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The nonlinear electrodynamic and gravitational actions on the weak electromagnetic wave propagation
in the strong dipole magnetic and gravitational fields of a neutron star are discussed. The eikonal equations
for an electromagnetic wave propagating in the external field as well as the motion equations of photons in
the dipole magnetic and gravitational fields of a neutron star are obtained from the parametrized post-
Maxwellian electrodynamics of the vacuum, which is analogous to the parametrized post-Newtonian
theory of gravitation. The solution of these equations indicates that electromagnetic signals, carried by
normal waves with mutually orthogonal polarization, travel along different rays and take different time to
reach the detector from the same source. It is also shown that in appropriate conditions the value of this
nonlinear-electrodynamic lag can be about a tenth part of a microsecond. A detailed analysis of the
possibilities of observing this effect by the detection of X-rays and gamma rays from pulsars and
magnetars was made.
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I. INTRODUCTION

As it is well known, Maxwell electrodynamics in the
absence of matter is a linear theory. Its predictions in the
various applications besides the subatomic level are con-
stantly confirmed with higher and higher accuracy.
Quantum electrodynamics, which is elaborated on the
base of the Maxwell electrodynamics with the renormal-
ization procedure, also describes the different subatomic
processes well, and it is considered to be one of the most
sound physical theories.

However, as it follows from fundamental physical rea-
sons, electrodynamics in vacuum should be a nonlinear
theory. Recent experiments [1] on the inelastic scattering
of laser photons on gamma-quanta confirm this conclusion
of the theory. Thus, the different models of nonlinear
electrodynamics of vacuum as well as their predictions,
which can be experimentally verified, are of great
importance.

A number of laboratory experiments [2–10], in which
such effects can be studied, were recently proposed.
However, the magnetic fields available in ground labora-
tories B� 106 G are much smaller than the typical quan-
tum electrodynamics value Bq�m2c3=e�h�4:41 �1013 G.
Thus, the nonlinear corrections to the Maxwell equations
are so small that it is extremely difficult to observe effects
induced by these corrections in vacuum.

The nonlinear effects should be most pronounced in the
astrophysical objects in fields B� 1012 � 1016 G, which
are typical for some pulsars and magnetars. Adler [11] was
probably the first who indicated this reason.

Nonlinear effects, which can occur in this case are:
photon splitting [11], second harmonic generation [12],
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the electromagnetic ray bending in the dipole magnetic
field [13], and the lag of electromagnetic signal carried by
the one normal wave in comparison with the electromag-
netic signal carrying by the other normal wave [14]. This
lag is caused by the so-called vacuum birefringence in-
duced in strong magnetic fields.

It is necessary to note that, due to the presence of a
matter-filled magnetosphere in the vicinity of neutron stars,
these effects can be observed mainly in X- and gamma
rays, for which magnetosphere is to a certain extent
transparent.

However, due to the nonlinearity of equations these
effects are now studied for only some particular cases,
when the wave vector of electromagnetic wave, falling
on the neutron star, lays in the dipole magnetic field
symmetry plane.

We will consider the general case, when the electromag-
netic wave vector has an arbitrary direction relatively to the
vector of the neutron star dipole magnetic field.

We will analyze the main vacuum nonlinear electrody-
namic effects, which are induced by the weak electromag-
netic wave propagation through the dipole magnetic and
gravitational fields of a neutron star.

To solve this problem, the parametrized post-
Maxwellian electrodynamics with different free parameter
values in different models of non-linear electrodynamics of
vacuum is introduced in the Sec. II in full analogy with the
parametrized post-Newtonian formalism of the theory of
gravitation [15].

The eikonal equation for the electromagnetic wave prop-
agating in the external electromagnetic and gravitational
fields is obtained in Sec. III on the base of parametrized
post-Maxwellian electrodynamics equations. It follows
from this equation that electromagnetic waves propagate
in the external fields along the geodesics of some effective
pseudo-Riemannian space-time, the metric tensor of which
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depends on the metric tensor of the background space-time
g�0�ik ; as well as the tensor of the external electromagnetic
field Fik and the electromagnetic wave polarization state.

The equations of photon propagation in the dipole mag-
netic and gravitational fields of a neutron star are obtained
in Sec. IV from this tensor and equations of geodesics. The
solution of these equations are found in Sec. V and the
formulas describing the effect of non-linear electromag-
netic lag of electromagnetic signal carried by one normal
wave in comparison with the other normal wave with
polarization orthogonal to the first one are obtained in
Sec. VI

The relation describing nonlinear electromagnetic lag
for the different relative positions of the neutron star,
source and detector of electromagnetic waves is analyzed
in Sec. VII. And finally, the possibilities of observing the
considered effect by the detection of X- and gamma rays
from the well known pulsars and magnetars are examined
in the Discussion.

II. THE POST-MAXWELLIAN EQUATIONS
OF VACUUM NONLINEAR ELECTRODYNAMICS

IN THE GRAVITATIONAL FIELD
OF A NEUTRON STAR

Let us consider a neutron star with a strong magnetic
field (gamma-pulsar or magnetar), with radius Rs, mag-
netic dipole moment m and gravitational radius rg. For
certainty, we will assume that it is not transparent for the
electromagnetic emission.

The star matter as well as the dipole magnetic field with
particles, existing in it, produce the gravitational field of
this star. Since the rest energy of the neutron star matter is
more than 6 orders higher than the magnetic field energy
even in the case of a magnetar, the star matter gives the
main contribution to the gravitational field. If we assume
spherical symmetry, the Schwarzschild solution in iso-
tropic coordinates can be chosen as the metric tensor of
pseudo-Riemannian space-time [16]:

ds2 �
�4r� rg�

2

�4r� rg�2
c2dt2 �

�
1	

rg
4r

�
4
fdx2 	 dy2 	 dz2g;

were we denote r �
���������������������������
x2 	 y2 	 z2

p
.

