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Perturbations in bouncing cosmologies: Dynamical attractor versus scale invariance
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For bouncing cosmologies such as the ekpyrotic/cyclic scenarios we show that it is possible to make
predictions for density perturbations which are independent of the details of the bouncing phase. This can
be achieved, as in inflationary cosmology, thanks to the existence of a dynamical attractor, which makes
local observables equal to the unperturbed solution up to exponentially small terms. Assuming that the
physics of the bounce is not extremely sensitive to these corrections, perturbations can be evolved even at
the nonlinear level. The resulting spectrum is not scale invariant and thus incompatible with experimental
data. This can be explicitly shown in synchronous gauge where, contrary to what happens in the
commonly used Newtonian gauge, all perturbations remain small going towards the bounce and the

existence of the attractor is manifest.
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L. INTRODUCTION

From cosmological observations, we know that the cur-
rent Universe is to a good approximation flat, homogene-
ous and isotropic on large scales. It is well known that in
the standard big bang cosmology this requires an enormous
amount of fine-tuning on the initial state emerging from the
Planck era. This problem is usually solved postulating a
period of inflation which acts like a dynamical attractor for
the cosmological evolution. From a generic initial condi-
tion sufficiently close to a flat, homogeneous and isotropic
state the Universe evolves towards this symmetric configu-
ration. Another logical possibility that has been explored is
that a dynamical attractor is present in a contracting phase
which precedes the present expansion. After this phase, the
Universe would reach a state of high curvature and then
bounce and start expanding. Although string-inspired, the
ekpyrotic/cyclic scenarios [1,2] are fully described in the
contracting phase well before the bounce by a 4D effective
field theory. The only light degree of freedom (besides the
graviton) is a scalar field which moves along a steep
negative potential and drives the cosmic contraction.'
Even in the presence of perturbations, if the potential is
steep enough, inhomogeneities and anisotropies become
less and less relevant going towards the bounce and the
cosmic evolution gets closer and closer to the unperturbed
one.

The crucial question is whether this class of models can
give rise to an approximately scale-invariant spectrum of
adiabatic density perturbations as clearly required by ex-
periments. The answer to this question is not straightfor-
ward because there is no explicit model of a bouncing

In the pre-big bang scenario [3] the (Einstein frame) con-
traction is driven by the kinetic energy of the dilaton, which has
no potential. As we will discuss, this can be seen as a limiting
case of the ekpyrotic/cyclic models and the conclusions we will
draw are different.
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phase; it is just assumed that at sufficiently high energy
UV corrections will stop the contraction and lead to an
expanding phase. It is therefore important to understand if
one can make predictions which are robust, i.e., indepen-
dent of the details of the unknown bouncing phase. In
inflationary cosmology, we face a closely related issue
because perturbations, that are created during inflation,
are observed much later and there are cosmological phases
in between, like reheating, whose details are completely
unknown. It is well understood that in models with a single
fluctuating field all predictions are independent of the de-
tails of the unknown cosmological phases. There are two
reasons why this is true. First of all, we are interested in
modes which are well outside the horizon during the un-
known regimes of the cosmological evolution. This would
not be enough however. The situation is further simplified
by the absence of isocurvature perturbations: Every ob-
server will eventually go through the same cosmological
history. Following the dynamical attractor, after a mode
goes outside the horizon, the Universe locally approaches
the unperturbed solution up to exponentially small terms.
This “parallel Universes” approach [4] allows to follow
perturbations through the unknown cosmological regimes
at any order in perturbation theory. On the contrary, if we
add another field into the game, separate regions of the
Universe will be characterized by different values of this
new field and will thus undergo a different evolution, so
that the final state depends on the details of the whole
cosmological history. The fate of the isocurvature compo-
nent can be very different: It can be washed away by
thermal equilibrium or, on the contrary, become the leading
source of adiabatic perturbations as in the curvaton and
variable decay width scenarios.

The purpose of this paper is to understand whether the
same kind of arguments used for single field inflation can
be applied to evolve density perturbations through the
unknown bouncing phase of the ekpyrotic/cyclic scenario.
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In Newtonian gauge the most generic scalar perturbation
is (at linear order) a superposition of the two independent
solutions for the Newtonian potential ®. It has been
pointed out in the context of the ekpyrotic/cyclic scenario
[5] that, in the limit of a very steep potential, one of these
two solutions has an approximately scale-invariant spec-
trum in the contracting phase. Unfortunately the most
naive evolution from the contracting to the expanding
phase suggests that this scale-invariant mode is orthogonal
to the “growing mode” in the expanding phase, the one
relevant for observations. However, it has been claimed
that a generic mixing of the two solutions at the bounce
would induce an observationally viable spectrum. In this
paper (Sec. III) we show that this generality cannot be
defended in any way. For example, if we change gauge
and describe the most generic perturbation in terms of the
variable ¢ (proportional to the curvature of comoving
surfaces), none of the two independent modes is scale
invariant. This tells us that for a contracting cosmology
the concept of scale invariance of a particular variable has
no physical meaning before one specifies how this variable
is related to what we will eventually observe.

As we discussed, in the presence of a dynamical attrac-
tor in the contracting phase, close to the bounce the cos-
mological solution is locally (i.e., on regions smaller than
the Hubble radius) homogeneous, isotropic and flat, and
the scalar follows its unperturbed evolution, up to expo-
nentially small terms. This leads us to make a simple
assumption (Sec. IV), which is implicitly made also in
the case of an inflationary Universe when evolving pertur-
bations through unknown phases. If the physics of the
bounce is not tremendously sensitive to these exponentially
small corrections, every observer will go through the
bounce in the same way, following the unperturbed evolu-
tion. This allows to predict, not only at linear level but at
any order in the perturbation, the statistical properties of
the fluctuations in the expanding phase. Unfortunately, the
conclusion is that the spectrum of density fluctuations is not
scale invariant and thus it is ruled out by experiments. This
can be explicitly shown in synchronous gauge where, con-
trary to what happens in the commonly used Newtonian
gauge, all perturbations remain small going towards the
bounce and the existence of the attractor is manifest. If our
assumptions are not satisfied, which is a logical possibility,
then all predictions, like the scale invariance of the 2-point
function or the level of non-Gaussianity of the perturba-
tions, strongly depend on the details of the bounce and no
robust prediction can be made.

