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Correlated primordial perturbations in light of CMB and large scale structure data
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We use cosmic microwave background (CMB) and large scale structure data to constrain cosmological
models where the primordial perturbations have both an adiabatic and a cold dark matter (CDM)
isocurvature component. We allow for a possible correlation between the adiabatic and isocurvature
modes, and for different spectral indices for the power in each mode and for their correlation. We do a
likelihood analysis with 11 independent parameters and discuss the effect of choosing the pivot scale for
the definition of amplitude parameters. The upper limit to the isocurvature fraction is 18% around a pivot
scale k � 0:01 Mpc�1. For smaller pivot wavenumbers the limit stays about the same. For larger pivot
wavenumbers, very large values of the isocurvature spectral index are favored, which makes the analysis
problematic, but larger isocurvature fractions seem to be allowed. For large isocurvature spectral indices
niso > 2 a positive correlation between the adiabatic and isocurvature mode is favored, and for niso < 2 a
negative correlation is favored. The upper limit to the nonadiabatic contribution to the CMB temperature
variance is 7.5%. Of the standard cosmological parameters, determination of the CDM density !c and the
sound horizon angle � (or the Hubble constant H0) are affected most by a possible presence of a correlated
isocurvature contribution. The baryon density !b nearly retains its ‘‘adiabatic value’’.
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I. INTRODUCTION

The major part of the present cosmological data, includ-
ing the cosmic microwave background (CMB) anisotropy
and the large scale distribution of galaxies (large scale
structure, LSS) is fit reasonably well by a simple cosmo-
logical model. This model has a spatially flat background
geometry (total density parameter 
 � 1). It has five
energy density components, ‘‘baryons’’, photons, massless
neutrinos, cold dark matter (CDM), and a constant vacuum
energy (cosmological constant). The primordial scalar per-
turbations are Gaussian, adiabatic, and scale-free (spectral
index nad � const:).

We call this model the ‘‘adiabatic model’’ in this paper.
It has five parameters to be determined from the data, the
Hubble constant, H0 � h100 km=s=Mpc, two density pa-
rameters, !b � 
bh2 and !c � 
ch2 (for baryons and
CDM), and the amplitude A and spectral index nad of the
primordial scalar perturbations. There is no evidence in the
cosmological data for the presence of additional features or
ingredients beyond this model, like tensor perturbations or
neutrino masses, indicating that they are probably so small
as not to show up in the data. The concordance values of
the parameters are h� 0:7, !b � 0:023, !c � 0:12, nad �
1:0, and A� 5� 10�5.

Besides these five fundamental cosmological parame-
ters, there are two additional parameters needed when the
models are compared to CMB and LSS data: the optical
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depth � due to reionization, and the bias parameter b
relating the observed galaxy power spectrum to the under-
lying matter power spectrum.

The origin of the primordial perturbations is not known.
The favorite candidate for their generation is quantum
fluctuations during a period of inflation in the very early
universe. While single-field inflation produces adiabatic
perturbations, inflation with more than one field produces
also entropy perturbations S in addition to the usual cur-
vature perturbation R.

A general perturbation can be divided into an adiabatic
mode � an isocurvature mode, where the adiabatic mode
has no initial entropy perturbation, and the isocurvature
mode has no initial curvature perturbation. Allowing for
the presence of an isocurvature mode does not improve the
fit to the existing data (to the extent of justifying the addi-
tional parameters), and thus there is so far no evidence for
the existence of primordial isocurvature perturbations.
However, it is of interest to find out what limits the data
set to these perturbations, as the nature of primordial
perturbations is an important clue to their origin.
Moreover, the presence of an undetected isocurvature con-
tribution may affect the determination of the main cosmo-
logical parameters.

In principle, there can be different kinds of entropy
perturbations, and thus several different isocurvature
modes. Four different isocurvature modes were identified
in [1], the CDM and baryon isocurvature modes, and two
neutrino isocurvature modes. Allowing for the simulta-
neous presence of all four kinds would lead to so many
parameters that it would be difficult to obtain meaningful
results with present data [2]. The signature of a baryon
-1  2005 The American Physical Society
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isocurvature mode in the data is rather similar to the CDM
isocurvature mode, but weaker due to the smaller baryon
density parameter.

Here we consider only the CDM isocurvature mode in
addition to the adiabatic mode. We allow the CDM entropy
perturbations to have a different spectral index (niso) from
the curvature perturbations, and to be (or not to be) corre-
lated with them. In comparison to the adiabatic model this
brings in four new parameters related to the amplitudes and
spectral indices of the entropy perturbations and their
correlation with the curvature perturbations. Thus we
have in total 11 parameters in our cosmological model.
For sampling this 11-dimensional parameter space we use
the Markov Chain Monte Carlo (MCMC) method. This is a
follow-up paper of [3] where a preliminary analysis
(around the best-fit adiabatic model) using the Wilkinson
Microwave Anisotropy Probe (WMAP) data [4] was pre-
sented. The limited range of scales covered by the WMAP
data limits its ability to constrain spectral indices of sub-
dominant modes. To improve on this aspect, we now
include also smaller scale CMB data and the LSS data
from the Sloan Digital Sky Survey (SDSS).

We have consciously kept the number of different data
sets used in this study small. The opposite approach would
be to use as much data as possible. While both approaches
have their place, using a smaller number of data sets at a
time allows one to better discern what kind of constraints
result from which kind of data. In particular, we have not
used the data on the Type Ia Supernova magnitude-redshift
relation (SNIa), as it is of rather different nature than the
CMB and LSS data. To supplement our main analysis, we
do study the effect of adding a constraint from SNIa, by
adding a prior on 
� (the vacuum energy density parame-
ter) corresponding to the SNIa flat-universe constraint
on it.

Before the WMAP data became available, limits to the
isocurvature contribution in uncorrelated models had been
obtained for the case nad � niso � 1 in [5] and with nad and
niso as independent parameters in [6,7], and in correlated
models for one independent spectral index in [8]. Pure
CDM isocurvature models had been ruled out also in the
case of a nonflat background geometry in [9]. Correlated
models were also studied in [10,11].

After WMAP, limits to correlated models were first
obtained for the case of two independent spectral indices
[12,13]. In our earlier paper [3] we obtained preliminary
results for the case of three independent spectral indices
using WMAP data only. Parkinson et al. [14] considered a
particular inflation model producing correlated perturba-
tions. Moodley et al. [15] considered models with up to
three isocurvature modes (CDM and two neutrino modes)
present simultaneously, but all sharing the same spectral
index. Ferrer et al. [16] studied correlated perturbations
resulting from inflaton and curvaton decay. They had two
independent spectral indices.
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The most similar to the present study is that of Beltran et
al. [17], who consider one isocurvature mode at a time, and
allow separate spectral indices for the adiabatic and iso-
curvature modes and their correlation. We compare their
approach to ours at the end of Sec. II and their results to
ours in Sec. VII.

Since the adiabatic and isocurvature components and
their correlation are allowed to have different spectral
indices, their relative amplitudes vary as a function of scale
k. We define the amplitude parameters at some chosen
pivot scale k0.

When the isocurvature component or the correlation is
negligibly small, the corresponding spectral indices are not
constrained by the data. Such conditionally unconstrained
parameters cause problems also for determining other
parameters from the data.

The way the isocurvature perturbation and correlation is
parametrized (e.g. the choice of pivot scale k0) affects the
integration measure in the parameter space. Thus different
parametrizations correspond to different priors. When pa-
rameters are weakly constrained by the data this ends up in
different posterior likelihoods: When one parametrization
(A) is used to obtain the likelihood function in the parame-
ter space and the results are then expressed in another
parametrization (B), the likelihood function is different
from the case when parametrization B was used initially.
(This difference can be ‘‘fixed’’ by importance weighting
using the Jacobian of the parameter transformation; but
this does not address the question which parametrization is
‘‘correct’’.) Such effects are discussed in Sec. VI.

We find that the pivot scale should be chosen to be near
the middle of the data sets used (in terms of lnk). When the
isocurvature spectral index niso is a free parameter a wrong
choice would spoil the analysis. This comes because the
data does not prefer an isocurvature contribution. Then
using k0 that is close to the small k end of the data, kmin,
leads to extremely small (negative) niso, in order to mini-
mize the isocurvature contribution. On the other hand, if k0
is too close to kmax, then arbitrarily large isocurvature
spectral indices are favored to minimize an overall isocur-
vature contribution in the range �kmin; kmax�. Unfortunately,
the ‘‘standard pivot scale’’ k0 � 0:05 Mpc�1 (used, e.g.,
by CAMB, the code for anisotropies in the microwave
background [18,19]) is quite close to kmax and another
common choice (see e.g. [13]) to give for k0 a value that
corresponds to the present Hubble radius is nearly equal to
setting k0 � kmin.

When we started MCMC runs for our model we took
k0 � 0:05 Mpc�1, but soon realized that our Markov
Chains ran towards artificially large niso. After fixing this
problem, when we were finalizing the analysis of better
runs with k0 � 0:01 Mpc�1, a paper [17] with pivot scale
k0 � 0:05 Mpc�1 came out. However, they had an ad hoc
constraint niso < 3 that saved their main results from most
of the artifacts that arise when the chains run to very large
-2
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niso. With our choice of the pivot scale the likelihood for
niso peaks at niso � 3 and drops rapidly around niso � 4.
Hence, the prior niso < 3 in [17] allows a comparison to our
results.

We obtain tight constraints to the CDM isocurvature
contribution and find that, of the main cosmological pa-
rameters, only the determination of !c and h is signifi-
cantly affected. Compared to the adiabatic models smaller
values of !c and larger values of h become acceptable
when allowing for the CDM isocurvature. Interestingly,
although we have two additional degrees of freedom in
spectral indices, determination of the baryon density is
much less affected than in the models where all modes
share the same spectral index.

In Sec. II we introduce and motivate our parametrization
of correlated curvature and entropy perturbations. In
Sec. III we write down some technical details of our
MCMC study to determine these parameters, and in
Sec. IV we give and discuss our results. In Sec. V we
discuss the nonadiabatic contribution to the observed
CMB and matter power spectra, and in Sec. VI the effect
of changing the pivot scale. In Sec. VII we compare our
results to those of [17].