In the case of weak electromagnetic fields the general
Lagrangian of the vacuum nonlinear electrodynamics can
be written in the parametrized post-Maxwellian form [17],
which in a certain sense is analogous to the parametrized
post-Newtonian formalism of the gravitational theory [15],
which is used for study different effects in the weak gravi-
tational field of the Solar system:

L �

�������
�g

p

32�
f2J2 	 ����1 � 2�2�J

2
2 	 4�2J4�g �

1

c
jnAn;

(1)

where J2 � FikFki; J4 � FikFkmFmlFli are the invariants
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of the electromagnetic field tensor, � � 1=B2
q, and the

values of dimensionless post-Maxwellian parameters �1

and �2 depend on the choice of the vacuum nonlinear
electrodynamic model.

For example, in the Heisenberg-Euler nonlinear electro-
dynamics [18], which is the consequence of quantum
electrodynamics, parameters �1 and �2 have quite definite
values �1 � �=�45�� � 5:1 � 10�5; �2 � 7�=�180�� �
9:0 � 10�5; while in the Born-Infeld theory [19] they are
a function of the some unknown constant a2: �1 � �2 �

a2B2
q=4:

The system of electromagnetic field equations, which
can be obtained from the Lagrangian (1) has the form:

1�������
�g

p
@
@xn

f
�������
�g

p
Hmng � �

4�
c
jm;

@Fmn
@xk

	
@Fnk
@xm

	
@Fkm
@xn

� 0;

(2)

where in order to shorten the expression, we denote:

Hmn � f1	 ���1 � 2�2�J2gFmn 	 4��2FmlFlkFkn:

There are two small parameters of the considered problem
rg=r and �1;2�B

2�r�. Due to the different dependence of
these parameters on r, their ratio changes with the chang-
ing r, and the values of these parameters are different on
the surface of various neutron stars.

This circumstance produces serious problem in provid-
ing equal calculation accuracy according to these parame-
ters series. Thus, we will calculate the main nonlinear
electrodynamic and gravitational effects with accuracy,
which is linear in �1;2�B2�r� and is quadratic in rg=r:
III. THE EIKONAL EQUATION

We will find the eikonal equation, which is satisfied by
the weak high frequency electromagnetic wave propagat-
ing in the gravitational and magnetic fields of a neutron
star.

We will express the tensor of electromagnetic field in
Eqs. (2) as the sum of the tensor of neutron star electro-
magnetic field F�0�

ik and the tensor of weak electromagnetic
wave field fik: Fik � F�0�

ik 	 fik:
In the linear approximation of the weak electromagnetic

wave fik Eqs. (2) have the form:

1�������
�g

p
@
@xn

f
�������
�g

p
Hmn

�1� g � 0;

@fmn
@xk

	
@fnk
@xm

	
@fkm
@xn

� 0;

(3)
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where

Hmn
�1� � �1	 ���1 � 2�2�J

�0�
2 �fmn

	 4��2�fmlF
�0�
lk F

kn
�0� 	 FmlflkFkn�0� 	 Fml

�0�F
�0�
lk f

kn�

	 2���1 � 2�2�fikF
ki
�0�F

mn
�0� :

To calculate the influence of gravitational and magnetic
fields on the weak electromagnetic wave rays we will
present the tensor fnm as:

fnm � hnm�r; t�eiS�r;t�; (4)

where, as usual, the amplitude hnm�r; t� is a slowly chang-
ing function of space coordinates and time, and the eikonal
S�r; t� is the fast changing function.

Let us substitute the relation (4) in Eqs. (3). We now take
into account that the function S�r; t� strongly varies on
distances of about one wave length and on time intervals
of about period. Thus, derivatives of S in coordinates and
time satisfy the condition:

jhnm�r; t�@S=@xlj>>j@hnm�r; t�=@xlj:

Besides, for points located outside the star the following
estimates of the order of magnitude are valid:

@F�0�
nm=@r� F�0�

nm=Rs; @S=@r� S=&;

where Rs—the star radius, &—the electromagnetic emis-
sion wave length.

Because for X-rays and gamma rays Rs=&� 1; it is
necessary to retain by the differentiation ofHnm

�1� in Eqs. (3)
the derivatives on the eikonal S only.

As a result, the linearly-independent equations of the
system (3) can be expressed as:

�1	 ���1 � 2�2�J
�0�
2 �f'n

@S
@xn

	

4��2�f
'lF�0�

lk F
kn
�0� 	 F'l

�0�flkF
kn
�0� 	 F'l

�0�F
�0�
lk f

kn�
@S
@xn

	

�2���1 � 2�2�fikFki�0��F
'n
�0�

@S
@xn

� 0;

f�(
@S

@x0
	 f(0

@S
@x�

	 f0�
@S

@x(
� 0:

(5)

Let us multiply the first equation of system (5) by @S=@x0

and exclude from it the components f�( using the second
equation (5). As the result, we obtain the homogeneous
system of three linear algebraic equations relatively to
three components f0( of tensor fnm


'(f0( � 0;

where the three-dimensional tensor 
'( has the form:
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'( � f�1	 ���1 � 2�2�J
�0�
2 ��gnm

�0�g
'(
�0� � g'n

�0�g
(m
�0� �

� 4����1 � 2�2�F
'nF(m 	 �2g

(n
�0�F

'kF�m
k�

	 �2g
'n
�0�F

(kF�m
k� � �2�g

nm
�0�F

'kF�(
k� 	 g'(

�0� F
nkF�m

k�

� F'nF(m��g
@S
@xn

@S
@xm

:

In this expression and in the following ones we omit index
�0� in the Fnk

�0� tensor of the neutron star magnetic field.
As it is well-known, the eikonal equation is the conse-

quence of condition

detjj
'(jj � 0: (6)

Using the tensor formalism, which was developed in
[20,21], we reduce Eq. (6) to the form:�

gik�1�
@S
@xi

@S

@xk

�
�

�
gmn�2�

@S
@xm

@S
@xn

�
� 0; (7)

where the notations

gik
�1;2� � gik

�0� 	 4�1;2�F
ipF�k

p� (8)

are introduced and the tensor Fpi indexes can be raised up

using the metric tensor gkp
�0�.

