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�2 time-frequency discriminator for gravitational wave detection
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Searches for known waveforms in gravitational wave detector data are often done using matched
filtering. When used on real instrumental data, matched filtering often does not perform as well as
might be expected, because nonstationary and non-Gaussian detector noise produces large spurious
filter outputs (events). This paper describes a �2 time-frequency test which is one way to discriminate
such spurious events from the events that would be produced by genuine signals. The method works well
only for broadband signals. The case where the filter-template does not exactly match the signal
waveform is also considered, and upper bounds are found for the expected value of �2.
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I. INTRODUCTION

Matched filtering is a common and effective technique
used to search for signals with a known waveform in a
data stream [1]. The output of a matched filter will be
large if the data stream contains the desired signal. But it
can also be driven to large values by spurious noise. This
paper describes a �2 time-frequency discriminator statis-
tic which has proven effective at distinguishing between
these two possibilities.

The method was invented by the author in 1996 [2] for
use on data from the LIGO 40m prototype gravitational-
wave detector [3]. The method was subsequently used in
the analysis of data from the Japanese TAMA detector
[4–8] and the first analysis of science data from the full-
scale LIGO detectors [9]. It has also been used in pre-
liminary searches using VIRGO engineering data [10]
and GEO-600 data [11]. Until now the only detailed
description of the method was in the documentation for
the GRASP software package [2], as referenced in the
publications above. This paper describes the method in
more detail, and analyzes its properties.

The �2 time-frequency discriminator is designed for
use with broadband signals and detectors. The essence of
the test is to ‘‘break up’’ the instrument’s bandwidth into
several smaller bands, and to see if the response in each
band is consistent with what would be expected from the
purported signal. This method can only be used to dis-
criminate signals for which the gravitational waveform is
known, meaning that it can be calculated in advance,
with high precision. (Note: the word ‘‘known’’ is slightly
misleading since the waveform typically still depends
upon a few unknown parameters, such as the overall scale
and initial phase.)

A new generation of broadband gravitational wave
detectors is now undergoing commissioning [12] and
more sensitive instruments are in the planning and design
stages [13,14]. We expect that this test will prove useful
for those instruments as well.
address: ballen@uwm.edu
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In searching for signals and setting upper limits, the
primary use of the �2 time-frequency discriminator is as
a veto. This means that events which might otherwise be
used, analyzed or studied in more detail are rejected
because they have a �2 value which is too large. In general
terms, the �2 time-frequency discriminator may be
thought of as a method for reducing contributions from
the non-Gaussian tails that characterizes most gravita-
tional wave detectors [15]. Substantial efforts have been
made to characterize these tails in the TAMA [16,17],
Explorer [18], and Nautilus [19] detectors. Other methods
for reducing the effects of these tails have also been
proposed and/or used. For example Creighton [20] pro-
poses a simple analytic model for non-Gaussian tails and
uses it to characterize a network detection algorithm
which is insensitive to this non-Gaussian tail. Other filter-
ing methods, based on locally-optimal statistics which
are less sensitive or insensitive to non-Gaussian tails have
been proposed [21,22] for matched filtering and stochas-
tic background searches. Shawhan and Ochsner [23] have
developed a heuristic veto method for matched filtering
for binary inspiral, based on counting threshold crossings
in a short-time window. When tuned for the LIGO S1 data
set with a half-second window, the method is effective,
and provides a veto which is complementary to the �2

time-frequency discriminator presented here. Some re-
lated ideas have also been explored by Guidi [24].

The principal source that will serve as an example here
is the gravitational radiation back-reaction driven inspiral
of pairs of compact stars, also known as ‘‘binary inspi-
ral’’. If each of the two stars (typically neutron stars or
black holes) has masses smaller than a few solar masses,
then the waveforms can be accurately calculated over the
typical detector bandwidth (30–500 Hz) using post-
Newtonian approximations [25–34]. In this case, the
unknown signal parameters include an overall amplitude
scale, the masses and spins of the two stars, a fiducial
reference time (often taken to be the ‘‘coalescence time’’),
and the initial phase of the orbit. (The final unknown
parameter, the orbital inclination, is degenerate with
these other parameters, and may therefore be ignored.
-1  2005 The American Physical Society
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The orbital eccentricity may also be neglected: by the
time such systems are emitting in the detection band,
they have radiated away any eccentricity and the orbit has
circularized.) These signals are broadband, since the bi-
nary system is observed at the very end of its life when the
signal frequency is increasing rapidly as the orbital pe-
riod decreases and the stars spiral together.