II. CORRELATED PERTURBATIONS

The calculation of the CMB angular power spectra Cl
and the matter power spectra P	k
 starts from ‘‘initial’’
values of the curvature perturbation R	trad
 and the en-
tropy perturbation S	trad
 specified deep in the radiation
dominated era at time trad, when all scales of interest are
well ‘‘outside the horizon’’ (i.e., the Hubble scale H�1).
However, this initial time is well after inflation, or what-
ever generated the perturbations, and refers to a time dur-
ing and after which the evolution of the universe is
assumed to be known.

We denote the time when the perturbations were gen-
erated by t�. For inflation, this corresponds to the time
when the scale in question ‘‘exited the horizon’’ (thus it is
different for different scales k). Between t�	k
 and trad the
perturbation is outside the horizon, i.e., k is superhorizon
(k� aH).

In the absence of entropy perturbations, curvature per-
turbations remain constant at superhorizon scales. This is,
in general, not true for entropy perturbations, which may
evolve at superhorizon scales. Entropy perturbations may
also seed curvature perturbations (see e.g. [20,21]). This
happens, for example, in two-field inflation, when the
background trajectory in field space is curved [22–24].

Thus the relation between the ‘‘generated’’ and initial
values for R and S can be represented as [8]

R	trad;k

S	trad;k


� �
�

1 TRS	k

0 TSS	k


� �
R	t�;k

S	t�;k


� �
: (1)

The transfer functions Txy	k
 describe how the perturba-
tions evolve from the time of inflation to the beginning of
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the radiation dominated era. The exact form of these
functions is model dependent and that aspect is not studied
in this paper. We approximate them by power laws.

In the literature there are different sign conventions for
the perturbations R and S. We use the convention where
an initial positive comoving curvature perturbation
R	trad
> 0 corresponds to an initial overdensity � �
��=� > 0, where � is the total energy density and �� is
its perturbation, e.g., in the comoving or in the conformal-
Newtonian gauge. In terms of the Bardeen potentials, �
and �, defined so that the metric in the conformal-
Newtonian gauge is

ds2 � �	1� 2�
dt2 � a	t
2	1� 2�
�ijdxidxj; (2)

the comoving curvature perturbation reads

R � ���
2�

3	�� p


�
1

H
@�
@t

��
�
: (3)

We define the entropy perturbation as

S � �c �
3

4
� ; (4)

where �c and � are the CDM and photon density pertur-
bations (S is gauge-invariant). Thus a positive initial en-
tropy perturbation corresponds to an initial CDM
overdensity.

With the above sign conventions, the ordinary Sachs-
Wolfe effect is

�T
T

 �
1

5
�R	trad
 � 2fcS	trad
�; (5)

where fc � !c=	!b �!c
. A positive correlation be-
tween R	trad
 and S	trad
 leads to an additional positive
contribution to the large scale CMB angular power Cl /
h	�T=T
2i, and also to a positive contribution to the matter
power spectrum. A negative correlation suppresses both
the large scale CMB power and the whole matter power.

We define the correlation Cxy	t; k
 between two pertur-
bation quantities (random variables), x and y, as

hx	t;k
y�	t;k0
i �
2"2

k3
Cxy	t; k
�

	3
	k� k0
: (6)

The transfer function TRS	k
 leads to a correlation
between R	trad;k
 and S	trad;k
 from uncorrelated
R	t�;k
 and S	t�;k
,

CRR	trad; k
 � PR	t�; k
 � TRS	k

2PS	t�; k
 (7)

CRS	trad; k
 � TRS	k
TSS	k
PS	t�; k
 (8)

C SS	trad; k
 � TSS	k

2PS	t�; k
; (9)

where PR	t�; k
 � CRR	t�; k
 and PS	t�; k
 � CSS	t�; k

are the power spectra of R	t�;k
 and S	t�;k
.
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Approximating the power spectra PR	t�; k
, PS	t�; k
,
and the transfer functions TRS	k
, TSS	k
 by power laws
with spectral indices m1, m2, m3, and m4, respectively, we
get that the autocorrelations (power spectra) have initially
the form

PR	trad; k
 �CRR	trad; k
 � A2r

�
k
k0

�
nad1�1

�A2s

�
k
k0

�
nad2�1

;

PS	trad; k
 �CSS	trad; k
 � B2
�
k
k0

�
niso�1

; (10)

where nad1 � m1 � 1, nad2 � m2 � 2m3 � 1, and niso �
m2 � 2m4 � 1. The three components are the usual adia-
batic mode, a second adiabatic mode generated by the
entropy perturbation, and the usual isocurvature mode,
with constant amplitudes Ar, As, and B at the pivot scale
k � k0, respectively.

The initial cross-correlation between the adiabatic and
the isocurvature component is now

CRS	trad; k
 � CSR	trad; k
 � AsB
�
k
k0

�
ncor�1

; (11)

where ncor � m2 �m3 �m4 � 1 � 	niso � nad2
=2. The
correlation is between the second adiabatic and the iso-
curvature component as is natural since these components
have the same source.

We have chosen the pivot scale k0 � 0:01 Mpc�1, but
we also consider pivot scales 0:002 Mpc�1 and
0:05 Mpc�1 in Sec. VI. We shorten the notation by defin-
ing �k � k=k0.

The present CMB angular power spectrum is given by

Cabl � 4"
X
xy

Z dk
k
Cxy	trad; k
gaxl	k
g

b
yl	k
; (12)

where a; b � T, E, or B, and the gl’s are the transfer
functions that describe how an initial perturbation evolves
to a present temperature (T) or polarization (E- or B-mode)
anisotropy multipole l.

Now, using the Eqs. (10)–(12) we obtain for the tem-
perature angular power spectrum

CTTl � 4"
Z dk

k
�A2r	gTRl


2 �knad1�1 � A2s	gTRl

2 �knad2�1

� B2	gTSl

2 �kniso�1 � 2AsBgTRlg

T
Sl
�kncor�1�

� A2rĈ
TTad1
l � A2sĈ

TTad2
l � B2ĈTTisol � AsBĈ

TTcor
l ;

(13)

and for the TE cross-correlation spectrum

CTEl � 4"
Z dk

k
�A2rg

T
Rlg

E
Rl
�knad1�1�A2sg

T
Rlg

E
Rl
�knad2�1

�B2gTSlg
E
Sl
�kniso�1�AsB	g

T
Rlg

E
Sl� gTSlg

E
Rl


�kncor�1�

� A2rĈ
TEad1
l �A2sĈ

TEad2
l �B2ĈTEisol �AsBĈ

TEcor
l :

(14)
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There are thus three amplitude parameters (three abso-
lute values and one sign, the relative sign of As and B.)
Now we need to choose the amplitude parametrization to
be used in the likelihood analysis, i.e., what shall we use as
the three independent parameters with flat prior likeli-
hoods. One choice would be just Ar, As, and B. However,
we would rather express our results in terms of a total
amplitude, a relative isocurvature contribution and a
correlation.

In [3] we followed [12] and used

fiso �

�����������������
B2

A2r � A2s

s
2 �0;1
 (15)

for the isocurvature contribution and

cos! � sign	AsB


�����������������
A2s

A2r � A2s

s
(16)

for the correlation (with the sign convention opposite to
that of [12]). The data is quadratic in these parameters (see
Eq. (13)), meaning that fairly large values of fiso and cos!
are needed for the effect to show up in the data. This
exacerbates the problem that models with a small As and
B get a lot of weight in the likelihood function, since the
spectral indices nad2 and niso are not constrained.

A flat prior for cos! leads to a nonflat prior distribution
for cos2!. Thus the parametrization by cos! favors a small
multiplier cos2! in front of the second adiabatic compo-
nent in [3,12]. Moreover, large values of sin2! �
1� cos2! are then favored, so that even without any
data the first adiabatic component will be favored in the
likelihood analysis. Likewise, the parametrization by fiso
(instead of f2iso) favors a small multiplier in front of the
isocurvature component. All in all, there was an implicit
bias towards pure adiabatic models in [3,12]. A similar
caveat applies to [16].

We would prefer amplitude parameters for which the
data has a linear response. We define a total amplitude
parameter A by

A2 � A2r � A2s � B2 (17)

and the isocurvature fraction and correlation parameters

' �
B2

A2
2 �0; 1� (18)

 � sign	AsB

A2s

A2r � A2s
2 ��1; 1�: (19)

Now the total angular power spectrum can be written as:

Cl � A2�	1� '
	1� j j
Ĉad1l � 	1� '
j jĈad2l � 'Ĉisol

� sign	 

��������������������������
'	1� '
j j

q
Ĉcorl �

� Cad1l � Cad2l � Cisol � Ccorl : (20)
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Here Ĉad1l and Ĉad2l represent adiabatic spectra which
would result from a curvature perturbation R	trad
 with
unit amplitude (Ar � 1 or As � 1) at the pivot scale k �
k0. (They are otherwise the same, but have spectral indices
nad1 and nad2.) Likewise, Ĉisol represents an isocurvature
spectrum from a CDM entropy perturbation of unit ampli-
tude (B � 1), and Ĉcorl the extra contribution from corre-
lation for AsB � 1. (See Figs. 1 and 2, which represent the
case of scale-invariant perturbations.) The ‘‘hatless’’ Cad1l ,
Cad2l , Cisol , which are necessarily non-negative, and Ccorl ,
which can also be negative, are the contributions to the
total Cl. A relation similar to (20) holds for the matter
power spectrum P	k
.

Note that, e.g., ' � 0:5 does not mean that the adiabatic
and isocurvature contributions would be equal at any par-
ticular scale. Since ' refers to the ratio of primordial
perturbations, to which the Cl contributions are related
through the transfer functions, the situation is different
for different scales, and depends on the other cosmological
parameters. In particular, if the spectral indices are very
different, a very small isocurvature fraction can still cor-
respond to a large isocurvature contribution at some scales
and vice versa.