Thus, at �1 � �2 nonlinear electrodynamics predicts
the appearance of the vacuum birefringence even in the
post-Maxwellian approximation, as the result of which the
laws of electromagnetic wave propagation in the external
electromagnetic field will depend on their polarization.
Hence, any electromagnetic wave propagating through
the neutron star magnetic field will be split into two normal
waves with orthogonal polarization. Due to Eq. (7) the first
one will propagate along the geodesics of the effective
pseudo-Riemannian space-time with metric tensor gik

�1�,
and the second—along the geodesics of the pseudo-
Riemannian space-time with metric tensor gik�2�.
IV. THE EQUATIONS OF ELECTROMAGNETIC
SIGNAL PROPAGATION IN THE DIPOLE

MAGNETIC AND GRAVITATIONAL FIELDS OF A
NEUTRON STAR

Let us consider a given neutron star with strong mag-
netic field (gamma pulsar or magnetar [22]). We suppose
that X-rays and gamma rays pass through it magnetic and
gravitational fields and then propagate to the detector
placed in the vicinity of the Earth.

We place the coordinate origin in the neutron star center.
The neutron star dipole magnetic moment in the general
case can be presented in the form:

m1 � jmj sin*1 cos’1; m2 � jmj sin*1 sin’1;

m3 � jmj cos*1;
(9)
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where the angles *1 and ’1 as we assume do not depend on
time.

To resolve Eq. (2) in a zero approximation in rg=r and
�FinF�k

n�, we can to find the nonzero components of the
tensor Fpk, which describes the neutron star magnetic field
with dipole moment m; described by expression (9):

F32 �
3�mr�x� r2m1

r5
; F13 �

3�mr�y� r2m2

r5
;

F21 �
3�mr�z� r2m3

r5
;

where �mr� � m1x	m2y	m3z.
The propagation of photons in the pseudo-Riemannian

space-time with the tensor (8) occurs along the geodesics
of this space and, depending on their polarization, can be
described by the equation:

dkm

d,
	 �mpnk

pkn � 0; g�1;2�nm knkm � 0; (10)

where km � dxm=d,, , is some affine parameter, and �mpn
are the Christoffel symbols of the effective pseudo-
Riemannian space-time with the metric tensor g�1�nm for
normal waves of the first type and g�2�nm—for the normal
waves of the second type.

It is necessary to note that Eq. (10) and all other ex-
pressions, which can be obtained from it, are valid only in
the space area, where m2=r6 <B2

q and the expansion of
Lagrangian (1) is permissible. Thus, without particular
stipulation, we will study only those rays of weak electro-
magnetic wave, which are entirely in that space area.

It is quite convenient to replace the differentiation in ,
in equations of the system (10) by differentiation in coor-
dinate x0 � ct in accordance with the equality:

d
d,

�
dx0

d,
d

dx0
� k0

d

dx0
:

To combine equations of the system (10), we rewrite them
in a more suitable form:

d2x

�dx0�2
	

�
�1
mi �

dx

dx0
�0
mi

�
dxi

dx0
dxm

dx0
� 0;

d2y

�dx0�2
	

�
�2
mi �

dy

dx0
�0
mi

�
dxi

dx0
dxm

dx0
� 0;

d2z

�dx0�2
	

�
�3
mi �

dz

dx0
�0
mi

�
dxi

dx0
dxm

dx0
� 0:

(11)

It is necessary to note that in these equations the time t �
x0=c; is the time measured by the clock of the observer
located at a great distance from the neutron star.

If we expand Eqs. (11) in the series on small parameters
rg=r and �m2=r6 with accuracy, which is quadratic on rg=r
and linear on �m2=r6, they will be completely equivalent to
the following system of equations, which are written in the
Cartesian coordinates of the three-dimensioned Euclidean
063002
space:

�r � �
rg
r3

�r� 2� _rr� _r� 	
r2g
8r4

�17r� 2� _rr� _r�

	
12��

r12
f�5r2�mr�� _rr�2 � 2r4�m _r�� _rr��m

	 �2r4m2� _rr� � 2r4�m _r��mr� 	 8r2�mr�2� _rr�� _r

	 �6r2�m _r��mr�� _rr� � r2�mr�2

�m2r4 � 15�mr�2� _rr�2�rg; (12)

where the point denotes the derivative on x0 � ct.
In these notations the first integral g�1;2�nm knkm � 0 of the

system of equations (12) becomes:

_r2 � 1�
2rg
r

	
17r2g
8r2

	
4��

r10
f��m _r�2 �m2�r4

	 6��mr� � �m _r�� _rr���mr�r2

	 9�� _rr�2 � r2��mr�2g: (13)

It is necessary to note, once more, that due to the vacuum
birefringence in the gamma pulsar or magnetar strong
magnetic field any electromagnetic signal will propagate,
in general case, as two electromagnetic signals polarized
mutually orthogonal to each other. These signals will be
carried by the normal waves of two types, which will
propagate along different rays and with different velocity.
To describe the laws of the first type normal wave propa-
gation, it is necessary to put � � �1, in Eqs. (12) and (13)
and for the normal waves of the second type � � �2.

It is assumed that in Eqs. (12) and (13) the vector of
neutron star magnetic dipole moment (9) does not depend
on time. However, the obtained equations and their solu-
tions are valid also in the case, when the neutron star
rotates quasi-stationary with the frequency of �1 around
the axis, which passes through the center of mass, but does
not coincide with the vector of it dipole moment m.
Besides, the rotational axis undergoes regular precession
with the frequency of �2. To satisfy the condition of quasi-
stationary rotational motion we will assume that the fre-
quencies �1 and �2 are small enough to guarantee that the
linear velocity of points on the neutron star surface is much
less than the velocity of light: �1;2Rs � c. Then we can
neglect the fields of star magneto-dipole emission, and this
means that the star dipole magnetic field gives the main
contribution to the nonlinear electrodynamic influence on
the propagation of weak electromagnetic waves.