We stress that we are not giving any prescription to
match perturbations across the bounce (for example, we
are not claiming that { must be continuous [6—9], although
the final result for density perturbations in the expanding
phase is the same). Given a generic initial condition before
the bounce there is no way to evolve it through the un-
known phase without specifying all the details. The point
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here is that we do not have a generic initial condition but a
very special one, because of the presence of the dynamical
attractor. Locally the solution is exponentially close to the
unperturbed solution and this is a powerful simplification.
Again the situation is similar to inflationary cosmology;
nobody knows how to evolve a generic initial state through
reheating because we do not know what reheating looks
like, but there is no need for this as inflation leads to a very
specific state, locally (but not on large scales) indistin-
guishable from the unperturbed solution.

II. INTUITIVE ARGUMENT AND
ITS LIMITATIONS

In this section we want to approach the problem by a
(critical) review of the basic heuristic argument for a scale-
invariant spectrum of density perturbations in a bouncing
cosmology [5,10,11]. This will show that there are quali-
tative differences with respect to an inflationary scenario
that must be taken into account. For the time being we
neglect how perturbations will evolve through the bounce.
The argument is an estimate of the fluctuations of the scalar
field ¢, which is driving the contraction of the Universe
towards the bounce. As the field is pulled by a steep
negative potential, it seems natural to assume that gravity
is negligible in the dynamics of the fluctuations of ¢.
Extending the discussion of Refs. [6,7], we will argue
that this is not the case.

To simplify the algebra it is useful to approximate the
potential over some range of ¢ with the exponential form

[5]
V() = —Voe NUP@MD  p, = 87G) V2 (1)

In the ekpyrotic/cyclic scenario the potential is very steep,
i.e., p < 1. The Friedmann equations and the equation of
motion for a homogeneous ¢ configuration,

é+3Hd +V'(h) =0, (2)

are exactly solved by the background
a(t) = (t/1)”,

t
$o(1) = Mpy/2p IOgt_’

0

H( =L,

3

where 1y = —/p(1 —3p) - Mp//Vy. The scalar ¢ is

moving from +oo to —oo and ¢ is negative and running
towards O which corresponds to the unknown bouncing
phase. This solution has a constant, large pressure-to-
energy density ratio, w = (2/3p) — 1 > 1.

It can be shown that for p < 1/3 this solution is a
dynamical attractor, in the sense that the system rapidly
approaches it starting from a generic homogeneous and
isotropic initial condition [12]. Roughly speaking, in the
presence of a very steep potential the kinetic energy of the
scalar becomes bigger and bigger in the evolution, so that
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the asymptotic state does not depend on the initial kinetic
energy. In the following, we will explicitly see that the
same conclusion remains true in the presence of (suffi-
ciently small) departures from isotropy and homogeneity.
As discussed, this property will turn out to be crucial for
our argument.

Since in the limit p << 1 the scale factor changes very
slowly with time, one could be tempted to say that the
gravitational backreaction is small and to study perturba-
tions in the scalar ¢ on the fixed gravity background. The
equation of motion on a fixed Friedmann-Robertson-
Walker (FRW) metric would be

. e
b + 3HOG; + (? + V”((;b))é‘(ﬁ,; =0 @

where & is the comoving wave vector. For the background
above we get

k> 2(1 —3p)

— = t—2>5¢/2 =0. (5

" 3 .

s +Log; + (a2
It is evident that the contraction of the Universe gives a
subleading contribution for p <« 1. Moreover, for small ¢
the gradient term can be neglected so that the mode freezes.
The equation reduces to 8¢ P %8 ¢ = 0, which gives
the two behaviors 8¢p; ~ ™! and 2. Therefore the leading
solution for small #, properly normalized to match the usual
Minkowski limit for large negative z, is

~ 1 ul
Jk kt

This implies a scale-invariant spectrum in position space as
(Bp(xP) ~ [ dlogkk®|¢I*.

It is however easy to realize that the argument above is
not physically motivated, even at the heuristic level. In fact,
there is no limit in which the fluctuations of ¢ can be
decoupled from the metric perturbations since ¢ is what
drives the evolution of the Universe and its potential is
steep. Taking the naive decoupling limit Mp — o0, one
obviously ends up with a trivial background. The only
correct decoupling limit would be to have a flat potential
for ¢; in this case Eq. (4) is correct because fluctuations of
¢ do not gravitate except for gradient terms. This is the
reason why in slow-roll inflation the intuitive argument
above gives a correct estimate of the density perturbations
up to slow-roll corrections.

In our case, there is no sense in which the dynamics of
perturbations is dominated by the potential term: Gravity is
a crucial ingredient and must be taken into account. Let us
clarify this statement in a gauge which is quite close to the
intuition of keeping 6 ¢ as the dynamical variable charac-
terizing scalar perturbations,

Sp(X, 1) = d(X, 1) — (1), gij =a*(é;. (D

Unless otherwise specified we concentrate on scalar

od; (6)
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modes, setting tensor modes to zero. In this gauge gravi-
tational effects are suppressed in inflation by slow-roll
parameters, so that it explicitly realizes the decoupling
limit discussed above.

The other components of the metric, go, and go;, are
Lagrange multipliers and as such are determined as a
function of 6¢ through the constraint Einstein equations.
Substituting them into the action for gravity and the scalar
field and specializing to our background solution, we get a
Lagrangian for d¢ of the form [13] (see Appendix A for
the derivation of this result)

S = —% f Bxdt J=g(0,8). (8)

This is the Lagrangian for a scalar in the given background
but without any potential term, so that from this point of
view it is difficult to argue that the potential is driving the
dynamics of the perturbations. Of course the equation of
motion deriving from this Lagrangian is exactly Eq. (2)
without the mass term. The effect of metric perturbations is
so important that it exactly cancels out the potential. Note
that the very simple Lagrangian above is exact only in a
scaling solution a(f) o« ¢7, like the collapsing background
described above (p < 1) or inflation with an exponential
potential (p >> 1). In both cases the action will receive
small corrections proportional to the variation of the equa-
tion of state in one Hubble time, i.e., subleading, respec-
tively, in the fast-roll or slow-roll expansion.

