 upon p.

D. Large loops: � � �G�, i.e., � � 1

As mentioned above, the possibility � � �G�, i.e.,
� � 1 will be our main focus in this paper, because of
the recent findings of [31,32]. However, the opposite case
� � �G�, i.e., � � 1 cannot, at this stage, be dismissed.
Indeed, the spectrum of the wiggles is expected to be a
power-law decaying towards shorter wavelengths [32].
This raises the possibility that for sufficiently small wave-
lengths the wiggles may be too small to have an effect on
loop formation. The size of the loops will then be deter-
mined by the dynamics of the network, and gravitational
backreaction will play no role.
063510
The possibility of � � �G� has been discussed in [1].
We recall that the parameter � is defined by requiring that
the typical length of newly formed loops is ��tf, where tf
denotes the time of formation. When � � �G�, such
loops will survive over many Hubble times, and the loops
extant at any given cosmological time twill be obtained by
integrating over the loops formed on all formation times
tf < t. One finds that there is a distribution of loops with
sizes in the range 0 < l < �t, with the dominant contribu-
tion to the number density, and to the GW burst rate,
coming, at cosmological time t, from loops of typical size

l� �G�t: (2.15)

These dominant loops at time t were formed at the para-
metrically smaller typical time tf � ��G�=��t � t. Their
density at that (formation) time was

nf �
1

p�t3
f

; (2.16)

and the density at time t is

n�t� �
�a�tf�
a�t�

�
3
nf; (2.17)

where a�t� denotes the cosmological scale factor. If we
consider loops formed in the matter era, tf > teq (which
will indeed be the most important for GW observations),
the factor 
a�tf�=a�t��3 � �tf=t�

2 � ��G�=��2, so that the
loop number density is

n�t� �
1

p�G�t3 : (2.18)

It is interesting to note that the final result (2.18) for the
loop density (in the matter era) when � � 1 coincides with
the result (2.14) obtained in the opposite case � � 1, and
that both results are independent of �. Note, however, that
the typical size of the loops at time t are different. In the
case where � � 1 this typical size is l�t� � �t � ��G�t,
while in the case � � 1 it is l�t� � �G�t. In other words,
the case � > 1 can be effectively treated by taking the limit
� ! 1 of the case � < 1 (while keeping the effect of p).
Another way to say this is to introduce the notion of
effective loop-length parameter �ef f , defined by writing
that the typical size of the loops which dominate the loop
density at cosmic time t is

l�t� � �ef ft: (2.19)

Note that Eq. (2.19) refers to the typical size of loops
surviving at some cosmic time t, while Eq. (2.3) referred
to the typical size of newly formed loops. Correspondingly,
we can define �ef f � �ef f=�G�. With this definition, one
has �ef f � � when �< �G� (i.e., �ef f � � when � < 1),
and �ef f � �G� when �> �G� (i.e., �ef f � 1 when � >
1). Note that �ef f is never greater than 1. [One could
approximately write the link �ef f � �=�1 � ��.]
-4
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E. This paper

The bottom line is that the value of � is presently
unknown. Numerical simulations of string evolution
[11,38] give loops that are too small to be resolved, so
only an upper bound on � can be obtained,

� & 10�3: (2.20)

The next generation of string simulations, which are now
being developed, are expected to improve this bound con-
siderably. In this paper, we shall use �, or equivalently �
defined by Eq. (2.9), as a free parameter and will allow it to
take values smaller, as well as greater than its standard
value �st � �G�, corresponding to �st � 1. Similarly, we
shall treat the reconnection probability p as a free parame-
ter and consider cases of both high (p � 1) and low (p �
1) reconnection probability.

It should be emphasized though that the parameters p
and � do not appear in the theory on equal footing. The
reconnection probability p and the string tension � are true
parameters, in the sense that they can take different values
in different cosmic string models (e.g., fundamental
strings, D strings, or ordinary strings). On the other hand,
the parameter � only reflects incompleteness of our under-
standing of string evolution and will eventually be deter-
mined, possibly as a function of G� and p.1

III. GRAVITATIONAL WAVE BURSTS

The main result of the GW burst analysis in
Refs. [16,17] is the expression for the typical dimension-
less amplitude of cusp-generated bursts, observed in an
octave of frequency around frequency f, that one can
expect to detect at a given occurrence rate _N (say, one
per year),

h _N�f� �G��2=3�ft0�
�1=3g
y�old��"�1

� %m
�; f; zm�y
�old����: (3.1)

Here, t0 ’ 2=�3H0� ’ 1:0 � 1010 yr ’ 107:5 s is the
present cosmic time,

y�old�� _N; f� � 10�2� _N=c�t0�8=3�ft0�
2=3; (3.2)

c is the average number of cusps per period of loop
oscillation, and the superscript (old) refers to the fact that
Eq. (3.2) was derived using the old (standard) string evo-
lution scenario with �� �G�. The function g
y� in (3.1)
is given by

g
y� � y�1=3�1 � y��13=33�1 � y=yeq�
3=11: (3.3)