Let us assume that in the moving coordinate system the
neutron star vector m is tilted relatively to the x3 axis by
angle �0 and the angle between its projection on the plane
X1O0X2 and the positive direction of the axis x1 is (0:

m � jmjfsin�0 cos(0; sin�0 sin(0; cos�0g:

Then in x; y; z coordinates vector m will have the following
components:
-4
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mx�jmjfsin�0�cos cos��	(0�

�cos�sin sin��	(0��	sin�sin cos�0g;

my�jmjfsin�0�cos�cos sin��	(0�

	sin cos��	(0���sin�cos cos�0g;

mz�jmjfcos�0 cos�	sin�sin�0 cos��	(0�g:

(14)

NONLINEAR ELECTROMAGNETIC AND GRAVITATIONAL
Since the neutron star besides its own rotation undergoes
precession, the angles � and  in those relations are the
following functions of time (nutation of neutron stars are
very small):
� � �1t	�0;  � �2t	  0; (15)
where �0 and  0 are constant and �1 >�2.
Because the periods T1 � 2�=�1 and T2 � 2�=�2 for

the neutron star quasi-stationary rotation are much larger
than the time T � 2Rs=c of electromagnetic signal propa-
gation in the strong magnetic field area, we can assume that
the angles � and  do not depend on time when we resolve
Eqs. (12) and (13) of our problem of nonlinear electro-
dynamic and gravitational bending of rays and electromag-
netic signal lags, and only in the final solution we can take
into account relations (14) and (15).
V. SOLUTION OF THE EQUATIONS OF
ELECTROMAGNETIC SIGNAL PROPAGATION

Thus, solving the system of equations (12) and (13) we
can find the laws of motion of electromagnetic signals in
063002
the neutron star dipole magnetic and gravitational fields.
As one of the initial conditions we assume that electro-
magnetic signals carried by both normal waves are emitted
at the point r � r0 at the same moment of time t � 0.

We will find the solution of the system of equation (12)
in the form of series on small parameters:

r � f0�x0� 	 rgf1�x0� 	 r2gf2�x0� 	 ��f3�x0�: (16)
Eqs. (12) can be integrated most simply in the zero ap-
proximation:

f 0�x0� � nct	 r0; (17)
where n is some constant vector.
The system of equations (12) gives in the first order:

f1�x0��v1ct�nln

2
64�ct	�nr0�	

�����������������������������������������
c2t2	2�nr0�ct	r20

q
�

r0	�nr0�

3
75

	

�
ct	r0�

�����������������������������������������
c2t2	2�nr0�ct	r20

q �

�
�r0��nr0�n�

22 ; (18)
where v1 is the constant vector, 22 � r20 � �nr0�2 is the
square of impact distance.

After the integration of the equations of system (12) in
the next approximation, we obtain:
f2�x0�� v2ct	r2	
15

1623 f�r
2
0�222	ct�nr0��n��ct	�nr0��r0garcctg

�
ct	�nr0�

2

�

	
1

22

8<
:�nr0�n�r0�22v1�

�ct�nr0�	r20�222�n��ct	�nr0��r0�����������������������������������������
c2t2	2�nr0�ct	r20

q
9=
;ln

8<
:
�ct	�nr0�	

�����������������������������������������
c2t2	2�nr0�ct	r20

q
�

�r0	�nr0��

9=
;

�
1

24

�����������������������������������������
c2t2	2�nr0�ct	r20

q
���nr0�r0	�22�2r20��v1r0��r

2
0�n	��2�v1r0�	1��nr0��r0�r0��nr0�22v1�

	
r0�ct	2�nr0��r0�v1r0��r0�n

22
�����������������������������������������
c2t2	2�nr0�ct	r20

q �
��1	�v1r0��ct	r0�r0

22
�����������������������������������������
c2t2	2�nr0�ct	r20

q ; (19)
where v2 is the arbitrary constant vector, and the vector r2 due to the initial condition has the form, which is presented in
Appendix A.

And finally, after integration of the system of equations (12) in the nonlinear electrodynamic approximation, we obtain:
-5



��

VICTOR I. DENISOV AND SERGEI I. SVERTILOV PHYSICAL REVIEW D 71, 063002 (2005)
f3�x0� � v3ct	 r3 �
3

6429 f2m2
2�25ct��nr0��nm� � �r0m�� 	 25r20�nm� � 2622�nm� � 25�nr0��r0m��

	 5r0�ct�35�r0m�2 	 35r20�nm�2 	 16m222 � 3622�nm�2 � 70�nr0��nm��r0m�� 	 16m222�nr0�

	 6022�nm��r0m� 	 35�nr0��r0m�2 	 35r20�nm�2�nr0� � 2622�nr0��nm�2 � 70r20�nm��r0m��

� n�5ct�16m222�nr0� 	 35�nr0��r0m�2 � 2622�nr0��nm�2 	 35r20�nr0��nm�2 	 6022�nm��r0m�

� 70r20�nm��r0m�� 	 30022�nr0��nm��r0m� 	 80m222r20 � 350r20�nr0��nm��r0m� 	 10424�nm�2

� 28022r20�nm�2 � 96m224 � 20022�r0m�2 	 175r40�nm�2 	 175r20�r0m�2��g

� arctg
�
ct	 �nr0�

2

�
�

9

4�c2t2 	 2�nr0�ct	 r20�
4 fn�ct��r0m�2 � 4�nr0��nm��r0m� � 422�nm�2 	 3r20�nm�2�

	 2r20�nm���nr0��nm� � �r0m��� � r0�2ct�nm���nr0��nm� � �r0m�� 	 r20�nm�2 � �r0m�2�g

	
1

822�c2t2 	 2�nr0�ct	 r20�
3 f10m2

2�ct�nm� 	 �r0m�� � n�ct�1822�nm�2 � 5r20�nm�2 	 5�r0m�2�

� 3622�nr0��nm�2 	 10�nr0��r0m�2 	 3622�nm��r0m� � 10r20�nm��r0m�� 	 r0�10ct�nm���r0m� � �nr0��nm

� 1822�nm�2 � 5r20�nm�2 	 5�r0m�2�g �
1

3224�c2t2 	 2�nr0�ct	 r20�
2 fn�ct�16m

222 	 2622�nm�2

� 25r20�nm�2 	 25�r0m�2� 	 32m222�nr0� 	 10r20�nr0��nm�2 	 60�nr0��r0m�2 	 6022�nm��r0m�

� 70r20�nm��r0m�� 	 r0�50ct��nm���nm��nr0� � �r0m�� � 16m222 	 20�nr0��nm��r0m� � 1422�nm�2

	 15r20�nm�2 � 35�r0m�2� � 2m22�ct�nm� 	 6�nr0��nm� � 5�r0m��g �
1

6426�c2t2 	 2�nr0�ct	 r20�

� fn�3ct�16m222 	 2622�nm�2 � 25r20�nm�2 	 25�r0m�2� 	 2�64m222�nr0� � 2622�nr0��nm�2

	 50r20�nr0��nm�2 	 125�nr0��r0m�2 	 15022�nm��r0m� � 175r20�nr0��nm���

� 2m22�3ct�nm� 	 28�nr0��nm� � 25�r0m�� 	 5r0�30ct�nm���nr0��nm� � �r0m��

� 16m222 	 40�nr0��nm��r0m� 	 622�nm�2 � 5r20�nm�2 � 35�r0m�2�g; (20)
where v3 is an arbitrary constant vector, and vector r3 due
to the initial condition has the form, which is presented in
Appendix A.