We define a shorthand notation

'cor � sign	 

��������������������������
'	1� '
j j

q
(21)

for the relative ‘‘weight’’ of the correlation spectrum Ccorl .
The problem remains that when some multiplier in (20)

is close to zero, the spectral index of the corresponding
component becomes unconstrained leading to more vol-
10
1
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3−0.05

0

0.05

0.1

0.15

0.2
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0.3

l

l(
l+

1)
C

lT
T
/2

π

ω
b
 = 0.02322

ω
c
 = 0.1222

ΩΛ = 0.70763

Ω
m

 = 0.29237

θ = 1.049

τ = 0.1093

H
0
 = 70.5255

ad
iso
cor

FIG. 1 (color online). The unit-amplitude component angular
power spectra Ĉadl (dash-dotted line), Ĉisol (dotted line), and Ĉcorl
(solid line) of Eqs. (13) and (20) for the case of spectral indices
nad � niso � 1 and other cosmological parameters representing
median values of their marginalized likelihoods from our 11-
parameter model. These curves would represent the relative
contributions to the total Cl for the case ' � 0:5,  � 1, i.e.,
‘‘equal’’ weights for the adiabatic and isocurvature contributions
and a maximal positive correlation between them.
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ume in parameter space upon marginalization. This may
introduce a bias towards ‘‘pure’’ models where the isocur-
vature or correlation amplitude is zero.

We want the pivot scale to be roughly in the middle of
the data set used, and have chosen k0 � 0:01 Mpc�1 as our
pivot wavenumber. For the concordance values of the
cosmological parameters, 
� � h � 0:7, this corresponds
to ‘‘pivot multipole’’ l0 � 140. [The correspondence is
l0 �D�k0, where D� � D�	h;
�;
m
 is the angular di-
ameter distance to last scattering. Note that for concord-
ance parameter values D�	h; 0:7; 0:3
  h�110 000 Mpc
while for a flat universe without cosmological constant
D�	h; 0; 1
  h�16 000 Mpc.]

This paper is similar to a recently published study by
Beltran et al. [17]. The main differences are:
(1) D
-5
ifferent parametrization of correlation. While we
divide the adiabatic spectrum in a correlated and an
uncorrelated part, they consider the total adiabatic
spectrum PR and the correlation spectrum CRS as
the basic entities, which they approximate by power
laws. This leads to constraints on the correlation
spectral index ncor, which depend on the correlation
amplitude, and therefore they introduce a related
parameter, ‘‘�cor’’, to be the independent parameter,
leaving ncor as a derived parameter.
(2) T
hey have set an upper limit niso � 3, whereas we
allow niso to vary over a wider range.
(3) T
hey use a pivot scale k0 � 0:05 Mpc�1 (l0 � 700).
We use k0 � 0:01 Mpc�1 (l0 � 140), but consider
also the effect of changing the pivot scale.
(4) T
hey use a larger data set, including SNIa data [25],
whereas we use CMB and LSS data only.
(5) T
hey include an equation-of-state parameter w for
dark energy, whereas we keep w � �1.
(6) T
hey consider neutrino isocurvature modes also.
Crotty et al. [13] and Beltran et al. [17] use the same
isocurvature parameter ' as we use, but they use the
correlation parameter

* � � cos! � �sign	AsB


�����������������
A2s

A2r � A2s

s
� �sign	 


�������
j j

q
:

(22)
In [13] * is assumed scale-invariant, whereas in [17] it is
approximated by a power law with index ncor so that our
ncor �

1
2 	nad2 � niso
 corresponds to their ncor �

1
2 	nad �

niso
.

III. TECHNICAL DETAILS OF THE ANALYSIS

The model we are studying has 11 parameters. We have
chosen to use the following independent parameters (pri-
mary parameters) for the likelihood analysis: the baryon
density !b, the CDM density !c, the sound horizon angle
�, the optical depth due to reionization �, the bias parame-
ter b, the uncorrelated adiabatic spectral index nad1, the
correlated adiabatic spectral index nad2, the isocurvature



10
1

10
2

10
3−0.5

0

0.5

1

1.5

2

2.5

3

3.5x 10
−4

l

(l
+

1)
C

lT
E
/2

π
ad
iso
cor

10
−2

10
−1

10
0

10
8

10
10

10
12

10
14

k/h [Mpc−1]

h3 P(
k)

 [
M

pc
3 ]

ad
iso
+cor

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

l

l(
l+

1)
C

lT
T
/2

π

ad
iso
+cor
−cor

FIG. 2 (color online). The same as Fig. (1), but for (a) ĈTEl and (b) the matter power spectrum P̂	k
. We also show (c) the ĈTTl of
Fig. 1 with a logarithmic scale, so that the effect of changing the spectral indices can be readily estimated from the figure. The pivot
scale k0 � 0:01 Mpc�1 becomes k0=h � 0:01418 Mpc�1 for the parameter values used (h � 0:7053) for this plot.
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spectral index niso, the logarithm of the overall amplitude
ln	1010A2
, the isocurvature fraction ' and the correlated
fraction  of the adiabatic perturbations.

The sound horizon angle (in units of 1
100 radian)

� � �	!b;!c; h
 � 100�
s�
D�

; (23)

where s� is the sound horizon at last scattering and D� is
the angular diameter distance to last scattering [26], is used
as an independent parameter instead of h (or 
�), since it
is more tightly constrained by the data.

The bias b is defined by

PSDSSgal 	k
jzeff’0:15 � b2P	k
jz�0: (24)

So we multiply the present-day theoretical matter power
P	k
 by b2 before comparing to the galaxy power spectrum
from SDSS [27] at effective redshift zeff . In the figures, we
actually plot b2P	k
.
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We find the posterior likelihoods for the primary pa-
rameters and a number of derived parameters using the
Markov Chain Monte Carlo (MCMC) method. The chains
are generated using our modified version of the publicly
available CosmoMC code [18]. The CMB angular power
spectra and the matter power spectra are calculated by the
CAMB code [19,28] (see also [29]). It needed some mod-
ifications for faster treatment of correlation.

CosmoMC/CAMB evaluates the matter power spectrum
in linear perturbation theory. However, very small scales
(k=h * 0:15 Mpc�1) have already become nonlinear. The
publicly available code Halofit utilizes results from lattice
simulations of clustering [30]. However, the applicability
of the Halofit to our model is not granted, since the lattice
simulations have been performed in adiabatic models with
moderate spectral indices. Hence, following the recipe of
[27], we calculate the matter power spectra in linear theory
and compare them only to the first 17 data points (k=h &

0:15 Mpc�1) of the SDSS galaxy survey [27].
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For the observational CMB data we take the WMAP
temperature autocorrelation (TT) and temperature-
polarization cross-correlation (TE) data [31–33]. To ex-
tend the coverage of the data to higher multipoles we use
the TT data from CBI [34] and ACBAR [35], which we call
‘‘other CMB data’’ from here on.

Details of the data sets are:

(i) W
MAP TT, 899 data points, l � 2–900 ,

(k� 1:4� 10�4 Mpc�1–0:064 Mpc�1).

(ii) W
MAP TE, 449 data points, l � 2–450,

(k� 1:4� 10�4 Mpc�1–0:032 Mpc�1).

(iii) A
CBAR TT, 7 l-bands, leff � 991–1831,

(k� 0:071 Mpc�1–0:131 Mpc�1).

(iv) C
BI TT, 13 l-bands, leff � 369–1884,

(k� 0:026 Mpc�1–0:135 Mpc�1).

(v) S
DSS galaxy power, 17 k-bands, keff=h �

0:016 Mpc�1–0:15 Mpc�1.

In parenthesis we indicate what wave numbers the given
multipole ranges correspond in models that have 
� �
h � 0:7, i.e. D�  14 000 Mpc. The total number of data
points (1385) leads to the reduced number of degrees of
freedom , � 1385� 11 � 1374 for our model and , �
1385� 7 � 1378 for the adiabatic model.

First we did several 8-chain runs to see what happens in
a MCMC study of our model. Finally, we chose a suitable
parametrization, described above, and performed an 8-
chain initialization run with the option to update the pro-
posal matrix (jump function) turned on in CosmoMC. We
used this run to obtain a good proposal matrix for our full
run. In our full run we ran the code on an IBM AIX cluster
utilizing 32 processors for 12 days to produce 32 chains
that started from separate randomly picked points in pa-
rameter space. After cutting off the burn-in periods the
total number of accepted steps, i.e., different combinations
of our primary parameters, was 266 651. The total number
of different models tried (step trials) was 8 005 143. The
option to update the proposal density while generating the
chains was not used in order to produce pure MCMC
chains. In addition to this main run, another set of 8 chains
with 60 254 different models with continuously updated
proposal density is used as additional data when discussing
the effect of the pivot scale in Sec. VI. For a clear review of
steps included in MCMC analysis, especially the meaning
of marginalized likelihoods, see the Appendix of Tegmark
et al. [36].

The parameters were allowed to vary within the follow-
ing ranges:

!b 2 �0:005; 0:1�; !c 2 �0:01; 0:99�;

� 2 �0:3; 10:0�; nad1 2 ��3; 4�; nad2 2 ��3; 4�;

niso 2 ��3; 12�; � 2 �0:01; 0:3�;

ln	1010A2
 2 �1; 7�; b 2 �0:1; 2:5�;

 2 ��1; 1� and ' 2 �0; 1�
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The MCMC method implicitly assigns flat priors for
these independent parameters. The ranges for ' and  
follow from their definitions. For the other parameters,
except �, we have set very wide ranges, so that the like-
lihood is negligible at the boundaries. However, we also
imposed a top-hat prior for the Hubble constant: 0:4 �
h � 1:0, which cuts off some models that would otherwise
be acceptable (at 95% C.L.).

We have constrained � to be less than 0.3. We found in
our preliminary studies that there are models with � > 0:3
that fit well to the data. These models form a separate
region in the parameter space, and have also a high baryon
density, of the order of !b � 0:03. This high baryon den-
sity is much above the values obtained from big bang
nucleosynthesis (BBN) calculations [37] and we decided
not to consider such models in this paper. Including the � >
0:3 region would be problematic with the MCMC method
as it is not well suited for such bimodal distributions.
Moreover, � > 0:3 leads to a very high reionization red-
shift, which is not favored by astrophysical considerations
[38].