This is an interpolating function which represents the
power-law behavior of h _N in three different regimes: y &
1The parameter c, the average number of cusps per loop,
which is introduced in the next section, is also not a true
parameter and will hopefully be determined from numerical
simulations.
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1, 1 & y & yeq, and y * yeq, where yeq � z11=6
eq and zeq ’

103:94 is the redshift of equal matter and radiation densities.
The three regimes correspond to loops radiating, respec-
tively, at z & 1, 1 & z & zeq, and z > zeq. Finally, the last
factor " in Eq. (3.9) involves Heaviside’s step function ",
with the argument 1 � %m obtained by inserting Eq. (3.2)
into the function

zm�y� � y1=3�1 � y�7=33�1 � y=yeq�
�3=11; (3.4)

and then by inserting the result into the function

%m��; f; z� � ��ft0�
�1=3�1 � z�1=6�1 � z=zeq�

1=6: (3.5)

Physically, the quantity %m�f� is related to the (integer)
mode number m of the Fourier decomposition of the
gravitational radiation emitted by a loop by jmj �
�%m�f���3. Note also the link jmj � �1 � z�fl [17], where
l denotes the length of the loop. The "-function factor
serves the purpose of restricting the burst signals to the
values %m � 1, corresponding to jmj � 1. In view of
Eq. (3.5), this step function is equal to one when the
product �ft0 is larger than 1 and z & 1. This case covers
many cases of physical interest, especially when consider-
ing GW frequencies in the LIGO or LISA bands. This is
why, in most of our analytical discussion below we shall
only consider the other factors in Eq. (3.1). However, we
shall include the effect of this cutoff factor in our plots
below; we shall see that it plays a crucial role for the GW
frequencies of relevance in pulsar-timing observations; and
that it also starts playing an important role for LIGO and
LISA signals, when � gets much smaller than 1.

The log-log plot of h _N as a function of G�, calculated
for the standard scenario, and in absence of the cut-off
brought by the "-function factor, is made up of three
straight lines representing the three different regimes men-
tioned above. Now we would like to find out how these
lines are modified when � � 1 and/or p < 1. By looking at
the derivation of Eqs. (3.1), (3.2), and (3.3) in Refs. [16,17]
one finds that the explicit occurrences of the notation �
concerned two different aspects of a string network: (i)
either � was used to parametrize the typical size of a loop,
in the sense of Eq. (2.3), or better of Eq. (2.19) as one is
interested in the typical size of a loop at cosmic time t, or,
(ii) � entered as a factor in the loop density, written as
n�t� � ��1t�3. The first usage of � is consistent with the
definition Eq. (2.3) of � in the extended scenarios consid-
ered here in the most interesting case where � < 1; as said
above, we shall treat the opposite case by replacing � !
�ef f , i.e., by taking the � ! 1 limit. But then, if � is so
defined, the second usage must be corrected for because
the loop density in extended scenarios is not given by
n�t� � ��1t�3 but rather by Eqs. (2.14) and (2.17) [the
latter becoming Eq. (2.18), which is the same as (2.14) in
the matter era case]. In other words, we just need to correct
(at least when � < 1) the loop density used in Refs. [16,17]
by the factor �=p�G� � �=p. An easy way to accomplish
-5
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this is to note that the modified loop density can be ac-
counted for by adjusting the value of the number of cusp
events per loop oscillation, c. Specifically, for � & 1 we
need to make a replacement

c !
c�
p
: (3.6)

Alternatively, as c always enters the final results in the
combination _N=c, we could account for the modified loop
density by the replacement

_N !
_Np
�

: (3.7)

As a result, Eqs. (3.1) and (3.3) remain unchanged, while
Eq. (3.2) is replaced by

y�new�� _N; f� � 10�2 p�
5=3

c
� _Nt0��

8=3
0 �ft0�

2=3

� p�5=3y�old�� _N; f; �0�; (3.8)

where �0 � �G�, i.e., �0 denotes what was denoted �st

above. To keep track of the dependence on � (at a fixed
G�), we shall also rewrite Eq. (3.1) in terms of � and �0,

h _N�f� � ��1�2=3�5=3
0 �ft0�

�1=3g
y�new��

� "�1 � %m
�; f; zm�y
�new����: (3.9)

The function g
y� has the successive power-law behaviors
g
y� / yn with n � �1=3 for y & 1, n � �8=11 for 1 &

y & yeq, and n � �5=11 for y * yeq. In view of the scaling
y�new� / p�5=3, Eq. (3.8), we see from Eq. (3.9) that h _N�f�
will have successive power-law scalings with p and � of
the form h _N�f� / �2=3�p�5=3�n � pn��2�5n�=3. Therefore
the value of h _N�f� for p < 1, � < 1 can be obtained from
the corresponding value, for the same values of f;G�; _N,
and c, and for p � � � 1, by multiplying it with the
following factors: p�1=3�1=9 for y & 1, p�8=11��6=11 for
1 & y & yeq, and p�5=11��1=11 for y * yeq.