The paper is structured as follows. Section II defines
the notational conventions that are used. Section III de-
rives the form of the optimal matched filter in the sim-
plest case and describes its properties. Section IV defines
the �2 time-frequency discriminator and derives its basic
properties, also for the simplest case. Section V gives a
brief illustrative example of this statistical test in action,
computing and comparing the �2 values obtained for a
simulated inspiral signal and a spurious noise event.
Readers interested in acquiring a quick understanding of
the method without seeing the technical details should
start with this Section.

A significant problem in searching for gravitational
wave signals is that the waveform depends upon a number
of parameters (for example, masses) of the source. For
this reason, data must be searched with a bank of filters
designed to cover this parameter space [35,36]. Since this
bank is discrete, and the source parameters are continu-
ous, the match between signal and filter is never exact.
The effects of this signal/template mismatch on the �2

discriminator are investigated and quantified in Sec. VI.
One of the main results of this paper is an absolute upper
limit on the expected value of �2 arising from template/
signal mismatch.

Up to this point, the signals studied are of the simplest
type, which can be completely described with only two
unknown parameters: an overall amplitude, and an offset/
arrival time. However this is insufficient for most cases of
interest, where the signals are an (a priori unknown)
linear combination of two different polarizations.
Section VII treats this case, deriving two-phase results
analogous to the single-phase results of the previous
Sections.

Section VIII examines suitable thresholds on �2 for
stationary Gaussian noise, and contrasts these with the
heuristic thresholds used in published analysis of real
detector data such as the LIGO S1 binary inspiral upper
limit analysis [9].

Section IX examines a variation of the discriminator
based on ‘‘unequal expected SNR’’ intervals, and shows
that this discriminator still has most of the properties of
the �2 discriminator defined in previous Sections.

There are an infinity of possible �2-like statistical tests
and discriminators.Work by Baggio et al. [37] introduced
a �2 test for use with resonant-mass gravitational wave
detectors. In Sec. X the �2 time-frequency discriminator
of this paper is compared to that test.While the tests share
some similar features, they have quite different properties
and behavior.
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This is followed by a brief Conclusion, which summa-
rizes the main results and some of the unanswered
questions.

Appendix A contains a short calculation proving that
the time-frequency discriminator defined in this paper
has a classical �2 distribution if the detector’s noise is
Gaussian. Appendix B derives a simple mathematical
result used in the body of the paper,
II. CONVENTIONS

The Fourier Transform of a function of time V�t� is
denoted by ~V�f� and is given by

~V�f� �
Z

e�2�iftV�t�dt: (2.1)

The inverse Fourier transform is

V�t� �
Z

e2�ift ~V�f�df: (2.2)

All integrals are from �1 to 1 unless otherwise indi-
cated, and � denotes complex conjugate.

The detector output (typically a strain) is denoted by

s�t� � n�t� � h�t� (2.3)

where n�t� is the (real) strain-equivalent noise produced
by fluctuations within the detector and its environment,
and h�t� is a (real) gravitational waveform of astrophys-
ical origin.

Since the detector’s noise n�t� can only be character-
ized statistically, one must introduce tools for determin-
ing the expected properties of quantities measured in the
presence of this noise. There are several equivalent ways
to do this. In this paper, we imagine that n�t� is a random
time-series drawn from a large ensemble of such time-
series, whose statistical properties are those of the instru-
ment noise [38]. If W is some functional that depends
upon n�t�, then angle brackets hWi denote the average of
W over the ensemble of different n�t�.