To cover our parameter space as well as possible, within
the limits of available computational resources, the starting
point for each of the 32 chains was randomly selected from
the following Gaussian distributions:

!b � 0:0236� 0:005; !c � 0:124� 0:035;

� � 1:047� 0:038; � � 0:11� 0:229;

nad1 � 0:97� 0:27; nad2 � 0:97� 1:60;

niso � 2:09� 3:70; b � 0:99� 0:34;

 � 0:01� 1:3; ' � 0:035� 0:24;

ln	1010A2
 � 3:20� 0:4:

The width for a given parameter is 4 times the width of the
posterior distribution of the same parameter from our
preliminary runs.
IV. RESULTS

In Fig. 3 we show the marginalized (‘‘1-d’’) likelihoods
for those seven of our independent parameters, which
correspond to the seven parameters of the adiabatic model.
In Fig. 4 we show likelihoods for some derived parameters
related to them.

In Fig. 5 we show the marginalized likelihoods for our
remaining four independent parameters, and in Fig. 6 for
some related derived parameters.

Flat priors for our independent parameters lead to non-
flat priors for the derived parameters, which contribute to
some features in the distributions of the latter.

The best-fit (11-parameter) model has -2 � 1459:29,
just slightly better than the best-fit (7-parameter) adiabatic
model -2 � 1459:65. Thus there is clearly no indication in
the data for the presence of an isocurvature contribution.
-7
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FIG. 4 (color online). Marginalized likelihoods for two derived parameters, 
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Fig. 3.
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FIG. 3 (color online). Marginalized likelihood functions for the standard cosmological parameters (i.e. those that exist in the
adiabatic model). The (solid) line is the likelihood in our 11-parameter model, the (dashed) line is for the adiabatic model. Other line
types show the effects of additional priors discussed in the text: (dotted) for Gaussian 
� � 0:70� 0:04, and (dot-dashed) for
Gaussian  � 0:0� 0:02.
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Our results should be considered in terms of upper limits to
isocurvature perturbations and uncertainties in the deter-
mination of cosmological parameters due to the possibility
of an isocurvature contribution.

We first discuss the effect of allowing a (possibly corre-
lated) isocurvature contribution, on the determination of
the standard cosmological parameters. The likelihoods of
!b,!c, �, nad1, ln	1010A2
, �, and b, are compared with the
corresponding likelihoods of the adiabatic model in Fig. 3.

The amplitude A has now a different meaning than in the
adiabatic model, as it includes the isocurvature contribu-
tion also. Since the isocurvature transfer functions lead to
less power in most of the data from a given primordial
063005
amplitude than the adiabatic transfer functions (see Figs. 1
and 2), larger total amplitudes A are allowed for models
with a significant isocurvature contribution.

The distribution for the adiabatic spectral index nad1 has
become much wider. The reason for this is that the corre-
lated adiabatic component (‘‘ad2’’) may take the role of the
adiabatic perturbation of the adiabatic model: If j j � 1,
but ' is small, the model looks like the adiabatic model;
that the adiabatic mode is correlated with the isocurvature
mode does not have much significance, if the isocurvature
component itself is negligible. In this case nad2 is then
constrained to be close to the spectral index value of the
adiabatic model, but nad1 becomes unconstrained, as this
-8
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contribution has negligible amplitude. We discuss the
question of the adiabatic spectral index further in
Sec. IVA.

The uncertainties in the determination of !b, �, and b
are increased somewhat. We discuss!c and � in Sec. IV B,
and !b in Sec. IV C. We devote Secs. IV D and IV Eto the
isocurvature and correlation parameters, respectively. In
Sec. IV F we discuss a warning example of a model with
very large niso that must be rejected for several reasons.

A. Adiabatic spectral index

We can define an effective single adiabatic spectral
index by

neffad 	 �k
�1�
dlnPR	 �k


dln �k

�
	nad1�1
	1�j j
 �knad1�1�	nad2�1
j j �knad2�1

	1�j j
 �knad1�1�j j �knad2�1
;

(1)

which is scale dependent. The first derivative

dneffad 	 �k


d ln �k
�

	1� j j
j j	nad1 � nad2
2 �knad1�nad2

�	1� j j
 �knad1 � j j �knad2�2

is zero only when nad1 � nad2 or  � 0;�1. Otherwise it is
positive [3].
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At our pivot scale we have �k � 1 and the above expres-
sions simplify to

neffad jk�k0 � 	nad1 � 1
	1� j j
 � 	nad2 � 1
j j � 1;

(25)

and

dneffad 	 �k


d ln �k
jk�k0 � 	nad1 � nad2


2	1� j j
j j: (26)

From Fig. 3 we observe that nad1 is much more loosely
constrained than the nad of the adiabatic model. The dis-
tribution for nad2 becomes even wider than the one for nad1,
see Fig. 5. The reason is that the MCMC chains contain
many models with j j close to zero allowing nad2 to take
any value or j j close to 1 allowing nad1 to take any value.
However, the effective adiabatic spectral index (25) be-
comes nearly as tightly constrained as the spectral index in
pure adiabatic models. The 95% C.L. regions are 0:910<
neffad < 1:050 with median 0:968 and 0:923< nad < 1:013
with median 0:961, see also Fig. 7(a). Moreover, the data
do not favor (positive) running of the adiabatic spectral
index. For the 95% C.L. upper limit we obtain
dneffad =d ln �k < 0:03 at k0 � 0:01 Mpc�1, see Fig. 7(b).
The largest k in the data sets is about kmax 
0:15 Mpc�1. So the maximum running from k0 to kmax
is approximately !n � 0:03� ln	kmax=k0
 � 0:08. The
-9
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quadrupole (l � 2) corresponds to kmin  1:4�
10�4 Mpc�1 leading to !n � 0:03� ln	kmin=k0
 �
�0:12.

B. Small matter density models

In Fig. 3 the most obvious difference from the adiabatic
model is the extension of the � likelihood towards larger
sound horizon angles and the !c likelihood towards
smaller densities. These two features are related as can
be seen in Fig. 8(a). The corresponding effect is seen in the
two derived parameters, 
�, H0, closely related to � and
!c, see Fig. 8(b). Compare to a similar figure in [39].

The 1-d likelihood for the derived parameter 
� shows
(Fig. 4) a second peak at 
� � 0:87. (This feature is
somewhat enhanced because the flat prior for our indepen-
dent parameters actually leads to an increasing prior for the
derived parameter 
�, and larger values of 
� are cut off
with our h � 1 constraint.)

Thus the possibility of an isocurvature contribution leads
to larger
� models becoming acceptable by the CMB and
LSS data. According to Fig. 9 these models have a positive
correlation between the adiabatic and isocurvature modes.
Indeed, if we cut to the subset of ‘‘uncorrelated models’’,
 � 0:0� 0:02, the (large �, small !c) feature disappears
from the 1-d likelihoods.
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FIG. 8 (color online). (a) 2-d marginalized likelihood for � and !c,
low CDM densities !c. We indicate the 68% (solid) and 95% (dashe
model. (b) 2-d likelihood for the two derived parameters H0 and 
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In Figs. 5 and 6 we show the 1-d likelihoods of
the isocurvature-related parameters separately for the
large-
� subset (dotted lines) and with a  � 0:0� 0:02
prior that cuts the more correlated models off (dot-dashed
lines). We see clearly that the large-
� models are asso-
ciated with a positive correlation between the isocurvature
and adiabatic modes.

The angular and matter power spectra of the best-fit
large-
� model (from the subset 
� � 0:82) are shown
in Fig. 10. This model has -2 � 1461:86. Compared to the
best-fit adiabatic model, the somewhat worse fit, !-2 �
2:21, is due to 1) a worse fit to the SDSS data (!-2 � 1:83)
and 2) a worse fit to the Sachs-Wolfe region (2 � l � 21)
of the WMAP TT data (!-2 � 2:51). The latter is due to
the increased late ISW effect caused by the larger 
�. This
model fits the rest of the CMB data better than the adiabatic
model.

The reason the larger sound horizon angles (which shift
the acoustic peaks left, i.e., towards smaller l) are accepted
is the correlation contribution Ccorl , whose acoustic peaks
are at somewhat larger l than the adiabatic ones, and thus
adding it appears as a shifting of the peaks to the right (i.e.,
towards larger l). An uncorrelated isocurvature contribu-
tion cannot do the same trick, since the isocurvature acous-
tic peaks are too much to the right for adding them to
60 65 70 75 80 85 90 95 100
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showing that the large sound horizon angles � are connected with
d) C.L. regions for our isocurvature model and for the adiabatic
� closely related to the independent parameters � and !c.
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appear as a shift in peak position. The distribution of the
isocurvature spectral index is concentrated at the upper end
of the allowed range for niso in these 
� > 0:82 models,
see again Figs. 5 and 6. This is required for the correlation
contribution to maintain roughly the same relative power
through the acoustic peak region.

Because of this large spectral index, especially the cor-
relation contribution also changes the shape of the matter
power spectrum, see Fig. 10(b). This allows for a smaller
‘‘shape parameter’’ 
mh to fit the SDSS data, than the
SDSS result 
mh � 0:21� 0:03 for adiabatic models. In
the adiabatic model, large values of 
� and h would be
allowed by either the CMB or the LSS data alone, but not
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FIG. 10 (color online). (a) The TT spectrum for the best-fit la
contributes towards shifting the acoustic peaks to the right. This mo
0:796, ln	1010A2
 � 3:24, nad1 � 0:949, ' � 0:108, niso � 3:11,  
dash-dotted line) dominates over the uncorrelated adiabatic compon
are the correlation component (cor, lower solid line) and isocurvature
line) is a sum of these components. (b) The matter power spectrum
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by the combined data sets, because either data set allows a
narrow region (the ‘‘vanilla banana’’ in Fig. 5 of [36]) in
the 	
�; h
 plane, but these regions have somewhat differ-
ent orientations. The correlation contribution makes both
regions wider, in such a way that their overlap is extended
to higher h and smaller 
m (larger 
�), or in terms of our
independent parameters, towards smaller !c. In fact, even
h > 1:0, with 
m < 0:1 (or 
� > 0:9) would be allowed,
but our h � 1:0 prior cuts them off. These models also
favor smaller bias parameters b and baryon densities !b.