From the action above, the properly normalized solu-
tions for small 7 are now 8¢ ~ 1//k and S~ JVkt.
None of these implies a scale-invariant spectrum.

To get further insight into the problem, in the next
section we will perform a detailed analysis of scalar per-
turbations in two different gauges.

III. STANDARD GAUGES AND THE APPARENT
RAPID GROWTH OF PERTURBATIONS

The study of scalar perturbations can be performed in
different gauges. In each one, after satisfying the constraint
equations, the perturbation is parametrized by a single
scalar function, which satisfies, at linear order, a second
order linear differential equation. The most generic scalar
fluctuation will therefore be described by a linear combi-
nation of the two independent solutions of this equation.
Usually one of the solutions dominates over the other at
late times (“‘growing” and ‘“‘decaying’” mode). However,
in some cases the same physical perturbation is described
in one gauge as growing mode and in another as decaying
(we will see an example of this in the following).
Neglecting the decaying mode is therefore quite mislead-
ing, especially in a contracting background like the one at
hand, and thus will be avoided.

To make contact with the literature, in this section we are
going to perform the calculation in two commonly used
gauges. Doing so we will stress some subtle point which
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has been usually overlooked. However, it will turn out that
in both gauges perturbation theory breaks down for t — 0
in the background under study. In the next section we will
therefore move to synchronous gauge in which the pertur-
bativity of the calculation remains manifest.

The analysis of perturbations in inflation is greatly sim-
plified by using the variable ¢ introduced in Ref. [14],
because it is conserved outside the horizon under simple
assumptions on the stress energy tensor. We therefore start
our analysis in the {-gauge defined by

(X, 1) = (1), gij = [1+ 2L t)]az(t)6ij' 9

In this gauge the scalar field is unperturbed so that the
relation with the gauge introduced in the previous section
is simply a time reparametrization

0 H

bo bo
In our scaling background solution d¢ and ¢ are simply
related by a constant factor

__ [t
{=~\73,0¢ (11)

so that the Lagrangian for  is again very simple:
M2
§=—-—L f d*xdt=g(d,0)>. (12)
p
The other components of the metric are fixed as functions

of { through the constraint equations. At linear order they
are (see Appendix A for details)

IRy SNy
8oo = —1 2H 1 p( (13)
_ (L
80i = ai(ﬁ 2H2M1%¥§>
2
= -0 L/ ¢) (14)
P p 9

where, as usual, 1/ 92 is defined in Fourier transform. Note
that { is related to the Ricci scalar of the spatial metric
induced on comoving surfaces (i.e., spatial hypersurfaces
of constant ¢) simply by

k2
OR=4-—¢, 15
il (15)

as in this gauge comoving surfaces are surfaces of constant
t.
The equation of motion for { deriving from its action
above is
. 3p. k?
ct+—{t—-=0, 16
it 4 (t/to)zpé”k (16)

which can be integrated in terms of J and Y Bessel func-
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tions with argument k7, where 7 is the conformal time
defined as usual by dt = a(t)dr. The full solution is

1
gi(r) = oV —kt[AJ(1=3p))0-2p)(—kT)

+ BpY(1-3p)/0-2p)(—kT)], (17)

where A; and B; are integration constants, to be deter-
mined below. It has been claimed that the variable  is not
suitable for discussing density perturbations in a contract-
ing phase, because it shows no “classical instability”” and
therefore is not “‘amplified” [5,6]. The meaning of this is
unclear since the two modes for ' above parametrize the
most generic scalar perturbation of the system.

Following the standard procedure [15], we then quantize
the system by writing the quantum field operator as
2,;(7') = {i(n)a; + {E(T)&ilz, where (i(7) is the above
classical solution, and the creation-annihilation operators
obey the standard commutation rule [a dl‘;,] =

(2m)383(k — k'). Since for large negative 7 the Universe
reduces to Minkowski space-time, we impose that the
classical solution (;(7) asymptotes to the standard

Minkowski wave function o \/Lz—ke_”” of a massless scalar

field. Also, we assume that the initial state is the usual
Minkowski vacuum. The proper normalization can be read
from the action Eq. (12) written in conformal time,

NN
\/_Z—MP a \/ﬂ

This fixes the linear combination of the two independent
solutions to be

11 7

Gi(r) —

for 7— —oo. (18)

{i(r) = @ Jok 2M PN =kt (123 p)j2-2p) (—kT)
+ iY(1-3p)/0-2p) (—kT)]. (19)

At small ¢t we recover the two behaviors that solve Eq. (16)
neglecting gradient terms
1
-~ M—(ik’(‘/Z”Ptg + K1/ =p g =320y, (20)
P

where we expanded the exponents up to linear order in p.
The first term comes from the Y function while the second
comes, for generic p, both from Y and J. Even though ¢
remains finite for r— 0, the off-diagonal term g, in
Eq. (14) diverges like ™7, so that linear theory cannot be

justified in this gauge for small 7.
The late time spectrum of { is

(o) = Qm)& Kk + KNG @1

with

1
|§E(t)|2 ~ M2 (k_1+2pl(2)p + k1_21712_6plgp), (22)
P
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which does not contain any scale-invariant component.
This remains true even if one includes all further terms in
the k7 expansion of the complete solution Eq. (19) as they
only add positive powers of k. This result can be written in
a more transparent form as a function of the physical wave
vector ky, = k/a,

]12

<§(-x)2> -~ fdlogkphpw[(kph/H)2+2p + (kph/H)4,2p]‘
P

(23)

We stress again that the complete solution for ¢ de-
scribes the most generic scalar fluctuation of the system.
But, as discussed in Sec. I, a scale-invariant spectrum is
obtained for the Newtonian potential ® so that the situation
is at first puzzling.