The qualitative effect of varying p and � is now easy to
understand. The graph of h _N vs G� has a zigzag shape,
with a rising line on the left, a short declining segment in
the middle, and another rising line on the right. When p is
lowered, at fixed G� and �, all three lines move up, with
the central segment moving somewhat more than the right
line, and the right line somewhat more than the left line.
When � is lowered at constant G� and p, the left line
moves down, while the central segment and the right line
move up. The displacements of the three lines in this case
are very unequal. The displacement of the left and right
lines is small, unless � changes by 5 orders of magnitude or
more, while the displacement of the middle segment is
quite noticeable, even if � is changed by only one or 2
orders of magnitude. It can be easily seen that the local
maximum and minimum of the curve h _N�G�� are both
shifted to the right if � is decreased (see below). When �
063510
and p are changed independently of G�, the slopes of all
three lines remain unchanged. This would not be the case
if, for example, � were a function of G�, as in Eq. (2.13).

A complementary way to qualitatively grasp the effect
of p < 1 and � < 1 on the plot of h _N�f� (considered for a
fixed value of f) versus G� is the following. In Eq. (3.9)
above the dependence of h _N�f� on G� comes both through
the prefactor �5=3

0 and through the dependence of y�new�

upon �0 appearing in Eq. (3.8), namely, y�new� / �8=3
0 . We

can, however, have a fast grasp at the location and height of
the extrema of the zig-zagged graph of h _N vs G� by using
the inverse dependence �0 / �y�new��3=8 to reexpress h _N as
a function of y�new�, instead of �0, or G� � �0=50.
Keeping all the factors, this leads to

h _N�f� � ��3=8p�5=8H1�f; t0; c; _N�G�y�new��; (3.10)

where we have introduced the auxiliary functions

H1�f; t0; c; _N� �
1

�

�
102c

_Nt0

�
5=8

�ft0�
�3=4; (3.11)

and

G
y� � y5=8g
y� � y7=24�1 � y��13=33�1 � y=yeq�
3=11:

(3.12)

The function G�y� has a maximum at y� 1 and a minimum
at y� yeq. These being numerically fixed values, the result
Eq. (3.10) above immediately shows that the heights of the
extrema of the plot h _N vs G� depend on � and p only
through the simple prefactor in (3.10). Namely, the heights
of the extrema are proportional to

hextrema / ��3=8p�5=8: (3.13)

Interestingly, the effect of � < 1 or p < 1 is always to
increase the extremal values of the plot h _N vs G�. As
for the locations of these extrema on the G� axis, they are
given by inverting the relation (3.8) linking y to G�. This
yields (modulo factors depending only on c; _N; f, and t0)

G�� / ��5=8p�3=8y3=8
� ; (3.14)

where y� denotes the location of an extremum on the y axis,
i.e., y� � 1 or y� � yeq. These being numerically fixed
values, we see that the locations on the G� axis of the
extrema of h _N�f� vary with � and p simply through the
prefactor ��5=8p�3=8 in Eq. (3.14). This factor is always
larger than 1 when � < 1 or p < 1. In summary, the effects
of � < 1 and p < 1 on the zig-zagged graph of h _N vs G� is
to move it up by a factor ��3=8p�5=8, and right by a factor
��5=8p�3=8. It is easily checked that this simple behavior is
compatible with the more detailed results above about the
‘‘motion’’ with � and p of the three lines making up
the zig-zagged plot h _N�G��, when taking into account
the successive logarithmic slopes ( � 7=9;�3=11;�5=11
[17]) of h _N�f� versus G�.
-6



FIG. 1. Effect of a reconnection probability 10�3 � p � 1 on
the gravitational wave amplitude of bursts emitted by cosmic
string cusps in the LIGO/VIRGO frequency band (fLIGO �
150 Hz) as a function of the string tension parameter G� (in a
base-10 log-log plot). Here, as in the following figures, the
average number of cusps per loop oscillation is assumed to be
c � 1. The horizontal dashed lines indicate the one sigma noise
levels (after optimal filtering) of LIGO 1 (initial detector) and
LIGO 2 (advanced configuration).

FIG. 2. Effect of a reconnection probability 10�3 � p � 1 on
the gravitational wave amplitude of bursts emitted by cosmic
string cusps in the LISA frequency band (fLISA � 3:88 �
10�3 Hz) as a function of the string tension parameter G� (in
a base-10 log-log plot). The horizontal dashed line indicates the
one sigma noise level (after optimal filtering) of the LISA
detector.

FIG. 3. Effect of a smaller fractional loop-length parameter
10�12 � � � �=�50G�� � 1 on the gravitational wave ampli-
tude of bursts emitted by cosmic string cusps in the LIGO/
VIRGO frequency band (fLIGO � 150 Hz) as a function of the
string tension parameter G� (in a base-10 log-log plot). The
horizontal dashed lines indicate the one sigma noise levels (after
optimal filtering) of LIGO 1 (initial detector) and LIGO 2
(advanced configuration).
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How do these modifications affect the detectability of
the GW bursts from cusps? A smaller value of p can only
increase h _N , and therefore improves the detectability. The
improvement is moderate when considering a given value
of G�: for p� 10�3, we gain 1 order of magnitude in h.
The improvements in the detectability of GW burst signals
in the LIGO and LISA detectors brought by reducing the
value of p (from one to 10�3, in steps of 10�1) is illustrated
in Figs. 1 and 2 .