One might expect the above to work in the other direc-
tion too, negative correlation allowing models with a
smaller �, 
�, h, and a larger !c, but apparently some
other feature in the data prevents the larger !c required.

The large values of 
� are ruled out by the SNIa data
[25]. Therefore the small !c and large � feature, which is
connected to large 
�, was not seen in [17]. According to
[25] SNIa data leads to a constraint 
� � 0:71�0:03�0:05 for flat
models. We did not use the full SNIa redshift-magnitude
data; but to study the effect of the 
� constraint we
weighted (importance sampled [18]) our MCMC chains
with a Gaussian 
� � 0:70� 0:04 distribution. We show
the 1-d likelihoods both with and without this extra prior.
The SNIa constraint for 
� cuts off the models with large
� and small !c as clearly seen in Figs. 3–6.

C. Baryon density and Hubble parameter

In pure adiabatic models the baryon density is practi-
cally determined by the heights of the first and second
acoustic peaks (and the valley between them). An isocur-
vature contribution modifies these heights and thus one
expects looser constraint for !b in mixed adiabatic and
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� 0:57, nad2 � 1:043. The correlated adiabatic component (ad2,
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isocurvature models. However, our constraints (0:0220<
!b < 0:0246 at 68% C.L., 0:0207<!b < 0:0263 at 95%
C.L., median 0:0232) are very close to the adiabatic model
(0:0221<!b < 0:0240 at 68% C.L., 0:0213<!b <
0:0250 at 95% C.L., median 0:0230). Moreover, we have
checked that the isocurvature amplitude (') dependence of
the constraints for !b is very weak within the allowed
range '< 0:18.

As can be seen in Fig. 3 the median of !b shifts
only marginally towards larger values regardless of the
(extra) priors chosen. Our result is consistent with [17]
where the 1-d likelihoods for the adiabatic reference model
and for the correlated CDM isocurvature model were
practically indistinguishable. In contrast, the neutrino iso-
curvature modes shifted !b a little towards smaller values
in [17].

Both our result and the likelihood for !b in [17] differ
from Moodley et al. [15] where the median shifted signifi-
cantly towards larger values (0:023<!b < 0:029 at 68%
C.L., median 0:026). In [15] the adiabatic, CDM isocurva-
ture and correlation spectral indices were kept equal, i.e.,
there was only one free spectral index. Both [15,17] used
CMB and LSS data sets very similar to those used by us. In
[40] a model with equal spectral indices for adiabatic,
CDM isocurvature and neutrino isocurvature modes
yielded also very large !b � 0:04. The CMB data alone
led to a bit larger !b than CMB and LSS data together.

In [16] the curvaton decay calculation (see e.g. [41]) was
extended to the case in which the curvaton does not nec-
essarily behave like dust. The resulting correlated CDM
isocurvature perturbations from the mixed inflaton-
curvaton decay (or from double-inflation which can pro-
duce similar spectra) were considered in light of the
WMAP data alone. Then !b got large values, too. The
68% C.L. region obtained in [16] was 0:027<!b < 0:042
with median 0:032. The best-fit model had !b � 0:041.
Including LSS data in the analysis seems to drive!b closer
to the ‘‘adiabatic value’’ [42].

In [16,42] the adiabatic part is a sum of two components
with spectral indices n1 and n2, and the isocurvature part
shares the same indices. The four amplitudes of the com-
ponents are free parameters. So the spectrum can look
similar to ours, since there are models where (for example)
the amplitudes of the second adiabatic and first isocurva-
ture component are zero leading to the adiabatic spectral
index n1 and isocurvature index n2 � n1. However, the
parameter space volume of this type of models is small
compared to our case where nad2 and niso are truly inde-
pendent parameters. Hence the model in [16,42] is kind of
an intermediate case between the ‘‘nad � niso’’ and the
‘‘nad independent of niso’’ categories.

Three years ago Trotta, Riazuelo, and Durrer demon-
strated in [43] that allowing for ‘‘general isocurvature
modes’’ (adiabatic, CDM isocurvature and neutrino iso-
curvature with equal spectral indices in their study) pre-
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vented one from obtaining an upper bound for!b from that
day’s CMB data (COBE [44–46] and Boomerang [47]). In
[43] most of the new freedom for !b was explained to
come from the neutrino isocurvature density mode which
can adjust the height of the second acoustic peak more than
other isocurvature modes. Hence, one would expect more
freedom for !b when allowing also for a neutrino isocur-
vature density mode instead of just a CDM isocurvature
mode (or a neutrino isocurvature velocity mode). However,
one can not see this effect in [17] where, in the case of
neutrino isocurvature density mode, the median of !b was
shifted a bit towards smaller values (compared to other
cases) and the width of the 1-d distribution remained small.
While part of the difference in the neutrino isocurvature
density mode effect between [17,43] could result from the
different data sets used (the former used CMB only, the
latter used precision CMB and LSS), we think that the
fundamental explanation resides in spectral indices. The
same applies to other isocurvature modes.

To be explicit, our model and the model in [17] (both
have three independent spectral indices) yield very little
difference to the adiabatic case whereas models studied in
[15,40,43] (all have ‘‘nad � niso’’) lead to larger medians
and wider distributions for !b. While we have not studied
the reason for this difference in detail, we discuss one
possibility.

The CMB data forces the dominant adiabatic spectrum
close to scale invariance (nad � 1). When the spectral
indices are kept equal (‘‘nad � niso’’) the isocurvature
component also acquires the same spectral index. The
multipole dependence of the isocurvature contribution
can now be seen easily from Fig. 2(c). The isocurvature
and correlation modify more the low multipole end of the
spectrum than high multipoles. Hence, the relative acoustic
peak heights are distorted significantly leading to a need/
possibility to adjust them by !b. However, if the isocurva-
ture spectral index is a free parameter it acquires a value
that leads to a small isocurvature contribution on all scales
(multipoles). This happens with niso � 3 as will be dem-
onstrated in Fig. 13. With this large niso the isocurvature
contribution to the Cl and to the matter power can remain,
e.g., at some 3.5% level (for our median ' � 0:035) on all
scales. Then the different peak structure of the isocurvature
compared to the adiabatic one represents only a marginal
distortion from the pure adiabatic case. This could explain
why we and [17] end up with the ‘‘adiabatic value’’ for!b.

The isocurvature effect on the determination of the
Hubble parameter in our model is more dramatic.
Without extra priors we do not obtain an upper bound for
h (within the analyzed range 0:4< h< 1:0), see Fig. 4 and
the discussion of the previous subsection. (However, with a
different choice of the pivot scale we would miss the small
matter density models and hence obtain an upper bound for
h. We will discuss this in detail in Sec. VI.) Applying the
SNIa result 
� � 0:70� 0:04 to get rid of the large h
values we get a 95% C.L. region 0:64< h< 0:77.
-12



0.018 0.02 0.022 0.024 0.026
55

60

65

70

75

80

85

90

95

100

ω
b

H
0

68% C.L.
95% C.L.
ad 68% C.L.
ad 95% C.L.

FIG. 11 (color online). The 68% (solid) and 95% (dashed)
C.L. regions in the 	!b;H0
 plane for our isocurvature model
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 km/s/Mpc [48].
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In Fig. 11 we compare our model with the pure adiabatic
model by showing the C.L. contours in 	!b;H0
 plane. We
indicate also the 95% C.L. result !b � 0:020� 0:002
from a big bang nucleosynthesis (BBN) calculation [37]
and the Hubble space telescope key project result h �
0:72� 0:08 [48]. The 95% region (or even the 68% region)
of our model certainly accommodates the HST result, but is
only marginally consistent with the BBN value of !b from
[37]. Actually, the same is true for the adiabatic model. On
the other hand, concordance is achieved with another BBN
value !b � 0:022� 0:002 from [49].

For comparison, the similar contours opened up towards
the upper right corner of 	!b; h
 plane in [43]. Moreover,
the only ‘‘excluded region’’ was ‘‘an upper left corner’’ of
their 	!b; h
 plane where the BBN and HST regions inter-
sected in their figure. Again we stress that different data
sets were used in [43], also neutrino isocurvature modes
were allowed and there was only one spectral index. In any
case, the considerations in this subsection demonstrate that
even within ‘‘isocurvature models’’ the initial assumptions,
e.g., the shape assumed for the primordial spectrum, affect
considerably the end results.

D. Isocurvature parameters

We now turn to the parameters related to isocurvature
perturbations. The 1-d likelihoods for the four independent
parameters, the isocurvature fraction ', the isocurvature
spectral index niso, the adiabatic correlated fraction  , and
the spectral index nad2, are shown in Fig. 5, and the two
derived parameters, the correlation fraction

'cor � sign	 

��������������������������
'	1� '
j j

q
(27)

and the correlation spectral index
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ncor �
nad2 � niso

2
: (28)

in Fig. 6.
We obtain an upper limit (95% C.L.) to the isocurvature

fraction

'< 0:18: (29)

One should be careful about the meaning of this. First, ' is
defined as the isocurvature fraction at our pivot scale k0 �
0:01 Mpc�1. Models with a small isocurvature fraction at
this scale may have a large isocurvature fraction at some
other scale, depending on how the spectral indices for the
adiabatic and isocurvature fractions differ from each other.
Second, since ' is defined in terms of the primordial
curvature and entropy perturbations, it does not give di-
rectly the relative isocurvature contribution to Cl, but that
depends also on the shapes of the component spectra Ĉad1l ,
Ĉad2l , Ĉcorl , and Ĉisol , (i.e., on the transfer functions) which
depend on the other cosmological parameters, and are
typically such that the isocurvature contribution to the total
Cl and P	k
 is smaller than '. Thus the limit to an iso-
curvature signal in the data is actually tighter than would
appear from Eq. (29). (See Sec. V.) Third, because of the
presence of poorly constrained parameters, nad2 and niso in
the case of small  or ', the likelihood functions, and thus
upper limits, are sensitive to the priors implied by the
choice of parametrization. We discuss this last point in
Sec. VI. Similar caveats apply to the other isocurvature-
related parameters.