To substitute the expressions (16)–(20) in the first inte-
gral (13), we obtain the relations, which the constant
vectors n; v1; v2 and v3 should satisfy:

n 2 � 1; �nv1� � �nv3� � 0; �nv2�

� �
1

2
v21 �

�1	 �r0v1��
22 : (21)

VI. THE EFFECT OF NONLINEAR
ELECTRODYNAMIC LAG

Expressions (16)–(20) define the laws of photon propa-
gation along any ray beginning at the point r � r0 in the
dipole magnetic and gravitational fields of gamma ray
pulsars and magnetars for arbitrary constant vectors n; v1;
v2 and v3, which satisfy relations (21). Let us choose from
this family of rays the ray, which passes through the point
r � rd; in which the detector of X-rays and gamma rays is
located. We will then determine the moment of time t � td
when the electromagnetic signal emitted at t � 0 from the
point r � r0; arrives at the point r � rd: For this we
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present t � td as the expansion in the degrees small pa-
rameters of our task:

td � t0 	 rgt1 	 r2gt2 	 ��t3; (22)

where � � �1 for electromagnetic signal carried by the
first normal wave and � � �2 for the electromagnetic
signal carried by the second normal wave.

If we substitute this expression in relation (16) and take
into account that r�td� � rd, we obtain the following set of
algebraic equations:

nct0 	 r0 � rd;nct1 	 f1�ct0� � 0;

nct2 	 f2�ct0� 	 _f1�ct0�ct1 � 0;

nct3 	 f3�ct0� � 0:

(23)

It follows from the first equation of this system that n �
�rd � r0�=�ct0�. Taking into account relation (21), we ob-
tain:

n �
rd � r0
jrd � r0j

; ct0 � jrd � r0j:

If we solve the rest of the equations of the system (23) and
take into account relations (21), we obtain in a similar way:
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td�
jrd�r0j

c
	
rg
c
ln
�
�rd	ct0	�nr0��

r0	�nr0�

�
	
r2g
c

�
2�r2d�r

2
0�

rd22 	
15

162

�
arctg

�
ct0	�nr0�

2

�
�arctg

�
�nr0�
2

��

	
2�2r30�2rdr

2
0	ct0�3r0�rd��nr0�	c

2t20�r0��nr0��rd��c3t30�
ct0rd2

2 	
4r20rd�3r0r

2
d	2r3d��rd	2r0��rdr0�
ct02

2rd

�
2�nr0�ct0
rd2

2

�
	
��
c

�
3

6427 �16m
222	25�mr0�2�50�nr0��mn��mr0��2622�mn�2	25r20�mn�2�

�

�
arctg

�
ct0	�nr0�

2

�
�arctg

�
�nr0�
2

��
	
m2f�3r2d	222�r40��3r20	222�r4dg�nr0�

4r4dr
4
02

4 	
�mn�2

64r40r
8
d2

6

���ct0	�nr0���75r20r
6
d	50r20r

4
d2

2�52r4d2
4�78r6d2

2	40r20r
2
d2

4	144r202
6�r40

	�12r6d2
4	28r20r

6
d2

2�144r402
6�75r40r

6
d�r

2
d�nr0��	

�mr0�2

64r8d2
6
��75r6d	50r4d2

2	40r2d2
4	14426��ct0	�nr0���

�
�mr0��mn��ct0�nr0�	r20�

32r8d2
6

�75r6d	50r4d2
2	40r2d2

4	14426�	
�mr0��mn�
32r60r

6
d2

6
�75r60r

4
d�r

2
d	2

2�	r602
4�50r2d	10422�

�25r40r
6
d2

2�10r6d2
4�r20�422���

�mr0�2�nr0�
64r802

6
�75r60	50r402

2	40r202
4	14426�

�
: (24)

Here and further the terms, which become equal to zero at rd ! 1 and at any value r0 <1, were omitted.
The constants of integration v1; v2 and v3 for the electromagnetic signal emitted at t � 0 in the point r � r0 and

propagating along the ray, which passes through the point r � rd; should have the form, which is presented in the
Appendix B.

If we use expressions (22)–(24), it is easy to find the time of nonlinear electrodynamic lag �t of electromagnetic signal
carried by the first normal wave, in comparison with the electromagnetic signal carried by the second normal wave:

�t �
��1 � �2��

c

�
3

6427

�
16m222 	 25�mr0�2 � 50�nr0��mn��mr0� � 2622�mn�2 	 25r20�mn�2

�

�

�
arctg

�
ct0 	 �nr0�

2

�
� arctg

�
�nr0�
2

��
	
m2f�3r2d 	 222�r40 � �3r20 	 222�r4dg�nr0�

4r4dr
4
02

4 	
�mn�2

64r40r
8
d2

6

� ��ct0 	 �nr0���75r20r
6
d 	 50r20r

4
d2

2 � 52r4d2
4 	 40r20r

2
d2

4 	 144r202
6 � 78r6d2

2�r40

	 �12r6d2
4 	 28r20r

6
d2

2 � 144r402
6 � 75r40r

6
d�r

2
d�nr0�� 	

�
�mr0�2

64r8d2
6
�ct0 	 �nr0�� �

�mr0��mn�
32r8d2

6
�ct0�nr0� 	 r20�

�

� �75r6d 	 50r4d2
2 	 40r2d2

4 	 14426� 	
�mr0��mn�
32r60r

6
d2

6
�75r60r

4
d�r

2
d 	 22� 	 r602

4�50r2d 	 10422�

� 25r40r
6
d2

2 � 10r6d2
4�r20 � 422�� �

�mr0�2�nr0�
64r802

6
�75r60 	 50r402

2 	 40r202
4 	 14426�

�
: (25)
It is necessary to note that if we substitute the relations (14)
and (15) in this expression by components of vector m
components, it can be also used for neutron star rotating
quasi-stationary.
VII. ANALYSIS OF NONLINEAR
ELECTRODYNAMIC LAG EFFECT