The horizontal dashed lines in these figures indicate the
one sigma noise levels, after optimal filtering, for detecting
GW bursts in the corresponding detectors. In the ‘‘LIGO’’
figures, the upper horizontal line corresponds to the initial
sensitivity, LIGO 1, or equivalently VIRGO, while the
lower line corresponds to the planned advanced configura-
tion LIGO 2. For details of the signal to noise analysis,
see [17].

Turning to the effect of � < 1, we find that the burst
amplitudes h _N�f� are very weakly affected by a decrease of
� by a few orders of magnitude. This follows from the fact
that the limiting sensitivities of LIGO and LISA corre-
spond to the regime y < 1, where the amplitude h is only
lowered by a factor �1=9. From this factor it would seem
that it is only in the case where � & 10�10 that detectability
by LIGO or LISA will be significantly affected. However,
when � gets that small the "-function factor in Eq. (3.9)
starts playing an important role even at LIGO or LISA
frequencies, especially when considering the types of val-
ues of the string tension, G�� 10�10, suggested by recent
stringy implementations of brane inflation [24,26]. Indeed,
the crucial numerical factor in the "-function cutoff is the
product �ft0 � ��G�ft0 � 109:2��G�=10�10��f=Hz�
063510
entering %m, Eq. (3.5). Therefore, when G�� 10�10, the
cutoff brought by the " function starts significantly affect-
ing the LIGO signal (fLIGO � 100 Hz) when � & 10�11

and the LISA one (fLISA � 10�2 Hz) when � & 10�7. The
effect of � < 1 on the detectability of GW bursts by LIGO
and LISA is illustrated in Figs. 3 and 4.

Let us now briefly discuss the case � > 1. In that case,
the effective value of � when � is used to parametrize the
typical size of a loop at cosmic time t is �ef f � �G�,
corresponding to �ef f � 1, while the loop density is gen-
erally given by Eq. (2.17). The latter result takes different
-7



FIG. 4. Effect of a smaller fractional loop-length parameter
10�12 � � � �=�50G�� � 1 on the gravitational wave ampli-
tude of bursts emitted by cosmic string cusps in the LISA
frequency band (fLISA � 3:88 � 10�3 Hz) as a function of the
string tension parameter G� (in a base-10 log-log plot). The
horizontal dashed line indicates the one sigma noise level (after
optimal filtering) of the LISA detector.
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explicit forms, according to whether one considers the
cases of loops formed in the matter era [then one gets
Eq. (2.18)], loops formed in the radiation era and decaying
in matter era, or loops both formed and decaying in the
radiation era (see [1]). For loops formed in the matter era,
which correspond to the most relevant part of the graph in
terms of observability, the loop density Eq. (2.18) coin-
cides with the � � 1 limit of the case � < 1; p < 1 consid-
ered above. Therefore, the plot of h vsG� is obtained from
the discussion above by keeping the effect of p < 1, while
setting � � 1. In that case, we see that the net effect is to
increase the detectability of GW bursts.

The overall conclusion is that the results of our previous
work [16,17] are quite robust2 against the inclusion of the
modifications parametrized by p < 1 and by � (both when
� < 1 and � > 1), at least when � * 10�11 in the case of
LIGO or � * 10�7 in the case of LISA. In particular, it is
notable that a smaller reconnection probability can only
increase the detectability of cosmic superstrings, and that
even a very small � leads to a vast range of detectability for
the GW bursts emitted by a network of strings. However,
smaller values of � might lead to cutting off the burst signal
in GW detectors, when the string tension is G�� 10�10 or
less. See Figs. 1–4.
IV. STOCHASTIC GRAVITATIONAL WAVE
BACKGROUND

We now consider the stochastic GW background pro-
duced by oscillating string loops. It was shown in [16,17]
2Let us also mention that Ref. [39] has shown that the
waveform of GW bursts from cusps derived in [16,17] is robust
against the presence of small-scale wiggles on the strings.

063510
that this background appears, in general, as the superposi-
tion of occasional (non Gaussian) bursts, on top of a nearly
Gaussian ‘‘confusion noise’’ h2

conf usion�f�, made of over-
lapping bursts. For some (rather large) values of the effec-
tive loop-length parameter �ef f , Eq. (2.19), namely,
�ef f � 10�5 in the standard case, the individual burst
events detectable during a typical pulsar-timing observa-
tion time scale T � 10 yr have an amplitude which might
be comparable to the confusion background. This raises
subtle issues about the detectability of such a mixed
Gaussian-non-Gaussian background. In the discussion of
this section, we shall, however, restrict ourselves to con-
sidering the simpler case of relatively small values of the
effective loop-length parameter where the individual, non-
overlapping, bursts are negligible compared to the back-
ground ‘‘confusion noise.’’ Note, also, that, even in this
case, Refs. [16,17] found that the quantity usually consid-
ered in the cosmic string literature, namely, the ‘‘rms’’
noise h2

rms�f�, averaged over all bursts, was not necessarily
a good estimate of the observationally relevant confusion
noise, h2

conf usion�f�. Indeed, h2
rms�f� includes, contrary to

h2
conf usion�f�, the time-average contribution of rare, intense

bursts, which are not relevant to a pulsar experiment of
limited duration.