Before analyzing the relation between the results ob-
tained for { and ®, it is important to appreciate that the
second term in Eq. (20) cannot be simply disregarded as
decaying. Although it drops off in time like #!73”, thus
giving a negligible contribution to the intrinsic curvature of
comoving surfaces [see Eq. (15)], it dominates the pertur-
bation in the extrinsic curvature of comoving surfaces. In
fact, at linear order the extrinsic curvature is

K= (&rj — 0x80j — 9j8x0)

j 28 8kj k80j ji8ko

1 aiaj . t Giaj

— - — . 24
Py P 4 (24)

— (H + D5} -

The leading contribution comes from the term {; ~ ¢!~
in Eq. (20), which gives a perturbation in K ; diverging as
t737 towards the bounce. Note that this is however a small
perturbation with respect to the unperturbed extrinsic cur-
vature which diverges faster, as H ~ ¢t~ !. We see that the
two terms in Eq. (20) are both physically relevant as they
dominate, respectively, the intrinsic and extrinsic curva-
ture. Further terms in the small ¢ expansion of Eq. (19) are
instead subleading in their contribution to physical
curvatures.

Let us now see how these perturbations are reinterpreted
in the commonly employed Newtonian gauge. This gauge
is defined by

ds’> = —(1 + 2®)dr* + (1 — 2W)a*(t)dx>. (25)

The most generic scalar perturbation can be described by
the Newtonian potential ®. All other variables are related
to @ through the constraint Einstein equations. In particu-
lar, ¥ = @ at linear order in the absence of anisotropic
stress, as in our case. The equation of motion for ® in our
background is (see, for example, Ref. [5])

2+ p . k*

R Ry L U
t (t/10)*"
Following the usual procedure as done for { we get the

properly normalized solution

d 0. (26)
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11 Jya p 1
N . J, _opy(—kT
a\2k2Mp 1—1p \/——kr[ (1+p)/2 2p)( )
+ Y14 p)/2-2p) (k7)) @7

with late time behavior

Di(7)

1
Dy~ — (k732 mr k2l (28)
Mp

We see that the first term, which diverges approaching the
bounce (thus casting doubt on the linear approximation),
has an approximately scale-invariant dependence on k as
first pointed out in Ref. [5]. But how is it possible that here
we have an almost scale-invariant spectrum, while there is
no sign of scale invariance in {? After all, we said that the
most generic perturbation can be described using either
or ®. It is straightforward to verify that the scale-invariant
term in the expression for ® dominates the extrinsic cur-
vature of comoving surfaces. In fact, from the relation
between ¢ and @ in this gauge [5]
2
S¢ = 2(%@ + HOD), (29)
0

we obtain the contribution of the first term in Eq. (28) to the
extrinsic curvature of the 6¢ = 0 surfaces

. kik;
Kj~H ! =5 &y 130k, (30)

which is the same ¢ and k dependence we obtained in the
previous gauge, Eq. (24).> Notice that the different depen-
dence on k of the two variables { and ® corresponds to the
fact that their relation with physical quantities like curva-
tures can involve a different number of derivatives. This
tells us that the scale invariance of a scalar fluctuation has
no well-defined meaning before specifying which variable
is relevant for observation. The scale-invariant term in
Eq. (28) gives a vanishing contribution to the intrinsic
curvature equation (15). This is clear from the explicit
relation between ¢ and ®

2 ldy®
=S a i) D

that is why there is no sign of scale invariance in {. The fact

*Note that even though this seems to validate the naive argu-
ment discussed in the previous section, the time dependence of
the second solution, ® = const, is not a solution of Eq. (5). The
same happens for 6¢ in Newtonian gauge which has the same
time dependence as @ [see Eq. (29)].

3To be precise, only the anisotropic piece of the extrinsic
curvature in Eq. (24) is recovered in this way. To get the isotropic
component proportional to £, we have to keep further terms ( ~
t173P) in the small ¢ expansion of ® in addition to those of
Eq. (28). This again tells us that it is not obvious to get the
physical importance of a term by simply looking at its contri-
bution to ®; a term diverging as r~ '~ and one decaying as ¢! 737
give comparable extrinsic curvatures.
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that £ vanishes for the first term in Eq. (28) could suggest
that we are losing it in going to the variable £, but as we
saw its geometric effect in perturbing the extrinsic curva-
ture is completely captured by . This is also a nice
example of how misleading the description of a solution
as decaying or growing can be; the behavior ® ~ =177
would be considered as growing in Newtonian gauge, but
we saw that the same physical fluctuation is decaying in {
gauge, { ~ 737,

IV. SYNCHRONOUS GAUGE: MAKING THE
DYNAMICAL ATTRACTOR MANIFEST

We are now going to discuss the relation between the
scalar perturbations produced in the contracting phase and
what is observed today. The behavior at late times of scalar
fluctuations in an expanding phase can be obtained from
our Egs. (20) and (28) (with generic coefficients), remem-
bering that now ¢ is positive and going towards +oc0. Note
that now the time-independent piece in both ® and ¢
dominates each variable, with the time-dependent piece
going to zero (now p = 2/3 in matter dominance and p =
1/2 in radiation dominance).

In the present expanding phase, all the ambiguity de-
scribed above about the different intuition in the two
gauges and the distinction between growing and decaying
modes is absent. This is because once the fluctuation
reenters the horizon all physical quantities depend (apart
from exponentially small corrections) only on the ¢ ~
® ~ const mode; the concept of growing and decaying
modes has thus a clear physical meaning. To have a viable
model, the constant mode must have an approximately
scale-invariant spectrum. Even though the time-
independent term of ® in Eq. (28) does not have a scale-
invariant spectrum in the contracting phase, it has been
argued that the bounce can induce a generic ‘“mixing”
between the two solutions, so that the scale-invariant spec-
trum of the ® ~ ¢~!~7 piece before the bounce is inherited
also by the @ = const solution in the expanding phase. It is
however clear from the discussion above that it is difficult
to defend this point of view, as in the {-gauge there is no
term with a scale-invariant spectrum. It is therefore crucial
to identify the relevant variable in which this mixing, if
any, happens.