For the ‘‘uncorrelated’’ subset,  � 0:0� 0:02 the for-
mal upper limit is larger

'< 0:22: (30)

The limit for correlated models is tighter, since the corre-
lation contribution to the data tends to be larger than the
isocurvature contribution, due to the transfer functions (see
Figs. 1 and 2), and since j'corj �

��������������������������
'	1� '
j j

p
>' for

small ' and moderate  .
The isocurvature spectral index has a fairly wide distri-

bution covering the range 0< niso < 4. The median value
is niso � 2:252. The distribution is skew, so that the largest
marginalized likelihood is at somewhat larger values,
niso � 3:0. This peak at niso comes from the
large-
�-models discussed in Sec. IV B. Otherwise, val-
ues 1< niso < 3 are preferred. Figure 12 shows the 2-d
likelihood for ' and niso.

There are basically two reasons why the data selects this
range for niso. Disregarding the peak structure in the Cl
spectrum, the overall distribution of power in the data over
different scales is such that for the adiabatic models it
favors a scale-independent nad � 1 primordial spectrum.
For the isocurvature modes the Cl transfer function falls
more steeply with k (see Figs. 1 and 2.) Thus, for the
isocurvature contribution not to disturb this overall distri-
bution of power, it needs a larger spectral index. The other
-13
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reason is in the more detailed shape of the data. The CMB
data clearly does not like the isocurvature contribution,
since it has the wrong peak structure. Too small (large) niso
would cause it to show up for small (large) l, even for
small '. With k0 in the middle of the data sets, this keeps
0< niso < 4.

In Fig. 13 we show the unit-amplitude component Ĉl
spectra, for nad still at 1, but niso at the median value, niso �
2:252. Now the effective slope of the adiabatic and iso-
curvature contributions is roughly the same, so that the
isocurvature contribution is kept low everywhere with
moderately small '.

E. Correlation parameters

Zero correlation,   0, is favored over any other par-
ticular value for the correlation. However, 61% of the
models have j j � 0:1 (Fig. 5). Positive correlations are
favored over negative ones.
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FIG. 13 (color online). Like Fig. 2(c), but now with niso �
2:252.
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A strong correlation  between the adiabatic and iso-
curvature perturbations however has little effect on the
observable power spectra, if the isocurvature perturbations,
with which the adiabatic perturbations are correlated, are
negligibly small. The signature in the data is better mea-
sured by the derived parameter 'cor (which is restricted
between �

��������������������
'	1� '


p
by definition). We see that the 1-d

likelihood of 'cor is skew (Fig. 6); the preference for
positive correlations that we saw in  appears here as a
long tail towards large 'cor. If we add the Gaussian prior

� � 0:70� 0:04 to represent SNIa constraints, this tail
goes away, and the 1d likelihood becomes rather symmet-
ric. Thus the preference for positive correlations is due to
the large-
� models discussed in Sec. IV B. The dip at
'cor � 0 in Figs. 6, 14, and 15 does not indicate that
uncorrelated models would be unfavored by the data;
rather it comes because flat priors for ' and  lead to a
prior for 'cor which is small for small 'cor. Figure 14
shows the 2-d likelihood of ' and 'cor.
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FIG. 15. 2-d marginalized likelihood for 'cor and ncor.
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In Fig. 15 we show the 2-d likelihood of 'cor and ncor. It
shows that positive correlations are connected with larger
spectral indices ncor than negative correlations. This fea-
ture remains also after applying the 
� � 0:70� 0:04
prior, although the largest 'cor values are cut off. For large
j j we have nad2  1, and thus

ncor �
nad2 � niso

2

1� niso

2
: (31)

The reason negative correlations are favored with smaller
ncor is that then there is a significant isocurvature and
correlation contribution to the Sachs-Wolfe region of the
TT spectrum, and the negative correlation now subtracts
from it, helping to fit the lowest lWMAP data points which
lie below the adiabatic spectra (see Fig. 17).

For larger ncor the correlation contribution is insignifi-
cant in the SW region, but becomes important in the region
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FIG. 18 (color online). The matter power spectrum of a
model with niso � 5:69, which has -2 � 1459:20. The inset
shows the SDSS window function for the 16th, i.e., second
from right, data point. The markers ( � ) indicate the values
(theoretical matter power spectrum convolved with the window
function) to be compared to the data points, showing that the fit
(-2) obtained this way is very good, although the power spec-
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calculated further, the rapidly rising power at large k would
have caused the markers ( � ) to move up leading to worse -2 for
this model.
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of acoustic peaks and for the matter power spectrum.
Positive correlations are now favored for the reasons dis-
cussed in Sec. IV B. This effect remains after adding the
Gaussian prior 
� � 0:70� 0:04, in part since this SNIa
result favors somewhat larger 
� than the CMB � SDSS
data applied to adiabatic models.

Whenever one adiabatic component has negligible am-
plitude, the corresponding spectral index (i.e., nad2 for  
0, and nad1 for j j � 1) becomes unconstrained (see
Fig. 16), otherwise it is tightly constrained to be near 1.
When both components are significant, there is a small
anticorrelation between nad1 and nad2 [3], as a red tilt in one
of them can compensate for a blue tilt in the other one,
making the sum closer to scale-invariant (as preferred by
the data). This effect however introduces a positive
dn=d lnk in the combined spectrum (Sec. IVA), which
the data does not like, especially with the inclusion of
LSS data, and therefore the anticorrelation effect is now
more limited than in [3].

In Fig. 17 we show the spectra for our best-fit model.
This is an example of a low-niso, negative-correlation
model, where the correlation contribution subtracts from
the Sachs-Wolfe region in the Cl. This model has !b �
0:0227, !c � 0:129, � � 1:043, � � 0:144, b � 0:962,
ln	1010A2
 � 3:30, nad1 � 0:988, ' � 0:00197, niso �
0:388,  � �0:67, nad2 � 0:926, and -2 � 1459:29.

F. Models with very large isocurvature spectral index

We set a very wide allowed range for the isocurvature
spectral index. While most of the good models had niso in
the range 0 to 4, one of our MCMC chains found an
apparently very good region where niso was between five
and 6. In fact the highest likelihood (-2 � 1459:20) was
obtained in this region. We did not have enough statistics to
assess correctly the relative importance of this disjoint
good-likelihood region in the parameter space. We discard
this region for reasons explained below. Thus we have not
included this chain in our full analysis. (And therefore we
do not take our best-fit model from it.) In fact, these models
are obviously nonsense, and we discuss them just as a
warning.

These models necessarily have a very small '; because
of the large niso the isocurvature contribution is steeply
rising, and only becomes noticeable at the smallest scales
of our data set. At scales smaller than included in our data
set, the isocurvature contribution then becomes dominant,
and P	k
 rises rapidly.

Thus for most of the data set, these models are essen-
tially equal to the adiabatic model. The improvement over
the adiabatic model is then in the ‘‘other CMB’’ and SDSS
data which cover the smallest scales. The fit to the SDSS
data is however obtained in a rather unnatural way.
Because the SDSS window functions, that describe how
the data points relate to the underlying power spectrum,
extend to much smaller scales (larger k) than the nominal k
063005
values of the data points, for these models they pick up
most of the contribution at these very small scales (see
Fig. 18). Since the perturbations are nonlinear at these
scales, our use of a linear power spectrum does not give
correct results. (We also suspect that the SDSS window
functions were not really meant to be used for this kind of
spectra.) Anyway, these models would be ruled out if some
smaller scale constraints were added.

Because our pivot scale is far enough to the left from the
right (small-scale) end of our data set, these models are
forced to have a rather small ', which makes the measure
of this region of parameter space rather small. If a smaller
pivot scale (larger k0) is used, it becomes more likely for
the MCMC chains to end up in this questionable region
(Sec. VI).
V. NON-ADIABATIC CONTRIBUTION TO THE
OBSERVED SPECTRA

So far we have constrained the nonadiabatic contribu-
tion to the primordial spectrum in terms of ' and 'cor (or
 ). Although the isocurvature component can be as large as
18% of the total primordial power at our pivot scale k0, its
role in the observed Cl (or matter power) spectrum is less
significant. This comes because of different behavior of
-16
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adiabatic and isocurvature transfer functions as discussed
in Secs. II and IV D. Moreover, the non-scale-invariant
spectral index complicates drawing conclusions for the
observed Cisol and Ccorl from ' and 'cor, respectively.
Thus we devote this section to finding limits to nonadia-
batic contributions to the observed spectra.

We define a relative nonadiabatic contribution to CTTl by

'l �
CTTisol � CTTcorl

CTTl
; (32)

where CTTl � CTTad1l � CTTad2l � CTTisol � CTTcorl . When
creating MCMC chains we saved this quantity for l � 2,
140, 200, and 700 for each accepted step. By similar
manner we define a nonadiabatic contribution to the matter
power at k � ki

'mi �
Piso	ki
 � Pcor	ki


P	ki

: (33)

We saved this around the first SDSS data point k1=h �
0:0154 Mpc�1 and at the last data point k17=h �
0:154 Mpc�1.

The range of possible values for 'l and 'mi is 	�1; 1�.
For example, 'l gets negative values whenever Ccorl <
�Cisol . In the extreme case that Cisol � Cad2l and Ccorl �
�2Cisol the denominator approaches zero in the absence of
Cad1l . On the other hand, the maximum value 1 is obtained
with Ccorl � Cad2l � Cad1l � 0.