The confusion noise can be written as the following
integral over the redshift z [using Eq. (6.17) of [17] with
the replacement Eq. (3.6) above]

h2
conf usion�f� �

Z dz
z
n�f; z�h2�f; z�"
n�f; z� � 1�; (4.1)

where

n�f; z� � 102 c�
p
�ft0�

�5=3��8=3’n�z�C�z�; (4.2)

is the number of cusp events (in a time window �f�1 and
around redshift z) generating GW bursts around frequency
f. Here

’n�z� � z3�1 � z��7=6�1 � z=zeq�
11=6; (4.3)

C 
z� � 1 � 9z=�z� zeq�; (4.4)

and

h�f; z� � G��2=3�ft0�
�1=3’h�z�"�1 � %m
�; f; z��;

(4.5)

with

’h�z� � z�1�1 � z��1=3�1 � z=zeq�
�1=3: (4.6)

The factor C
z� interpolates between one in the matter era
and ten in the radiation era. It is incorporated to refine, in
the standard case at least, the order of magnitude estimate
Eq. (2.14) of the loop density. The quantity %m
�; f; z�
entering the step function in the burst amplitude h�f; z� is
that defined in Eq. (3.5) above. As above the step function
-8



FIG. 6. Effect of a smaller fractional loop-length parameter
10�3 � � � �=�50G�� � 1 on the fractional contribution
�g�fpsr� [around the frequency fpsr � 1=�10 yr�] to the cosmo-
logical closure density of the stochastic GW noise due to over-
lapping GW bursts emitted by a network of strings (base-10 log-
log plot). The upper (solid) horizontal line indicates the upper
limit �g < 6h�2 � 10�8 derived from 8 yr of high-precision
timing of two millisecond pulsars: PSR 1855 � 09 and PSR
1937 � 21. The middle (dashed) horizontal line indicates the
potential sensitivity of 17 yr of high-precision timing of PSR
1855 � 09 (see text). The lower (dashed) horizontal line indi-
cates the expected sensitivity from the timing of the set of
pulsars to be hopefully detected by a square kilometer array of
radio telescopes.

FIG. 5. Effect of a reconnection probability 10�3 � p � 1 on
the fractional contribution �g�fpsr� [around the frequency fpsr �

1=�10 yr�] to the cosmological closure density of the stochastic
GW noise due to overlapping GW bursts emitted by a network of
strings (base-10 log-log plot). The upper (solid) horizontal line
indicates the upper limit �g < 6h�2 � 10�8 derived from 8 yr of
high-precision timing of two millisecond pulsars: PSR 1855 �
09 and PSR 1937 � 21. The middle (dashed) horizontal line
indicates the potential sensitivity of 17 years of high-precision
timing of PSR 1855 � 09 (see text). The lower (dashed) hori-
zontal line indicates the expected sensitivity from the timing of
the set of pulsars to be hopefully detected by a square kilometer
array of radio telescopes.
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"�1 � %m
�; f; z�� cuts off the Fourier components that
would correspond to a mode number m & 1. Note the
presence of a second step function, "
n�f; z� � 1� in
h2

conf usion�f�, which (approximately) limits the integral
over the redshift z to the overlapping bursts. Indeed, the
‘‘confusion noise’’ Eq. (4.1) is obtained by subtracting
from the ‘‘rms noise’’ h2

rms�f� �
R
1
0 �dz=z�n�f; z�h

2�f; z�
the signals of low redshift

Rzc�f�
0 �dz=z�n�f; z�h2�f; z�

with n�f; zc�f��� 1. As shown in [17], the latter signals
can be intense, but they are rare and nonoverlapping, their
total number (in a time window �f�1) being
�

Rzc�f�
0 �dz=z�n�f; z� � n�f; zc�f��� 1. [We use here the

fact that n�f; z� is a monotonically increasing, power-law-
type, function of z.]

Finally, we associate to the dimensionless squared GW
amplitude (per octave of frequency) h2

conf usion�f� its
energy density per octave of frequency, fd�g=df�


2
fhconf usion�f��
2=�16
G� � �
=4G�f2h2

conf usion�f�, and
the corresponding fractional contribution (per octave of
frequency) of the confusion GW noise to the cosmological
closure density, �g�f� � �f=�c��d�g=df�, where �c �

1=�6
Gt2
0� (see Eq. (6.20) of [17])

�conf usion
g �f� �

3
2

2
�ft0�

2h2
conf usion�f�: (4.7)

This quantity is plotted, for a pulsar-timing frequency
fpsr � 0:1 yr�1 corresponding to a typical �10 yr obser-
vational window, as a function of G�, and for various
values of p and �, in Figs. 5 and 6. The horizontal lines
in these figures correspond to various realized, or planned,
pulsar-timing experiments. The upper (continuous) line
corresponds to the (95% confidence level) upper limit
�gh

2 < 6 � 10�8 derived in [14] from 8 yr of high-
precision timing of two millisecond pulsars: PSR 1855 �
09 and PSR 1937 � 21. [Note that a Bayesian reanalysis of
the data of [14] gave, under the choice of ‘‘Jeffrey’s prior,’’
the slightly less stringent limit �gh2 < 9:3 � 10�8 [15].
Note also that, consistently with our use of H0 ’
65 km=s=Mpc and t0 ’ 1:0 � 1010 yr, we have h2 ’
�65=100�2 ’ 0:42.]