The first issue one should address in studying the evo-
lution of the perturbations towards the bounce is the valid-
ity of perturbation theory. In Newtonian gauge both ® and
8¢ blow up as ¢t~ !'77; in the /-gauge, even though ¢
remains finite all the way to the bounce, the g,; compo-
nents of the metric Eq. (14) diverge as ¢ ”. These facts
indicate that a fully nonlinear description might be re-
quired to approach the bounce in these gauges. Note,
however, that as r — 0 the physical curvatures induced
by the perturbations are smaller and smaller with respect
to H, which sets the scale of the unperturbed curvatures.
Similarly to the inflationary scenario, the Universe be-
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comes closer and closer to the unperturbed solution, as
implied by the existence of an attractor. Thus, it is obvi-
ously useful to look for a gauge in which the smallness of
perturbations remains manifest approaching the bounce.

This is achieved in synchronous gauge defined by go =
—1, go; = 0. Performing a gauge transformation from the
{-gauge and specializing to our scaling background, we get
for the metric and the scalar field*

ds? = —di* + az(t)|:(1 +2¢ —2H f dz’%)a,-j
0

9.0 ; o
_2 #5 + O - k2t2‘2"):|dx’dxf (32)

5 =

_V2pMp fdt’é. 33)

t 0 H

These expressions are explicitly derived in Appendix B. In
the anisotropic piece of the metric only the time-dependent
part of £ is relevant as a constant term can be set to zero by
a spatial gauge transformation. The terms in brackets are
either constant or decaying in time, making manifest that
perturbations stay small and we are approaching the un-
perturbed solution; perturbations are becoming locally un-
observable. After a mode goes outside the horizon a local
observer will still feel a residual curvature, with a conse-
quent deviation from the unperturbed FRW solution. A
curvature term blueshifts as @ =2 ~ 727, so that it becomes
rapidly irrelevant with respect to H> ~ ¢~ 2; this effect is
described by terms going as >~2” in the solution above. In
the metric above there are also terms decaying as ' 37,
i.e., slower than curvature terms. They describe the effect
of anisotropies, which blueshift as a~°. Their time depen-
dence is compatible with the fact that they become irrele-
vant as long as the unperturbed solution has w > 1 (so that
its energy density blueshifts faster than a %) as we are
assuming. The physical significance of the terms that we
have sketched will be much more transparent when we will
describe the full nonlinear solution close to the bounce in
the next section. Finally, also 6 ¢ goes to zero in this gauge,
as t'737; again this agrees with the existence of an attractor
for p <1/3. This shows that the divergence of the
Newtonian potential is just a gauge artifact; the deviations
from the unperturbed solution are getting small.

We now have a good description of the perturbed metric
before the bounce, in which linear theory does not break
down. We can finally address the issue of how perturba-
tions evolve through the bounce to the expanding phase.
We are not going to specify anything about the transition

“The synchronous gauge does not fix completely the repara-
metrization invariance and one should get rid of the remaining
gauge modes when writing the equations of motion in this gauge.
However, the solutions for ¢ are here derived in a different
gauge.
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between the contracting and expanding regimes; our pur-
pose is to understand at what level the final predictions are
independent of the details of the bounce. The crucial
simplification comes from the fact that we are interested
only in modes with huge wavelength compared to the
Hubble radius before we enter in the unknown bouncing
phase. From the expression above, the contribution to any
local observable O of a given mode with physical wave
vector ky, is suppressed with respect to the time-
independent part of ¢ (which we call £°°™') by

k _
% ~ ZC"““(%")I 7 (34)

If we assume that the steep potential phase lasts at least 60
e-folds, we obtain that the modes of interest have an
incredibly small effect for an observer entering the bounc-
ing phase. The ratio (k,,/H)'?7 is of order e~ and it
describes the fact that the local effect of a mode is very
small in the presence of the dynamical attractor. Moreover,
the initial departures from the unperturbed solution when
the mode leaves the horizon are of order \/p * Herossing/ Mp
[see Eq. (23)]. This gives the size of £°°™! in the equation
above. For the modes of interest this gives a further ex-
ponential suppression e~ %,

In the concrete proposed models, the scaling solution we
are describing ceases to be a good approximation even
before we enter the bouncing phase, because the potential
is modified at large negative ¢. The scaling solution is
however valid when all cosmologically relevant modes exit
the horizon; this ensures that their physical local effect gets
exponentially small.

These considerations lead us to a simple assumption,
which makes the predictions of this class of models inde-
pendent of the details of the bounce. We assume that the
unknown phase is not sensitive to these very tiny effects;
every comoving observer goes through exactly the same
history (whatever it is) apart from exponentially small
deviations. With this assumption we can neglect all terms
going to zero in the metric above

ds? = —di* + a*()[1 + 2°()]dx2,  (35)

where £°™'(X) is the time-independent term of J(X, 7). It is
important to realize that °°™'(X) has an exponentially
small local effect as, neglecting gradients, it can be locally
reabsorbed with a rescaling of the spatial coordinates. Now
the crucial point is that the form of the metric Eq. (35) will
hold also in the expanding phase after the bounce, with the
same time-independent rescaling of the spatial coordinates
°°™Y(X). Assuming that we have a continuous history
through the bounce, any observer is going through the
same unperturbed history (H(z), ¢(¢)) once we have ne-
glected the exponentially small corrections. But at each
point we have in the metric Eq. (35) a different normaliza-
tion of the scale factor [1 4+ £°°™'(¥)]a(z). This implies that
£°°™Y(X) cannot change as it is locally an integration con-
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stant of the unperturbed solution. The reader could be
worried that our conclusions depend on the validity of a
4D metric description of the bounce with a continuous
solution for the scale factor a(7). Actually it is easy to
realize that the result holds independently of the unknown
physics of the bounce, even if it cannot be described in a 4-
dimensional field theory language. Given an unperturbed
solution, every comoving observer will follow it (apart
from exponentially small deviations), so that the measured
redshift factor between a given comoving time ¢ before the
bounce and a given time after must be the same for all
observers; (°°™!(X) therefore cannot be modified in the
unknown phase.