As it follows from formula (25), the value of nonlinear
electrodynamic lag of electromagnetic signals depends on
difference of post-Maxwellian parameters �1 � �2: Thus,
the value �t can be different in various models of the
nonlinear electrodynamics of vacuum. In particular, the
Born-Infeld electrodynamics predicts that �t � 0, while
063002
according to the Heisenberg-Euler electrodynamics �t �

0. It allows with the help of experimental data to distin-
guish the nonlinear theories with different value of �1 �
�2.

Besides, it follows from expression (25) that �t
value depends significantly on the relative positions of
the neutron star with strong magnetic field (gamma ray
pulsar or magnetar), the source and the detector of X-
and gamma rays. A few typical cases can be noted:
the source of emission is close to the neutron star,
the source of emission is located at certain (not very
large) distance from the neutron star, and the source of
emission is placed at a very long distance from the neutron
star.
-7
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The first case is realized when the source of emission is
near the pulsar (or magnetar) magnetic poles. It is the so
called polar cap model [22]. The second case is when the
emission occurs in the so called outer gap, the part of pulsar
magnetosphere along the null charge surface ��B� � 0,
where the corotation charge changes sign [23]. The most
advanced models were developed by considering so called
Deutsch field gamma ray pulsar [24,25]. The third case can
take place when the emission from the distant object, for
example the active galactic nuclei, propagates in the vi-
cinity of a neutron star.

Thus, we will discuss the obtained formula for the three
typical cases.

A. The source of X- and gamma rays is located on the
pulsar (or magnetar) magnetic poles

This case of emission generation in polar caps is quite
typical for relatively young pulsars with very high mag-
netic field (B � 1013 G) like the well-known pulsar in the
Crab nebula. The pulsating emission component of such
pulsars is in phased in the different energy bands - from
radio to gamma emission.

It is assumed that hard electromagnetic emission is
generated mainly by the relativistic electrons moving along
the magnetic field lines (so called curvature radiation). As
it is well-known, the magnetic bremsstrahlung (and curva-
ture radiation as well) beam width is inversely proportional
to the electron’s Lorentz-factor �. Thus, for the ultra-
relativistic electrons (�> 2) the beam will be rather nar-
row and oriented along the tangent to the field line.

At the same time, since X-ray and gamma-quanta of
relatively small energy (about dozens—hundreds keV)
besides the curvature mechanisms associated with sub-
relativistic and relativistic (� � 1) electrons will also be
produced due to Compton back-scattering of thermal pho-
tons, the directional diagram (beam) in the range of X-ray
and soft gamma ray radiation can be relatively wide. Thus
we can consider the isotropically emitted local areas near
the magnetic poles (at the distances no more than 0.5–1.0
stellar radius) as the sources of such photons [22].

The maximum intensity detected in the pulsed compo-
nent is determined by the projection of the emitting surface
on the plane normal to the observation line, i.e., it will
depend on the angle * between the line from the source to
observer and the magnetic dipole line as cos*.

The pulsed component of the emission of a rotating
neutron star with a strong magnetic field can be polarized
to a certain degree. For example, the mean pulse profile of
the Crab pulsar has twin peaks in different bands. In the
optical range polarization degree of both peaks is at the
level of �10% and the polarization vector rotates as the
pulsation phase changes [26]. The point is that similar
behavior may be also typical for the range of X-rays.

However, although during the OSO (Orbital Solar
Observatory) missions the polarization of synchrotron
063002
emission of the Crab nebula was detected in the range
10–20 keV at the level of 15% [27], the attempts to
measure polarization of the pulsed component of X-rays,
i.e., emission of the pulsar itself, on the OSO-8 satellite
gave only the upper limits, which for each peak are: �20%
and �30% at the energies of 2.4–2.8 keV and �60% and
�50% at the energies of 4.8–5.6 keV [28]. Thus, in further
considerations we will assume that pulsed emission of
gamma pulsars or magnetars is not polarized if the non-
linear electrodynamic effects is not taken into account.

In the case of emission from the pulsar polar cap region
we will assume that its size is small and the emitting area
itself is point-like. The relative amplitude of modulation
and the mean pulsed profile time structure are determined
by the angle ’m between the pulsar rotation axis and the
magnetic dipole axis as well as the angle ’0 between the
pulsar rotation axis and the direction from the pulsar to the
observer (detector). It is clear that the maximum of inten-
sity will be observed if the rotation axis, dipole magnetic
axis and the line from the pulsar to observer lay in the same
plane.

At ’m 	 ’0 < 90o, i.e. when only one polar cap is
observable, the time profile of pulsation have one-peak
structure. The peak width will be smaller and the relative
amplitude of modulation will be higher with increasing
angle ’m. When ’m 	 ’0 � 90o the modulation becomes
100%, if ’m � ’0, i.e., ’m � ’0 � 45o the peak width
will be equal to half of the pulsation period.

At’m 	 ’0 > 90o, as the pulsar rotates, one of the polar
caps will be shadowed by the opaque neutron star and
while the other cap will appear from the shadow, thus the
corresponding time profile of pulsation will be two-peaked.
It is clear that the peak widths should not be equal, and the
peak corresponding to the polar cap, which is less shad-
owed, will be wider.