Recently, the data set for these two pulsars has been
extended to a 17-yr continuous span by piecing together
data obtained from three different observing projects [33].
This is the first realization of the concept of pulsar-timing
array (PTA) [40,41]. However, the upper limit on �gh

2

that one can deduce from this 17-yr combined data set is
unclear to us. On the one hand, [33] computes two widely
different upper limits by using two different approaches. A
Neyman-Pearson test leads, according to [33], to a 95%
confidence level limit of only �gh2 < 2:8 � 10�6, which
is much less stringent than the limit obtained in [14] from
8 yr of data. In view of this surprising result, Ref. [33] then
resorted to a rather coarse estimate of an upper limit, based
only on saying that ‘‘the largest amplitude sinusoid that
063510-9



3Note, however, that this estimate neglects a subdominant, but
significant ‘‘floor’’ contribution coming from the radiation era,
z > zeq
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one could conceivably fit to the PSR 1855 � 09 data’’ is 3
�s, for a frequency f � 1=�17 yr�. This led to the upper
limit �gh

2 < 2 � 10�9, which is now more than 10 times
more stringent than the limit based on 8 yr of data. On the
other hand, a look at the PSR 1855 � 09 residuals reported
in [33] shows that, during an intermediate period of �5 yr
corresponding to the Green-Bank data, there were residuals
reaching the �30�s level, i.e., a much larger level than the
�3�s level typical of the (pre- and post-upgrade) Arecibo
data. This large ‘‘activity’’ of the pulsar data points during
the Green-Bank-only period is responsible for the �gh

2 <
2:8 � 10�6 Neyman-Pearson test limit. Apparently, the
author of [33] seems to favor the tighter limit �gh2 < 2 �

10�9, obtained without using any statistical reasoning,
more than the Neyman-Pearson test one �gh

2 < 2:8 �

10�6. Personally, in view of the ‘‘large activity’’ exhibited
by the Green-Bank data, we are not convinced that the level
�gh2 � 2 � 10�9 can be considered as a real upper limit
on �gh

2. Pending a more complete statistical analysis of
the present 17-yr combined pulsar data, we can only con-
sider this level as the potential sensitivity level of such an
extended data set. Accordingly, we have represented the
level �gh

2 � 2 � 10�9 as a dashed line in Figs. 5 and 6.
Actually, we wish to suggest, with due reserve, that the

large scatter recorded in the Green-Bank data set might be
due to the real effect of a transient GW burst activity of
some sort, e.g., to a near (z � 1) or rare (c � 1) cusp
event (indeed, there is no evidence of a steady stochastic
red noise in the Arecibo data). When looking not only at
the PSR 1855 � 09 data, but also at the PSR 1937 � 21
ones, one notices that, after fitting out a cubic term / /P in
the residuals, there remains some larger-than-usual activ-
ity, at the 4�s level. It is clearly too early to use such data
to fit for possible string-loop parameters, but we urge the
observers not to dismiss this interesting possibility.

Finally, looking ahead to the realization of the project of
the square kilometer array radio telescope [42], and of its
consequent pulsar-timing array, one can ultimately hope to
reach, through pulsar-timing, the sensitivity level �gh

2 �

10�12:6 at a frequency fpsr � 0:1 yr�1 [42]. This ultimate
sensitivity level is indicated as the lowest dashed line in
Figs. 5 and 6.

Figs. 5 and 6 illustrate the effects of p and � on the
detectability of the stochastic GW background generated
by a cosmological network of (super)strings. This back-
ground is essentially made of the superposition of over-
lapping burst signals. Therefore we expect that the effects
of p and � discussed above on the case of individual bursts
will somehow extend to this confusion noise. Indeed, Fig. 5
shows that decreasing p increases the signal and therefore
improves its detectability by pulsar-timing experiments.
Concerning the effect of decreasing � the situation is a
bit different from what happened in the case of individual
bursts in the LIGO or LISA frequency band. The good
news is that the amplitude of the stochastic background,
063510
versus G�, in the extended domain where it is a rather flat
rising line, increases when � decreases. The bad news is
that, because of the low value of the pulsar frequency band
fpsr � 0:1 yr�1, the stochastic signal is quite sensitive to
the left cutoff brought by the step function "�1 �
%m
�; f; z�� present in each burst signal Eq. (4.5). This
step function corresponds to saying that the Fourier series
representing the GW amplitude emitted by a periodically
oscillating loop only contains mode numbers jmj �
�%m�f; z���3 > 1. As in the case of individual bursts con-
sidered above, the main numerical factor (when z� 1,
which is the case on the left of the graph plotting �g vs
G�) which determines this cutoff is the product �ft0.
When this product gets smaller than 1, the " function
cuts off the signal. Numerically, one has, for the pulsar
frequency band, �fpsrt0 � 109�� 5��G�=10�10�. There-
fore, when considering, for instance, the type of values
G�� 10�10 expected from brane inflation models
[20,21,26,24], we see that values of � & 10�1 are sufficient
for cutting off the signal in the pulsar-timing band. On the
other hand, for larger values of the string tension, the
stochastic signal will instead increase when � decreases.