We assume that hn�t�i vanishes, which implies that
h~n�f�i � 0. We also assume that the statistical properties
of the detector’s noise are second-order stationary [39]
which implies that the expectation value hn�t�n�t0�i de-
pends only upon the time difference t� t0. It then follows
that in frequency space

h~n�f�~n��f0�i � Sn�f���f� f0�; (2.4)

where ��f� is the Dirac delta-function. The two-sided
noise power spectrum is a real non-negative even func-
tion Sn�f� which from (2.4) can be shown to satisfy

hn2�t�i �
Z
Sn�f�df: (2.5)

This implies that 2Sn�f�df may be interpreted as the
expected squared strain in the frequency band from f to
f� df, for f � 0. (Note that much of the literature on
-2
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this subject, including publications of the LIGO Scientific
Collaboration, uses a one-sided power spectrum 2Sn�f�,
because this is typically the quantity measured by stan-
dard instrumentation. Its use here would complicate many
formulae with extraneous factors of two.)

As explained earlier, we are interested in the case of a
known waveform. A prototypical example is a binary
inspiral chirp waveform, which may be written as [28]

h�t� �
D
d
�cos�Tc�t� t0� � sin�Ts�t� t0�: (2.6)

This waveform depends upon three nuisance parameters.
These are the effective distance d to the source, a fiducial
time t0 (for example the coalescence time of the binary
pair) and a phase � which is determined by the orbital
phase of the binary pair and its orientation relative to the
detector.

The templates Tc and Ts are the signal waveforms that
would be produced by a binary inspiral pair optimally-
oriented with respect to the detector, at distance D, in the
two possible polarization states (corresponding to rotat-
ing the detector axes by 45�). The waveform may depend
upon additional nuisance parameters; we will return to
this later.

For pedagogic purposes, we first consider the simpler
case in which the phase � of the waveform is known
a priori, in advance,

h�t� �
D
d
T�t� t0�: (2.7)

In this case there are only two nuisance parameters:
coalescence time to and effective distance d.

The quantity D is the canonical distance at which a
source, optimally-oriented with respect to the detector,
would produce the waveform T. Its value determines the
overall normalization scale of the waveform T, since, for
a given source type, the quantity DT�t� is independent of
D, and is determined by the laws of physics, specifically
General Relativity.
III. MATCHED FILTERING

A matched filter is the optimal linear filter for detec-
tion of a particular waveform. Its form can be derived
using a number of different techniques. Here we use one
of the classical signal analysis methods.

For notational purposes it is useful to introduce a
Hermitian inner product defined by

�A;B� �
Z A��f�B�f�

Sn�f�
df; (3.1)

for any pair of complex functions A�f� and B�f�. The
frequency dependence of A and B will usually be implied
and not indicated explicitly.

A real detector functions only over a finite frequency
band, and acquires data at a finite sample rate. In this
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case, the noise power spectrum Sn may be taken to be
infinite outside the bandwidth of the instrument, effec-
tively restricting the range of integration to lie between
plus and minus the Nyquist frequency fN � 1=�2t�,
where t is the time between successive data samples.

The matched filter is a linear operator that maximizes
the ratio of ‘‘signal’’ to ‘‘noise’’. We denote the filter by
~Q��f�=Sn�f� and the output of the filter by z, so

z �
Z ~Q��f�~s�f�

Sn�f�
df � � ~Q; ~s�: (3.2)

We require that z be real, which implies that ~Q�f� �
~Q���f�, and also means that ~Q�f�=Sn�f� corresponds to
a real function (filter kernel) in the time-domain.

The expected value of z can be found from (2.7), and is
given by

hzi �
D
d
� ~Q; ~Te�2�ift0� (3.3)

Here ~T�f� denotes the Fourier transform of T�t�; the
translation in time by t0 is explicitly encoded in the
exponential term. Note that in the absence of a source
(d! 1) the expected value of z vanishes since h~n�f�i �
0 then implies that h~s�f�i � 0.

The expected value of the square of z may be found
using (2.4)

hz2i � � ~Q; ~Q� �
�
D
d

�
2
� ~Q; ~Te�2�ift0�2 (3.4)

To estimate the error or uncertainty in a measurement of
z, it is useful to define

�z � z� hzi: (3.5)

The error or uncertainty in a measurement of z, due to
noise in the detector, is���������������

h��z�2i
q

�
�����������������������
h�z� hzi�2i

q
�

����������������������
hz2i � hzi2

q
� � ~Q; ~Q�1=2:

(3.6)

From these quantities, we can now derive the properties
of the optimal matched filter.