Our assumption therefore implies that the time-
independent term of  is the same before and after the
bounce. The spectrum of density perturbations at horizon
reentering (6p/p). in the present expanding phase is thus
given by the first term in Eq. (22),

((8p/p)2) ~ (L&) o k™1T2r, (36)

The spectrum is not scale invariant and therefore incom-
patible with observations.

We want to stress that our assumption is not trivial. The
Hubble constant must change sign during the bounce; one
can therefore envisage a model in which the bounce is
sufficiently ““slow”” so that H remains small for a while and
all interesting modes come back into the horizon and start
oscillating before freezing again [16]. From all we said it
should be clear that whether or not we obtain a scale-
invariant spectrum does now depend on the unknown
physics at the bounce and it is not a generic prediction.
For example, we saw that { contains no scale-invariant
term, so that it is not possible, without specifying the
model, to state that a generic mixing of modes will give
a viable prediction.

Another possibility to get around our conclusion without
allowing all the modes to come back into the horizon is to
assume that the physics at the bounce is sensitive to the
exponentially small corrections we have neglected. The
local effect of the perturbations, which has been exponen-
tially suppressed during the contraction as a consequence
of the attractor behavior, could be amplified and “‘resur-
rected.” This is physically hard to believe and it would
require a certain amount of fine-tuning to pump up a
tremendously small effect and stop at the desired 1073
level before entering the nonlinear regime. Anyway also
this possibility does not generically give a scale-invariant
spectrum.

To avoid confusion it is important to underline that our
approach does not tell us how to evolve a generic scalar
perturbation to the expanding phase. A generic fluctuation
will be characterized by two constants associated with the
two independent modes. Different comoving observers
will follow different histories; for example, at the same
value of H they will see a different value of the scalar field.
How the bounce occurs will depend on these differences
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and to know the final state we must obviously specify the
details of the bounce. Fortunately the existence of an
attractor solution drives every observer to see the same
history, which is locally indistinguishable from the unper-
turbed one: At the same value of H we have the same value
of ¢ and ¢ apart from exponentially small terms. With this
crucial simplification the evolution of perturbations
through the bounce is fixed by the unperturbed solution.

An approximately scale-invariant 2-point function is not
the only constraint a model of the early Universe must
satisfy. Present data constrain the non-Gaussianity of the
perturbations to be below 1073 [17] and this also needs to
be explained. In the next section we extend our procedure
to the nonlinear case, so that perturbations can be followed
to our present expanding phase also at nonlinear level. If
our assumption of neglecting the exponentially small terms
is disregarded, the predictions for the higher moments of
the perturbations will again depend on the unknown phys-
ics at the bounce.

V. NONLINEARLY THROUGH THE BOUNCE

Given our assumptions, we have shown in the last sec-
tion that a bouncing model is not compatible with data. It
seems therefore useless to proceed with our analysis at the
nonlinear level. We do it for several reasons. First of all, it
clarifies the physical meaning of our argument, making it
clear that it is not based on any linear approximation.
Second, it shows the analogy with the similar problem of
following perturbations at the nonlinear level in inflation,
for example, to calculate the higher moments of the spec-
trum. Finally, it is interesting to understand how predic-
tions can be made even if the cosmological evolution goes
through a high curvature and strong coupling regime at the
bounce, which at first sight seems to jeopardize any per-
turbative approach.

We have already stressed many times that after a mode
leaves the horizon its effect becomes rapidly negligible for
a local observer, analogously to what happens in inflation.
A perturbation induces an intrinsic curvature of comoving
surfaces. This effect blueshifts quite slowly, as a2, so that
it becomes rapidly irrelevant with respect to the unper-
turbed contraction: k2/(a>H?) ~ t>~27. Once the curvature
has become negligible, a local observer will see a homo-
geneous, flat but anisotropic Universe: Perturbations leav-
ing the horizon have left an anisotropic initial condition. In
synchronous gauge, the metric of an anisotropic homoge-
neous, flat space can be put in the form

ds? = —d* + a*(1)Y PVdxidx, N B =0, (37)

where B;(¢) describe the anisotropic expansion. Their evo-
lution is simply given by
Bi=cia”, (38)

and their effect in the Friedmann equation blueshifts as
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a_6,

1

ﬁ(c% +c3+c3). (39

a\2

SMLH? = 3M%<5) —p+
These equations together with the equation of motion for
the scalar field, ¢ + 3Hd + V'(¢) = 0, are all we need to
describe the anisotropic evolution of the Universe. It is
straightforward to check that Eqs. (32) and (33) are a
linearized solution of the equations above. The given non-
linear description of an anisotropic Universe has been used
in Refs. [12,18] to show that a contracting phase with w >
1 has an attractor towards which nearby solutions flow. All
curvatures and anisotropies get diluted away, the fluctua-
tions in the scalar drop to zero and we locally get back to
the unperturbed solution up to exponentially small terms.
In fact, even though it is not easy to get explicit solutions
because the perturbation induces also fluctuations in the
equation of state w, we see that the qualitative features we
got in linear analysis remain valid. For instance, in Eq. (39)
the unperturbed energy density goes as p ~ a~%/?, so that
the anisotropic terms give a relative correction going like
a=%%2/p ~ 2767 which becomes irrelevant for p < 1/3.
We therefore expect that the unperturbed solution is recov-
ered up to corrections that drop off like powers of ! 737, in
close analogy with the linear case.

Following the same argument we used in the previous
section, we can neglect the exponentially small terms.
Although distant regions of the Universe experience the
same unperturbed history, as in the linear case their local
metric is characterized by different, locally unobservable,
integration constants. In general these constants describe
the rescalings of the three spatial coordinates (along axes
that can rotate from point to point) and thus the metric
takes the form

ds? = —dr* + e¥We2vi® g2(f)dx' dx/, vii = 0.

(40)

The anisotropic piece y;; comes from the fact that we have
not restricted the analysis to scalar perturbations, as we
instead did in the previous sections. Given a generic scalar-
tensor initial configuration, going towards the bounce the
system is driven to the form as Eq. (40) up to exponentially
small terms. The prescription to follow the long-
wavelength perturbations to the expanding phase is now
clear: As in the linear case, the metric will have the same
form as Eq. (40) after the bounce with the same space-
dependent constants. They cannot change between the
contracting and expanding phase because their variation
would imply observable deviations from the unperturbed
solution, while we know that every comoving observer is
following the unperturbed history up to exponentially
small terms.