In order to control analytically the values of the string
tension that could be detected in pulsar-timing experi-
ments, it is useful to derive an approximate analytical
approximation for the stochastic signal �conf usion

g �f� �
�3
2=2��ft0�

2h2
conf usion�f�. By looking at the integrand of

Eq. (4.1), one can see that in the low-frequency part of the
spectrum which is relevant for the millisecond pulsar ob-
servations (gently rising lines in Figs. 5 and 6), this back-
ground is produced by the loops radiating at redshift z� 1,
i.e., within the present Hubble radius, t� t0. The value of
the integral Eq. (4.1) can then be approximately estimated3

by replacing the integral
R
dz=z by the value of the inte-

grand at z� 1. This leads to

h2
conf usion�f� �

102

�
cp�1��1=3G���G���1=3�ft0�

�7=3;

(4.8)

and therefore, using Eq. (4.7), to

�g�f� � 30G�cp�1��1=3��G�ft0�
�1=3; (4.9)

where the numerical factor 30 comes from the combination
3
2 102=�2��. Note that, as was exhibited in Figs. 5 and 6, a
decrease in either p or � from their standard model values
(p � � � 1) increases the intensity of the background. Let
us recall that these results are valid only on the gently rising
slope on the left of Figs. 5 and 6 , and, in particular, that
they cannot be applied in the domain �ft0 < 1, corre-
sponding to the left cutoff apparent in the figures.
As said above, at frequencies relevant for millisecond
-10
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pulsar measurements, f� 0:1 yr�1, this cutoff sets in
when �< 10�9.

For completeness, let us also sketch a direct derivation
of the result (4.9) based on keeping track of the total energy
emitted by the network of strings. A loop of length l
radiates at a discrete set of frequencies, fm � 2m=l, but
for large enough m it is well approximated by the continu-
ous spectrum

dPg=df� �G�2l�fl��4=3: (4.10)

The slow falloff with frequency / f�4=3 holds when a cusp
forms during a loop oscillation. For order of magnitude
estimates, this formula can be used even for m� 1, but one
has to remember that the spectrum is cut off at f & 1=l.

Assuming first that � � �G�, the total number of loops
produced in our Hubble volume per Hubble time is N �
1=�p��. Each loop radiates for a time period ��
��=�G��t0, so the GW energy density from all loops
(with cusps) that radiated during the present Hubble time
is (per octave of frequency)

f
d�g

df
� f

dPg

df
�

c

p�t3
0

�
�c

pt2
0

�f�t0�
�1=3: (4.11)

Here, the factor c is added because it measures the fraction
of the loops exhibiting cusps. Expressing this in units of the
critical density �c � 1=�6
Gt2

0� we get for �g�f� �
�f=�c�d�g=df the result

�g�f� � 6
G�cp�1��1=3��G�ft0�
�1=3; (4.12)

which is in good agreement (modulo a factor �0:63) with
the estimate (4.9) above. Let us recall that all our estimates
try to keep the possibly important powers of 2
 but neglect
various factors ‘‘of order 2’’. [We note in this respect that
� � 50 comes essentially from a factor �2
�2, while the
factor 102 in Eq. (4.2) came from a factor / 54
.]

For completeness, let us mention that the case of � �
�G� has been reviewed in [1]; the result is

�g�f� � 6
G�cp�1�f�0t0�
�1=3; (4.13)

where �0 � �G� as above.
Consistently with what we said above, the result (4.13),

corresponding to � > 1, can be obtained from the result
(4.9), corresponding to � < 1, by replacing � ! �ef f � 1 in
the latter result. In order to treat both cases together we can
therefore replace everywhere � by, say, �ef f � �=�1 � ��.
With this notation, our approximate analytical result (4.9)
numerically yields

�g�f�h
2 � 10�2:46c�G��2=3p�1��1=3

ef f �f=fpsr�
�1=3:

(4.14)

Alternatively, any pulsar-timing sensitivity level �g�f�h2

corresponds to a bound on the string tension of order

G�� 103:7��g�f�h2�3=2�f=fpsr�
1=2c�3=2p3=2�1=2

ef f : (4.15)
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Let us recall that c & 1 denotes the number of cusps
occurring per loop oscillation. The parameter c is expected
to be �1 for generic smooth loops [43], but the presence of
many ‘‘kink’’ discontinuities along the loop might decrease
the (effective) value of c below 1. It seems, however,
reasonable to assume that c * 0:1.