Recall that the CTTl s are related to the variance of the
CMB temperature perturbation by��

�T
T

�
2
�
�

1

4"

X1
l�0

	2l� 1
CTTl : (34)

We have calculated the Cl for l � 2–2100. In all well-
fitting models the power at l � 2100 is negligible due to
diffusion damping. These considerations lead us to one
more measure of the nonadiabatic contribution

'T �
h	�Tnon�ad
2i

h	�Ttotal
2i
�

P2100
l�2 	2l� 1
	CTTisol � CTTcorl 
P2100

l�2 	2l� 1
CTTl
:

(35)

Correlated models.—In Fig. 19 we plot the 1-d like-
lihoods for '2, '200, 'm1, 'm17, and 'T . At the quadrupole
(l � 2) a long tail of '2 towards negative nonadiabatic
contribution appears, since the measured quadrupole is
rather low compared to typical pure adiabatic models.
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The 95% C.L. region spans an interval �0:46<'2 <
0:10. Around the first acoustic peak the nonadiabatic con-
tribution is much more constrained, �0:024<'200 <
0:079, and at l � 700 the allowed contribution becomes
even smaller, �0:011<'700 < 0:026. In the matter
power, the limits are �0:06<'m1 < 0:14 and �0:11<
'm17 < 0:51. The latter, quite large values, come because
we do not use any data from larger k. So the spectrum is
practically unconstrained after k17. (Recall also our warn-
ing example in Fig. 18.) The likelihood for the total non-
adiabatic temperature perturbation is quite symmetric with
the median at 'T � 0:009 and a 95% C.L. interval
�0:075<'T < 0:075. Hence, we conclude that the non-
adiabatic contribution to the observed temperature pertur-
bation variance is less than 7.5%.

Uncorrelated models.—Four years ago we [6] found
upper limits to an uncorrelated CDM isocurvature contri-
bution using the first data releases of Boomerang [50] and
Maxima [51] together with COBE data [46]. The 95% C.L.
limits were '2 < 0:56 (called ' in [6]) and '200 < 0:13.
Let us update these numbers to reflect the dramatically
increased accuracy of the data. We approximate uncorre-
lated models by applying a Gaussian prior  �
0:00� 0:02 when analyzing the chains. Since the data
does not favor correlation (see Fig. 5), the sampling of
models with small j j is very good. For uncorrelated
models the correlation component is missing from defini-
tions (32), (33), and (35). Then the range for 'l, 'mi and
'T is �0; 1�. 1-d likelihoods are given in Fig. 20. The 95%
C.L. limits are '2 < 0:085 and '200 < 0:023. So, the al-
lowed isocurvature contribution in the uncorrelated case
has dropped to about one sixth part of the limits obtained
four years ago. Finally, the allowed total nonadiabatic
contribution ('T) to the observed temperature perturbation
signal becomes less than 4.3%.

VI. EFFECT OF CHOICE OF PIVOT SCALE

When the modes have different spectral indices, the
relative amplitude parameters ' and  become dependent
on the choice of pivot scale k0. In the literature, different
pivot scales have been used, e.g., k0 � 0:002 Mpc�1 and
k0 � 0:05 Mpc�1, whereas we have chosen an intermedi-
ate value k0 � 0:01 Mpc�1.

One can convert the results obtained using one pivot
scale k0 to what one would get with another pivot scale ~k0,
by using the parameter transformation
~' �
'k̂niso�1

	1� '
	1� j j
k̂nad1�1 � 	1� '
j jk̂nad2�1 � 'k̂niso�1
(36)

~ �
 k̂nad2�1

	1� j j
k̂nad1�1 � j jk̂nad2�1
(37)

~A 2 � A2�	1� '
	1� j j
k̂nad1�1 � 	1� '
j jk̂nad2�1 � 'k̂niso�1�; (38)
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where k̂ � ~k0=k0, and weighting the likelihoods with the Jacobian determinant of this parameter transformation,

J �
k̂nad1�1k̂nad2�1k̂niso�1

�	1� j j
k̂nad1�1 � j jk̂nad2�1��	1� '
	1� j j
k̂nad1�1 � 	1� '
j jk̂nad2�1 � 'k̂niso�1�2
: (39)
This weighting gives the effect of changing from flat priors
for ',  , and lnA to flat priors for ~', ~ and ln ~A.

Typically we have nad1  nad2  1, so that

~' 
'k̂niso�1

1� '� 'k̂niso�1
� 'k̂niso�1 (40)

~   (41)

~A 2  A2	1� '� 'k̂niso�1
 � A2 (42)

and

J 
k̂niso�1

	1� '� 'k̂niso�1
2
� k̂niso�1; (43)

where the ‘‘�’’ are for small '. Thus, if ~k0 > k0, the
likelihood of models with large niso is increased and that
of small niso is decreased. The opposite holds if ~k0 < k0.
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To study the effect of varying k0, we both (1) applied the
above transformation to our results from our main run and
(2) did shorter MCMC runs (8 chains) using k0 �
0:002 Mpc�1 and k0 � 0:05 Mpc�1. Both methods should
give the same result if the MCMC runs have sufficient
statistics. In practice, the results were close to each other
for k0 � 0:002 Mpc�1, but for k0 � 0:05 Mpc�1, our
original run had insufficient sampling at large niso, for
the reparametrization to give meaningful results. We
show in Fig. 21 the resulting marginalized likelihoods for
the (primary) parameters most affected. For k0 �
0:002 Mpc�1 the result shown is by method (1), but for
k0 � 0:05 Mpc�1 by method (2), since it had better statis-
tics. However, these results should only be taken as indica-
tive, especially for k0 � 0:05 Mpc�1 as the statistics was
not nearly as good as in our main case, k0 � 0:01 Mpc�1.

The 1-d likelihoods of !b, �, b, and nad1 did not change
significantly. Thus these parameters are not sensitive to the
choice of pivot scale. The parameter affected the most is
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niso, where we see very clearly the shift to smaller (larger)
niso as the pivot scale is increased (decreased).

Consider first the change to a large pivot scale k0 �
0:002 Mpc�1, corresponding to l0 � 28. Now a lot of
weight is given to models with a ‘‘red’’ isocurvature spec-
trum, niso < 1. For these models the isocurvature contribu-
tion is significant in the SW region of the CMB spectrum,
and negligible elsewhere. Accordingly, negative correla-
tion  is favored, since it subtracts power in the SW region
where the data is below the adiabatic model prediction. A
red correlated adiabatic index nad2 is favored, as the low-l
boost in the negative Ccorl tends to win over that in the
positive Cad2l . Because of the negative-correlation contri-
bution, somewhat larger amplitudes A are favored (not
shown in Fig. 21). With very little weight at niso � 3, the
large-
� models are eliminated, so the tails in the !c and
� distributions disappear.

The 1-d likelihood for the isocurvature fraction ' is
surprisingly close to the k0 � 0:01 Mpc�1 case. Thus our
upper limit '< 0:18 seems to be more robust than one
might have thought, and applies over a fairly large range of
scales.

Consider then the change to a small pivot scale k0 �
0:05 Mpc�1, corresponding to l0 � 700. This has the effect
that the problematic ‘‘high likelihood’’ region around
niso � 5–6, discussed in Sec. IV F, acquires a much larger
measure in the parameter space, increasing the marginal-
ized likelihood of these niso values. These models have
now a large weight in the 1-d likelihoods of all parameters.
While they had a very small '	k0 � 0:01 Mpc�1
, they
have a rather large'	k0 � 0:05 Mpc�1
 (see Eq. (40)), and
thus the ' distribution now extends to large values. At the
95% C.L. we obtain '	k0 � 0:05 Mpc�1
< 0:56. The
‘‘bump’’ in the !c distribution around �0:11 is also due
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to these models. The way the SDSS window functions
collect power from smaller scales (Sec. IV F) of Piso	k

allows a smaller ‘‘shape parameter’’
mh for Pad	k
, which
leads to the smaller !c. As explained in Sec. IV F, we do
not take these models with niso � 5–6 seriously. Thus the
k0 � 0:05 Mpc�1 case here should just be taken as a
warning for what may happen with extreme values of
spectral indices in this kind of studies.

In general, the pivot scale should be chosen to be in the
middle of the data set. If k0 is near either end of the range of
scales covered by the data, the spectral indices of compo-
nents which are subdominant in the main data region
become unconstrained in the direction which causes this
component to blow up outside, or near the edge, of the
data set.

VII. COMPARISON TO BELTRAN ET AL.

Because of the many differences in approach, discussed
in Sec. II, the comparison of our results to those of [17] is
not straightforward. If we include an 
� � 0:70� 0:04
prior to mimic their use of SNIa data, the (large �, small
!c) models we found but they did not, disappear from our
results. The remaining minor differences in the determi-
nation of standard (adiabatic) cosmological parameters are
mainly due to a different choice of pivot scale k0. When we
shift to the same pivot scale, k0 � 0:05 Mpc�1 they used,
our results approach theirs. Our results for this pivot scale
are however contaminated by problematic very large
niso � 5–6 models, whereas they have imposed an upper
limit niso < 3, so the results are not directly comparable
even in this case.

The parameters related to isocurvature perturbations
are defined with respect to the pivot scale. Our upper
limit to the isocurvature fraction ' at pivot scales
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k0 � 0:002 Mpc�1 and k0 � 0:01 Mpc�1 is much tighter
than their upper limit of about 60% at k0 � 0:05 Mpc�1.
Our unreliable k0 � 0:05 Mpc�1 upper limit ' � 0:56
agrees with that limit.

Because of different choice of correlation parameters,
the results for correlation are best compared in terms of our
'cor, which equals their �*

��������������������
'	1� '


p
plotted in Fig. 3 of

[17]. Our discovery of a preference for positive correla-
tions at large niso is in agreement with their result (with the
opposite sign convention).

VIII. DISCUSSION

We have used CMB and large scale structure data to
constrain models where the primordial perturbations have
both an isocurvature and an adiabatic component, allowing
for different spectral indices for these components, and a
possible correlation between them. We restricted these
models to a spatially flat (
 � 
� �
m � 1) back-
ground universe.

The basic conclusion is that the data clearly disfavors the
presence of isocurvature perturbations. This makes a like-
lihood study of such models problematic, since once the
isocurvature contribution is small, the related spectral in-
dices become unconstrained. When some of the indepen-
dent parameters are unconstrained, the likelihood function
becomes sensitive to the implied prior due to the parame-
trization used. We demonstrated this by changing the pivot
scale used to define our isocurvature and correlation frac-
tion parameters.