In the long-wavelength approximation, i.e., for modes
well outside the horizon, the variables { and 7y are non-
linearly conserved independently of the phases the
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Universe goes through. This property is crucial to follow
the perturbations created during inflation and to make the
nonlinear observables, for instance the 3-point function of
density perturbations, independent of the unknown physics
of reheating [4,13]. The same property holds also in our
case, always assuming that the unknown bouncing phase is
not sensitive to the exponentially small deviations from the
unperturbed solution. Notice that the same assumption is
implicitly made in the case of reheating.

VI. CONCLUSIONS

The standard cosmological model has been extremely
successful at explaining the evolution of the structures we
observe in the Universe, from the early epochs we measure
using the anisotropies in the cosmic microwave back-
ground to the large scale structures in the distribution of
galaxies we see locally. However, this model requires a
mechanism to create initial perturbations that correlate
points with separations larger than the horizon. Such initial
seeds will then grow under the action of gravity to form the
structures we observe.

The natural assumption is to postulate that the initial
seeds were created during an early phase in the history of
the Universe and somehow “‘stretched” outside the hori-
zon. The “stretching” of perturbations can be accom-
plished in two different ways. One can have a period of
accelerated expansion in which the length scale of pertur-
bations grows rapidly, becoming larger than the horizon
which evolves only slowly. This is done in inflationary
models. The other possibility is to have the Universe con-
tract slowly so that the horizon shrinks faster than does the
scale of perturbations.

One fact is certain, whatever the scenario, accelerated
expansion or slow contraction, this period has to end and
give rise to the standard hot big bang phase. In inflationary
scenarios the transition epoch is called reheating and could
involve rather complicated physics. The beauty of inflation
lays on the fact that the predictions of the model are
independent of the details of reheating. The insensitivity
to reheating stems from the fact that the wavelengths of
interest to astronomy were extremely large compared to
the horizon at the time and to the presence of a dynamical
attractor. If the details of reheating were crucial to deter-
mining the predictions of inflation the scenario would not
be that appealing.

If perturbations were created during a contracting phase,
with the Universe evolving towards a big crunch, the
connection between the contracting phase and subsequent
hot big bang phase may seem more problematic. The
Universe has to go through a bounce with curvatures
diverging as it approaches. This has been considered prob-
lematic by many detractors of such scenarios; in our mind,
however, such criticisms are a bit unfair. Just as for infla-
tionary models the important point is that their predictions
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are insensitive to the details of reheating, the real question
for bouncing models is not how the bounce happened but
whether or not one can show that their predictions are
independent of the yet unknown UV physics responsible
for the bounce. If one could argue that predictions are
independent of the details of the bounce itself then bounc-
ing models would be in almost as good a shape as inflation.

In this paper we have studied whether the predictions for
density perturbations in the ekpyrotic/cyclic scenario are
robust, i.e., independent of the details of the unknown
bouncing phase. The presence of a dynamical attractor in
the contracting phase leads to a simple and natural assump-
tion, namely, that the physics of the bounce is independent
of the exponentially small deviations from the unperturbed
solution present as the bounce approaches. Even though
seldom stated, this is the exact same assumption one makes
in inflationary models about reheating. This assumption
allowed us to calculate all the statistical properties of the
fluctuations in the expanding phase. Unfortunately, the
spectrum is not scale invariant and thus incompatible
with the data.

If this assumption is evaded, all predictions (scale in-
variance of the spectrum, level of non-Gaussianities, etc.)
strongly depend on the physics in the high curvature re-
gime of the bounce. In this case, predictions cannot be
made without a full resolution of the singularity. In a sense
our conclusions are more pessimistic than just the state-
ment that in order to make bouncing models viable one
needs to understand the details of the bounce. We have
shown that from the perspective of a local observer the
bounce has to be exponentially sensitive to the initial state.

In the literature many prescriptions have been proposed
to match the two independent modes in the contracting
phase to those in the expanding one [6-9,19,20]. These
prescriptions usually involve variables (like the Newtonian
potential ®) which diverge going towards the bounce and
thus hide both the perturbativity of fluctuations and the
existence of a dynamical attractor, features which are in-
stead manifest in the synchronous gauge. Moreover, as
different variables like ® and ¢ behave very differently
in the contracting phase, one is lead to different ‘““natural”
prescriptions depending on which variable and gauge is
used. We think that these mathematical prescriptions are
not based on well motivated physical assumptions, and we
consider the attractor as the only physical guide across the
bounce. In fact it should be now clear that prescriptions
giving a scale-invariant spectrum describe a bouncing
phase which is sensitive to exponentially small departures
from the unperturbed solution, or in which all relevant
modes come back into the horizon. In both cases results
are anyway completely dependent on the unknown UV
physics.

For example, some of the proponents of the ekpyrotic/
cyclic scenario have developed a matching procedure
based on analytic continuation in the full 5D setup [21]
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(see also Ref. [22]). The result is that ¢ has a jump at the
bounce proportional to the comoving energy density per-
turbation €,,, A ~ €,,/(k;L)?, where L is a UV length
scale characterizing the physics of the bounce. The vari-
able €,, goes to zero during the contracting phase as ¢! =37
and it is therefore exponentially small at the bounce.
Therefore from the 4D perspective this prescription de-
scribes a bounce which is exponentially sensitive to the
incoming state; €, is in fact multiplied by a huge
k-dependent term. This extreme sensitivity to initial con-
ditions is clearly problematic; for instance, it amplifies also
all preexisting anisotropies which were diluted away dur-
ing the contracting phase thanks to the presence of the
attractor.