From Eq. (4.15), taking into account that in all cases we
have p3=2�1=2

ef f & 1, we get the inequality c3=2G� &

103:7��g�f�h2�3=2�f=fpsr�
1=2. Therefore the firm upper

limit �gh
2 < 6 � 10�8 [14] obtained for a frequency f�

1=�7 yr�, yields the upper limit c3=2G� & 10�7, already
quoted in the introduction. Let us also consider the poten-
tial detectability ranges of pulsar-timing arrays. The sensi-
tivity level of the current realization of the pulsar-timing
array, �gh2 � 2 � 10�9 for f� 1=�15:6 yr� (see above)

corresponds to G�� 3:6 � 10�10c�3=2p3=2�1=2
ef f . This is an

impressive number which shows the vast discovery poten-
tial of pulsar-timing experiments, and, in particular, the
possibility for PTA experiments to detect the type of string
tensions expected from recent superstring cosmology mod-
els [24,26]. One must, however, keep in mind the caveat
exhibited in Fig. 6 about the adverse cutoff effect of having
� < 1 to which pulsar experiments are especially sensitive.
Figure 6 shows that more sensitive PTA experiments, such
as the ultimate square kilometer array PTA, able to probe
�gh

2 � 10�12:6, will become limited to the level G��

2 � 10�11��1, by the ability of pulsar-timing to probe the
frequencies emitted by string loops.
V. CONCLUSIONS

It has been argued [20–22,26,24] that F- and D-string
networks can naturally be formed at the end of brane
inflation [23], with string tensions in the range 10�11 &

G� & 10�6. We focused on models where only one type
of string (F or D) is formed and considered the gravita-
tional wave signatures of cosmological networks of such
strings. We studied how the finding [16,17] that GW bursts
emitted from cusps of oscillating loops should be detect-
able by LIGO and LISA interferometers for values of G�
as small as 10�13 might be modified by two separate
effects. First, the reconnection probability p for intersect-
ingF orD strings might be, contrary to the case of ordinary
field-theory strings, significantly smaller than 1 [22,21,25].
Second, Refs. [16,17] had assumed that the characteristic
size of newly formed loops was l�t� � �t, with �� 50G�,
as expected from standard GW radiation-reaction argu-
ments [11]. However, recent analyses [31,32] have sug-
gested that gravitational radiation is less efficient than
originally thought and might result in a much smaller
typical size for newly formed loops: l�t� � �t, where ��
�50G�, with � � 1.

A detailed analysis of the effects of the two parameters p
and � on the detectability of GW bursts by LIGO or LISA
has shown that the results of [16,17] are quite robust, at
-11
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least when � * 10�11 in the case of LIGO, or � * 10�7 in
the case of LISA. See Figs. 1–4. In particular, it is notable
that a smaller reconnection probability can only increase
the detectability of cosmic superstrings. However, very
small values of � might lead to cutting off the burst signals
in GW detectors when the string tension is G�� 10�10

or less.
We have also considered the detectability, via pulsar-

timing observations, of the stochastic GW background
produced by oscillating string loops. When the loop-length
parameter � is large enough, namely, � � 50�G� >
10�9, for the GW frequencies emitted by string loops at
redshift z� 1 to fall within the pulsar sensitivity band f�
1=�10 yr�, we find that the intensity of the GW background
increases / p�1��1=3, when either p or � gets smaller than
1. In addition, we find that present pulsar-timing experi-
ments have the potential of detecting string tensions as
small as G�� 3:6 � 10�10c�3=2p3=2�1=2, where c denotes
the number of cusps per string oscillation. We urge pulsar
observers to reanalyze a recently obtained 17-yr combined
data set to see whether the large scatter exhibited by a
fraction of the data might be due to a transient GW burst
activity of some sort. We note that future versions of the
‘‘pulsar-timing array’’ [33,40–42] might further improve
the sensitivity of pulsar observations. The ultimate sensi-
tivity of pulsar-timing experiments might then become
limited (by the ability of pulsar-timing to probe the fre-
063510
quencies emitted by string loops) to the level G�� 2 �
10�11��1. In other words, if the suggestion of [31,32] is
confirmed, and the reduced loop-length parameter � �
�=�50G�� turns out to take very small values � � 1
(possibly of the form �� �50G��m, with m> 0), and if
G� itself takes small values, G�� 10�10 [26,24], the GW
frequency band probed by pulsar-timing experiments
might fall in the domain � � 50�G�< 10�9 where the
GW spectrum from loops is cut off. In such a case, only
higher-frequency GW experiments, such as LISA or, even
better, LIGO, might be able to detect GW from string
loops.

Our conclusions show that it is urgent to develop a new
generation of string network simulations able to determine
how the crucial loop-length parameter � depends on G�
and p. It would also be quite important to determine the
average number c of cusp events per loop oscillation. It is
only when � and c are known that it will be possible to
discuss with any reliability the detectability of cosmic
superstrings by GW experiments.
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