The problem with spectral indices does not occur when a
model has only one independent spectral index. It would
also not occur if the data would clearly favor a nonzero
fraction for any component whose spectral index we have
as an independent parameter.

Perhaps a better parametrization of isocurvature models
would be to use the amplitudes at two scales (e.g. at kmin
and kmax) as the independent parameters for the likelihood
analysis, instead of an amplitude and a spectral index. The
spectral index would then become a derived parameter. We
suggest trying this approach in future studies, since it
might: 1) Lead to a much faster convergence of the
MCMC chains because the unconstrained spectral indices
would be missing. 2) Remove a possible bias towards zero
isocurvature amplitude models, which was a result of
blowing up the parameter space volume upon marginaliza-
tion caused by unconstrained niso in case of small '. 3)
Prevent the feature that with too large k0 the integration
measure (weight) of models with extremely large niso
becomes arbitrary large.

For models with the largest isocurvature fractions at the
pivot scale k0 � 0:01 Mpc�1, which is roughly in the
middle of the data set used, the isocurvature spectral index
is constrained to be in the range 0:5 & niso & 3:5 which
prevents the isocurvature contribution from rising too high
either in the small or large scale ends of the data used. If
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one moves the pivot scale to smaller (larger) scales the
upper (lower) limit to niso is relaxed, or removed, as the
rising part of the isocurvature spectrum moves outside the
data range.

Of the standard (adiabatic model) cosmological parame-
ters, the determination of the baryon density !b, the pri-
mordial perturbation amplitude A, the adiabatic spectral
index nad, the optical depth due to reionization �, or the
bias parameter b, is not significantly affected by a possible
isocurvature contribution. On the other hand, models with
a smaller CDM density !c and a larger sound horizon
angle � become acceptable. This means that we cannot
even rule out models with H0 > 100 km=s=Mpc and

m < 0:1 (at 95% C.L.) using CMB and LSS data alone.

We obtained an upper limit '< 0:18 (95% C.L.) to the
CDM isocurvature fraction for models where correlation is
allowed between the isocurvature and adiabatic contribu-
tions. This limit is somewhat tighter than the correspond-
ing limit of uncorrelated models, since correlation causes a
stronger signature in the data than an uncorrelated isocur-
vature perturbation.

Here ' is defined as the ratio PS=	PR � PS
 of the
primordial entropy and curvature perturbation power spec-
tra, at a pivot scale k0, and our upper limit applies for both
k0 � 0:002 Mpc�1 and k0 � 0:01 Mpc�1, and presum-
ably also for the range in between. The value ' � 0:18
corresponds to fiso � 	PS=PR
1=2 � 0:47. For smaller
scales (larger k) our results are less conclusive, since there
the constraint on ' relies more on the large scale structure
(SDSS) data, whose use is problematic for a steeply rising
(large niso) isocurvature contribution. However, our results
for k0 � 0:05 Mpc�1 are not in disagreement with the
upper limit of 60% for ' obtained in [17] using this pivot
scale.

In the observed temperature anisotropy signal the
amount of nonadiabatic contribution is j'T j< 0:075 at
95% C.L. in our correlated isocurvature model. The upper
limit becomes tighter in the uncorrelated case, 'T < 0:043
at 95% C.L.

In models with a large isocurvature spectral index,
niso � 2–4, a positive correlation between the adiabatic
and isocurvature perturbations is favored. The correlation
contribution appears then in the acoustic peak region,
where the effect of a positive correlation is to shift the
acoustic peaks towards larger multipoles l, which then
favors a larger sound horizon angle � to push the peaks
back to where the data has them. To satisfy also the large
scale structure data, smaller CDM densities !c are then
favored. These effects translate into a larger H0 and a
smaller 
m (larger 
�).

In models with a small isocurvature spectral index,
niso � 0–2, a negative correlation is favored. Here the
correlation contribution appears in the Sachs-Wolfe region,
where this negative correlation brings the Cl down to better
agree with the small large scale CMB anisotropy seen by
WMAP.
-20



CORRELATED PRIMORDIAL PERTURBATIONS IN . . . PHYSICAL REVIEW D 71, 063005 (2005)
ACKNOWLEDGMENTS

We thank the CSC—Scientific Computing Ltd.
(Finland) for computational resources. H. K. S. would
like to thank Sarah Bridle for introducing him to
CosmoMC. V. M. was supported by the Magnus
063005
Ehrnrooth Foundation and the Graduate School in
Astronomy and Space Physics. J. V. was supported by the
Magnus Ehrnrooth Foundation and by the Research
Foundation of the University of Helsinki (Grant for
Young and Talented Researchers).
[1] M. Bucher, K. Moodley, and N. Turok, Phys. Rev. D 62,
083508 (2000).

[2] M. Bucher, K. Moodley, and N. Turok, Phys. Rev. Lett. 87,
191301 (2001).

[3] J. Väliviita and V. Muhonen, Phys. Rev. Lett. 91, 131302
(2003).

[4] C. L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1
(2003).

[5] R. Stompor, A. J. Banday, and K. M. Gorski, Astrophys. J.
463, 8 (1996).

[6] K. Enqvist, H. Kurki-Suonio, and J. Väliviita, Phys. Rev. D
62, 103003 (2000).

[7] E. Pierpaoli, J. Garcia-Bellido, and S. Borgani, J. High
Energy Phys. 10 (1999) 015.

[8] L. Amendola, C. Gordon, D. Wands, and M. Sasaki, Phys.
Rev. Lett. 88, 211302 (2002).

[9] K. Enqvist, H. Kurki-Suonio, and J. Väliviita, Phys. Rev. D
65, 043002 (2002).

[10] T. Moroi and T. Takahashi, Phys. Lett. B 522, 215 (2001).
[11] T. Moroi and T. Takahashi, Phys. Rev. D 66, 063501

(2002).
[12] H. V. Peiris et al., Astrophys. J. Suppl. Ser. 148, 213

(2003).
[13] P. Crotty, J. Garcia-Bellido, J. Lesgourgues, and A.

Riazuelo, Phys. Rev. Lett. 91, 171301 (2003).
[14] D. Parkinson, S. Tsujikawa, B. A. Bassett, and L.

Amendola, astro-ph/0409071.
[15] K. Moodley, M. Bucher, J. Dunkley, P. G. Ferreira, and C.

Skordis, Phys. Rev. D 70, 103520 (2004).
[16] F. Ferrer, S. Rasanen, and J. Väliviita, J. Cosmol.

Astropart. Phys. 10 (2004) 010.
[17] M. Beltran, J. Garcia-Bellido, J. Lesgourgues, and A.

Riazuelo, Phys. Rev. D 70, 103530 (2004).
[18] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).
[19] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,

473 (2000).
[20] J. Garcia-Bellido and D. Wands, Phys. Rev. D 53, 5437

(1996).
[21] D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle,

Phys. Rev. D 62, 043527 (2000).
[22] D. Langlois, Phys. Rev. D 59, 123512 (1999).
[23] D. Langlois and A. Riazuelo, Phys. Rev. D 62, 043504

(2000).
[24] C. Gordon, D. Wands, B. A. Bassett, and R. Maartens,

Phys. Rev. D 63, 023506 (2001).
[25] Supernova Search Team, A. G. Riess et al., Astrophys. J.
607, 665 (2004).

[26] W. Hu, M. Fukugita, M. Zaldarriaga, and M. Tegmark,
Astrophys. J. 549, 669 (2001).

[27] SDSS Collaboration, M. Tegmark et al., Astrophys. J. 606,
702 (2004).

[28] A. Lewis and A. Challinor, Phys. Rev. D 66, 023531
(2002).

[29] C. Gordon and A. Lewis, Phys. Rev. D 67, 123513 (2003).
[30] Virgo Consortium, R. E. Smith et al., Mon. Not. R. Astron.

Soc. 341, 1311 (2003).
[31] G. Hinshaw et al., Astrophys. J. Suppl. Ser. 148, 135

(2003).
[32] A. Kogut et al., Astrophys. J. Suppl. Ser. 148, 161 (2003).
[33] L. Verde et al., Astrophys. J. Suppl. Ser. 148, 195 (2003).
[34] A. C. S. Readheadet al., Astrophys. J. 609, 498 (2004).
[35] ACBAR Collaboration, C.-l. Kuo et al., Astrophys. J. 600,

32 (2004).
[36] SDSS Collaboration, M. Tegmark et al., Phys. Rev. D 69,

103501 (2004).
[37] S. Burles, K. M. Nollett, and M. S. Turner, Astrophys. J.

552, L1 (2001).
[38] L. Hui and Z. Haiman, Astrophys. J. 596, 9 (2003).
[39] R. Trotta, A. Riazuelo, and R. Durrer, Phys. Rev. D 67,

063520 (2003).
[40] M. Bucher, J. Dunkley, P. G. Ferreira, K. Moodley, and C.

Skordis, Phys. Rev. Lett. 93, 081301 (2004).
[41] S. Gupta, K. A. Malik, and D. Wands, Phys. Rev. D 69,

063513 (2004).
[42] F. Ferrer, S. Rasanen, and J. Väliviita, to be published.
[43] R. Trotta, A. Riazuelo, and R. Durrer, Phys. Rev. Lett. 87,

231301 (2001).
[44] G. F. Smoot et al., Astrophys. J. 396, L1 (1992).
[45] C. L. Bennett et al., Astrophys. J. 436, 423 (1994).
[46] M. Tegmark and M. Zaldarriaga, Astrophys. J. 544, 30

(2000).
[47] Boomerang Collaboration, C. B. Netterfield et al.,

Astrophys. J. 571, 604 (2002).
[48] W. L. Freedman et al., Astrophys. J. 553, 47 (2001).
[49] Particle Data Group, K. Hagiwara et al., Phys. Rev. D 66,

010001 (2002).
[50] Boomerang Collaboration, P. de Bernardis et al., Nature

(London) 404, 955 (2000).
[51] A. Balbi et al., Astrophys. J. 545, L1 (2000).
-21