We conclude stressing that the situation is slightly differ-
ent for pre-big bang scenarios [3]. In this case there is no
potential for the scalar (dilaton) and only its kinetic energy
is driving the (Einstein frame) contracting phase; this
corresponds to the limit p — 1/3 in our solutions of
Sec. II. The kinetic energy blueshifts as a~°, exactly like
the contribution of anisotropies to the Friedmann equa-
tion (39). This implies that we are somewhat borderline
with respect to the existence of the attractor. In fact the
anisotropic perturbation in synchronous gauge and the
fluctuation in the scalar field, instead of going to zero,
diverge logarithmically. The situation now resembles an
inflationary cosmology in the presence of isocurvature
perturbations; separated regions of the Universe are char-
acterized by a different mixture of two independent modes
and therefore go through the bounce in a different way
depending on the relative size of the two solutions. Our
conclusions cannot be applied and it is necessary to specify
the details of the high curvature regime to evolve the
fluctuations across the bounce.
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APPENDIX A: THE QUADRATIC ACTION FOR
SCALAR FLUCTUATIONS

The complete action for gravity and a minimally
coupled scalar field ¢ is

1
s=3 [d/TRR - @87 - 2v6) A
(For notational simplicity we are setting Mp = 1; at the
end of the computation Mp can be restored by dimensional
analysis.) In order to find an action for the scalar fluctua-
tions of this coupled system around a given background it
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is convenient to work in the Arnowitt-Deser-Misner
(ADM) formalism. This has been done in Ref. [13], and
in this section we briefly review the results derived there. In
terms of the ADM variables the metric is

ds* = —N?dr* + h,-j(dxi + Nidt)(dx/ + Nidt), (A2)

and the action Eq. (A1) reads

1 N
S = 3 f d*x/AINR® — 2NV(¢) + N~ (E;,EV — E?)

+NYp — N'3;¢)* — Nhi9,0,6]. (A3)
Here R®) is the intrinsic curvature of spatial slices, while
E;; is related to the extrinsic curvature,

Eij = %(hlj - le] - v]Nl)’ Kl] = N_lEij,

(A4)
and E = E'. From the action above it is clear that N and N’
are just Lagrange multipliers. One can then solve for them
the constraint equations, express them in terms of the other
degrees of freedom, and substitute their value back in the
action. At this stage it is useful to pick a gauge. We choose
the J-gauge, defined at linear order in the fluctuations by

(X, 1) = po(0), hyj = a*()(1 + 20)8; (AS5)

where ¢ (r) and a(r) are the background solutions for the
scalar and the scale factor, and we have neglected tensor
modes. In this gauge the constraint equations read

j

VINT\(EL ~ 81E)] =0, (A6)
RO —2V(¢o) = N2(E,EY — E*) — ¢ =0, (A7)
whose solution at linear order is
N=1+ £
" (A8)
: { b5
N =0———+ , aiai = —>56.
( aH X ) 2t

Plugging this into the action above and expanding up to
second order, one gets a quadratic action for the only scalar
degree of freedom (. After integrating by parts and using
the background equations of motion (i.e., the Friedmann
equation and the equation for the scalar), one finally gets

12
S = % fdtd3x%[a3§2 —a(9;{)*]

= (g Bema o0, w9)
) gHz 8 mS=vs s

where g, is the background FRW metric. For the scaling
solution discussed in the text the quantity ¢3/H? is a
constant, and the action above reduces simply to Eq. (12).

In the alternative gauge Eq. (7), which keeps ¢ as the
scalar dynamical variable, the result for the action is not as
simple as in the J-gauge. This is because the relation
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between ¢ and J¢ is in general time dependent, { =
—(H/ )8, so that time derivatives acting on / in the
action above also produce time derivatives of the factor
H/ . However, for the scaling solution we are interested
in such a factor is time independent, so that again the
quadratic action takes the very simple form in Eq. (8).

APPENDIX B: FROM {-GAUGE TO
SYNCHRONOUS GAUGE

In this section we explicitly derive the gauge transfor-
mation that goes from /-gauge to synchronous gauge. In
{-gauge the metric for a general scalar fluctuation is at
linear order (see the previous section)

¢

=—-1-2=, Bl
800 i (B1)
{ 45 .
L= —0. = - " — = —9.5, B2
80i al|:1{ 2H2 82 §i| i ( )

Under a gauge transformation of parameter ¢,,, the metric
transforms as g, — g,, + V, &, + V, £, where the V’s
are the covariant derivatives associated to the unperturbed
FRW metric. The nonzero Christoffel symbols in a FRW
geometry are

0 =@Hs, — Ti = HS, (B4)

so that the explicit transformation of the metric compo-
nents is

800 — 8oo + 2&0, (B5)
: _ _ d ¢
goi— 8o + & + 9,60 — 2HE; = go; + @ E—-l-afo,
(B6)
gij = &ij T 0;&; + 0;&; — 2a*H5,;&,. (B7)

We want to end up in synchronous gauge, which is defined
by goo = —1 and g(; = 0. The explicit form of gy, com-
bined with its transformation law tells us that we must
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choose

S Y ) (BS)
H oH

To be completely general we should also add to &, a

generic function of X, but it will turn out that it is not

necessary, so we set it to zero.

Then we want to set to zero the space-time components
go;- In order to do so &; must satisfy

. 1 7
ii:2ai|:5_/t§d[/:|,
dt a a o H

b [ar 3= [ ]

The last step is to combine Eqs. (B3) and (B7) and read off
the spatial metric in synchronous gauge,

Y
gl]—yaz{(l‘i‘Q,{_ZHfHdt)al]
ro d)% 1 1 g_ Ilé "

(B11)
where we used the definition of =, Eq. (B2). Specializing
to our scaling background a « 17, H = p/t, ¢y = /2p/t
we get precisely Eq. (32).

Finally we want to express the scalar ¢ (X, 1) in synchro-
nous gauge. Under a gauge transformation

d(x) = d(x) +9,¢(x) - £~

Since in (-gauge the scalar is unperturbed, ¢(%, 1) =
¢do(2), in synchronous gauge we simply have

8¢ = (1) = po(t) = hof” = —doéy

_ tél
= d)oﬁHdt'

For our scaling solution this reduces to Eq. (33).

(B9)

so that

(B10)

(B12)
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