For the radius-vector of point-like emitted area we can
write: r0 � 4Rsm=m;where 4 � 	1 for the source on the
neutron star’s north magnetic pole, and 4 � �1 for the
source on the neutron star’s south magnetic pole. Let us
take into account that the distance from the Earth to the
nearest gamma pulsars or magnetars is more than about 1
kps, and r0 � Rs � 102 km. Thus, in the expression (25)
we can take rd ! 1: As the result, it transforms to:

�t�
��2��1��m2

64cR5
s�1��ne�2�2

�
4�ne��229�260�ne�2	76�ne�4�

	
3�41�26�ne�2������������������������

�1��ne�2�
p

�
arctg

�
4�ne��������������������
1��ne�2

p �
�
2

���
; (26)

where the notation e � m=m has been introduced.
Since we assume that the neutron star is opaque, the

product 4�ne� in (26) should be non-negative because at
4�ne�< 0 the electromagnetic emission propagating along
the rays from the source to detector will fall on the neutron
star and will not reach the observer.
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Analysis of expression (26) shows that the lag time
interval �t has a maximum

�tmax �
123���1 � �2��m

2

128cR5
s

; (27)

if the emission propagates from the source along the rays
normal to the neutron star vector m and becomes equal to
zero if the emission propagates along the vector 4m:

In the case of a rotating neutron star the lag time interval
�t will be a function of time. If we denote the spherical
coordinates of the X- and gamma ray detector as *d and
’d; then due to expressions (14) and (15) we obtain:

�ne�� sin*dfsin�sin��2t0 	 0�’d�cos�0

	sin�0�cos��2t0 	 0�’d�cos��1t0 	�0	(0�

�cos�sin��2t0 	 0�’d�sin��1t0 	�0	(0��g

	cos*dfcos�0 cos�	sin�sin�0

�cos��1t
0	�0	(0�g:

where t0 is the retarded time.
Thus, the detected value of the lag time �t will be

modulated with frequencies �1;�2 and their combina-
tions. The modulation depth and frequency spectrum are
fore-determined by mutual orientation of vectors n;�1 and
m.

It is necessary to note that the obtained condition when
the lag time falls to zero corresponds to the peak maximum
of the mean pulsation profile, while the maximum lag time
corresponds to the intensity minimum of the pulsation
profile. Indeed, in the assumption of the isotropically emit-
ting point-like region near the polar cap, most of the
photons will be emitted along the magnetic dipole line
and the maximum of the detected emission intensity will
be observed if the angle between the magnetic dipole axis
and the line from the source to the detector is minimal,
while the minimum of the intensity—when the line from
063002
the source to the detector is furthest from the dipole axis.
Hence, the maximum lag time should be observed at the
rise and fall of the peak on the pulsation time profile and at
peak maximum the lag should be equal to zero.

B. The pulsar or magnetar outer gap as the source
of X- and gamma rays

In the case of the outer gap model, unlike the polar cap
model the emitting region is not so small, thus it can not be
regarded as point-like. The outer gap is the area between
the last open field line and the null charge surface located,
as usual at distances of about 10Rs from the neutron star.
We will approximate its size also as about 10Rs [22].

It is assumed that gamma emission of such relatively old
pulsars like Vela pulsar generates mainly in the outer gap.
It is typical for such pulsars that the mean pulsation profiles
are out of phase in the different energy ranges. As in the
case of the polar cap model, it is supposed that the high-
energy photons are generated due to the curvature mecha-
nism or by inverse Compton scattering of mainly infrared
photons (for old pulsars) [22].

These processes in the case of high-energy gamma-
quanta give the emission propagating mainly along the
direction of parental electron motion. However, in the
range of X-rays and soft gamma rays (dozens - hundreds
keV) the beam is, probably, quite isotropic. We can neglect
the emission polarization, which is not caused by the non-
linear electrodynamic effects.

Thus, in the case of emission generation in the outer gap
we can examine the emitting area, for which r0 � 10Rs, the
radius-vector ’0; *0 coordinates do not coincide in the
general case with the vector m coordinates ’m; *m.
However, because of the null charged surface ��B� � 0;
we can assume that ’> 45o. Besides, we have �nr0� �
r0 cos�’0 � ’�; 2� r0 sin�’0 � ’� (if ’0 >’� and 2�
2r0 sin�’� ’0 (if ’0 <’). It is also assumed that the
detector is located infinitely far. In this case expression
(25) gives:
�t �
��1 � �2��

64c27

�
3�16m222 � 50�mn��nr0��mr0� � 2622�mn�2 	 25r20�mn�2 	 25�mr0�2�

�

�
�
2
� arctg

�
�nr0�
2

��
	
2

r80
��mn�2�nr0�r40�122

4 	 2822r20 � 75r40� � 16m222r40�nr0��22
2 	 3r20�

� �nr0��mr0�2�14426 	 4024r20 	 5022r40 	 75r60� 	 10�mn��mr0�r20�82
6 � 224r20 � 522r40 	 15r60��

�
:

C. The X-ray and gamma ray source is located far away
from the pulsar or magnetar

In this case the source of emission is a distant object like
the active galactic nuclei (blasar, quasar or Seyfert galaxy),
emitting X-rays or gamma rays. Since such objects can be
considered as located practically infinitely far, both from
the observer and from the pulsar, we can assume that their
emission is a flat wave, i.e., the geometric optics approxi-
mation can be used. Since at the present time, there is no
information about polarization of high-energy emission
from extra-galactic objects, we will consider their emission
not polarized.

To study this case, it is convenient to orientate the
coordinate system axes in such a way that the source,
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detector and pulsar lay in the one of coordinate planes, for
example, YOZ, and the axis Z is parallel to the line con-
necting the emission source and the detector. Let us also
suppose that the source and the detector lay on different
sides of the XOY plane, otherwise the effect of nonlinear
electrodynamic lag will be negligibly small. Thus, we will
obtain:

r0�
�
0;2;�

���������������
r20�2

2
q �

; n�f0;0;1g; �mn���mz;

�nr0���
���������������
r20�2

2
q

; �mr0��my2�mz

���������������
r20�2

2
q

;

rd�
�
0;2;

���������������
r2d�2

2
q �

; ct0�
���������������
r2d�2

2
q

�
���������������
r20�2

2
q

:

Substituting these relations in expression (25) and tending
r0 and rd to infinity, we obtain:

�t �
3���1 � �2���16m

2 	 25m2
y �m2

z�

64c25
:

The maximum value of �t

�t �
123���1 � �2��m2

64c25

in this case will be obtained, if the vector m; is directed
along the Y axis, and the minimum value

�t �
45���1 � �2��m2

64c25
;

if the vector m is directed along the z axis.
The neutron star rotation also leads in this case to the

modulation of the value �t with the frequencies �1;�2

and their combinations.

VIII. DISCUSSION

Let us discuss the possibility of observing the nonlinear
electrodynamic effect of X-ray and gamma-ray birefrin-
gence in strong magnetic field of pulsars and magnetars.

As it follows from the observations, magnetars possess a
very high magnetic field B� 1016 G and can reveal them-
selves as anomalous X-ray pulsars and also as sources of
recurrent gamma ray bursts, the so-called, soft gamma ray
repeaters [29,30].

The anomalous X-ray pulsars are observed, mainly, in
the energy range from few keV to 10–20 keV photons.
While the soft gamma ray repeaters have thermal spectra
with effective temperature kT � 20–30 keV, i.e., can be
observed up to about 100–200 keV. Thus, to study the
polarization properties of these objects in hard emission,
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the traditional techniques, such as the Thomson (Compton)
scattering or the Bragg reflection can be used, as well as
new methods based on the photoelectron tracing.

Besides the magnetars some gamma ray pulsars possess
the magnetic fields, which are high enough to manifest
nonlinear electrodynamic effects. Among them the pulsars,
with magnetic induction exceeding the character quantum-
electrodynamic value Bq � 4:4 � 1013 G; are of most inter-
est. Only 6 such gamma ray pulsars are known. For four of
them, quite reliable data on the magnetic field is available
[31]: B1509-58 has the field of B� 1:5 � 1014 G, the
magnetic fields of Crab, Vela and B1706-44 were esti-
mated at the level of B� 5 � 1013 G. For two pulsars
(B1046-58, J0218+4232) estimations are still not reliable,
but are similar to Bq.

Using expression (27), we estimate on the order of
magnitude of the time of nonlinear-electrodynamic lag in
the case of magnetars and gamma pulsars. Let us consider a
magnetar with a surface magnetic field of B� 1016 G. If
we assume that the magnetar’s radius is Rs � 10 km, we
find that the area with B< Bq, where the results of our
calculations are valid, originates from the impact parame-
ters 2 � 100 km. Then, according to the Heisenberg-Euler
nonlinear electrodynamics the value �t can reach
�t � 10�7 s.

In the case of gamma pulsars the surface magnetic field
is less than typical value of a magnetar . However, they may
be of a larger size. Since, though the value �t will be less
than of magnetars, for some pulsars it can reach
�t � 10�7 s. Because of the large distances the X-ray
and gamma ray fluxes from pulsars and magnetars are
very low in the vicinity of the Earth. Hence, it is possible
to detect this effect only using instruments installed on-
board satellites, and the measurements should be made
outside the Earth’s radiation belts.

The polarization measurement technique based on the
Thomson (or the Compton for hard X-rays) scattering and
pair production effect (for high-energy gamma rays) can be
used to detect the effect of nonlinear electrodynamic lag of
the signals with mutually orthogonal polarization.

In the 2–20 keV range the telescopes with conical foil
mirrors can be used for X-ray photons detection. The
effective focusing area in such instruments can reach sev-
eral square meters. This allows us to detect the considered
nonlinear electrodynamic effect in the Crab pulsar emis-
sion over a time of about a hundreds seconds. In the case of
observations of objects with luminosity of about 1 mCrab,
the exposure time should be about 105 s, i.e., 24 hours,
which is also quite acceptable.

For the range 20–100 keV we obtain than an instrument
with geometrical area 103sm2 provides the detection of
effect in Crab pulsar emission over a hundreds kilo-
seconds. To detect the effect in emission from sources
with luminosity of about 1 mCrab the geometrical area
�104 sm2 and exposure times of about a year will be
-10
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necessary. In the range 0.1–1.0 MeV an instrument with
geometrical area 104 sm2 will detect the effect in the Crab
pulsar emission over about a day, while detecting the effect
in the emission of source with luminosity of about 1 mCrab
several years of continuous observations will be necessary.

No reasonable estimates of the instrument geometrical
area and exposure time made for the range 0.05–1.0 GeV
permit to detect effect even in the Crab pulsar emission.

Considering, in general, the different techniques of non-
linear electrodynamic birefringence observation we can
conclude that the polarization measurements employing
micro-well gas proportional counters [32] placed in the
focal plane of a large conic foil mirror telescope are the
most appropriate. However, such a technique is only effec-
tive for observations in soft X-rays. This range does not
cover the emission from all types of possible objects with
very high magnetic field, such as soft gamma ray repeaters
and gamma pulsars, which are more contrast in hard X-rays
and gamma rays. Besides, the screening of emitted photons
by matter surrounding the neutron star is more effective for
soft X-rays. Such absorption could not be completely ex-
cluded, thus it is unlikely that the polarization of soft X-
rays will not be changed during their propagation in the
neutron star vicinity.

From this point of view, observations in hard X-rays or
gamma rays are preferable. The complexity and cost of a
soft X-ray polarimeter and installation on a special space-
063002
craft like the orbital X-ray observatory, are also significant
factors, which can not be disregarded. Due to these circum-
stances experiments, in which Thompson or Compton
polarimeters could be used, seems more realistic.

The exposure time and the background level are defined
mainly by the type of spacecraft, and the exposure time is
exactly the ‘‘unlimited’’ resource, which allows to improve
the sensitivity of measurements. The large exposure time
in the polarization measurements of the search for non-
linear electrodynamic effects in the pulsar and magnetar
emission assumes the necessity of very long (during
months or even years) constant spacecraft orientation,
which makes it possible to observe the chosen source
during all the time of the experiment duration.

Thus the analysis presented above indicates on the in-
strumental possibility of nonlinear electrodynamic lag
measurements, although the realization of experiment is
a very complicated technical problem.

In conclusion we should note that all obtained formulas
were verified by computer algebra.
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APPENDIX A:THE CONSTANTS OF INTEGRATION FOR THE SIGNALS
EMITTED FROM POINT r � r0 AT THE TIME t � 0:

r2�
1

24 f�r
2
0�nr0��222�nr0��r30	2
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	8022r40�nm��mr0��175r60�nm��mr0��g: (A1)
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APPENDIX B: THE CONSTANTS OF INTEGRATION FOR THE SIGNALS
PASSING THROUGH POINT r � rd:
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