Under the assumptions that we have made about the
detector output (2.3) the optimal choice of matched filter
~Q is the one that maximizes the ratio of the expected filter
output <z> given by (3.3) to its expected uncertainty
(3.6) due to detector noise. Hence the optimal choice of ~Q
maximizes

hzi���������������
h��z�2i

p �
� ~Q;A�

� ~Q; ~Q�1=2
; (3.7)

where we have defined

A�f� �
D
d

~T�f�e�2�ift0 : (3.8)

Since the inner product is Hermitian, Schwartz’s inequal-
-3
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ity states that

j� ~Q;A�j2 � �A; A�� ~Q; ~Q�: (3.9)

The two sides are equal if and only if ~Q is proportional to
A. Hence the ratio (3.7) is maximized when ~Q�f� is
proportional to A�f�. Thus, the optimal filter is a time-
reversed copy of the template, weighted by the expected
noise in the detector [40].

The Signal-to Noise Ratio (SNR) is defined by the ratio
of the observed filter output z to its (expected or observed)
root-mean-square (r.m.s.) fluctuations

SNR �
z���������������

h��z�2i
p �

� ~Q; ~s���������������
� ~Q; ~Q�

q ; (3.10)

and is independent of the normalization of the optimal
filter ~Q. By definition, in the absence of a signal hSNRi �
0 and h�SNR�2i � 1.

It is convenient to choose the normalization of the
optimal filter ~Q so that � ~Q; ~Q� � 1. This may be achieved
by choosing the filter ~Q to be

~Q�f� � � ~T; ~T��1=2 ~T�f�e�2�ift0 : (3.11)

With this normalization choice, the filter output z is equal
to the SNR. Henceforth we will use z to denote both of
these quantities.

While the optimal filter ~Q is explicitly independent of
the normalization scale of the template T, we showed
earlier that the scales of D and T could be freely adjusted
provided that their product DT was held fixed. For the
purposes of interpreting the SNR z, it is convenient to set
the distance scale D so that

� ~T; ~T� � 1: (3.12)

With this choice of normalization, the expected value of
the SNR is

hzi �
D
d
� ~T; ~T�1=2 �

D
d
: (3.13)

This choice of normalization is thus equivalent to choos-
ing the distance D at which the template is defined to be
the distance at which an optimally-oriented source would
have an expected SNR of unity: hzi � 1.

Since the expected value of z is proportional to the
inverse distance, one may use the actual measured value
of z to estimate the distance. Since the actual measured
value of z is affected by instrument noise, this estimator
has some average error. One can easily estimate the error,
since with our normalization choices

hz2i � 1 �

�
D
d

�
2
; and hence h��z�2i � 1: (3.14)

This means that the expected fractional error in estimat-
ing the inverse distance to the source is
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h��z�2i1=2

hzi
�

1

hzi
�
d
D

(3.15)

Thus, a measured SNR of z � 10 implies a fractional
accuracy in distance determination of about 10%.

Up to this point, we have been assuming that the
fiducial coalescence time t0 is known. In practice, one
searches a data stream for statistically significant values
of z, for all possible choices of t0. As a function of t0 the
SNR is

z�t0� �
Z ~s�f� ~T�e2�ift0

Sn�f�
df: (3.16)

Because this is just an inverse Fourier transform, it is
both practical and simple to compute this quantity from a
data stream s�t�. For example the Fast Fourier Transform
(FFT) algorithm allows the right hand side (r.h.s.) to be
computed in order N lnN operations, where N is the
number of data samples of h in the time or frequency
domain.

IV. THE �2 DISCRIMINATOR TEST

In the previous section, we assumed only that the
detector noise was second-order stationary. It is quite
common in such studies to also assume that the noise is
Gaussian. One may then show that the probability of the
SNR exceeding some threshold falls exponentially with
increasing threshold, and so large values of the SNR have
low probability of being due to noise in the detector, and
thus are a good indication that a real source is present.

Unfortunately, experience has shown that the noise in
broadband gravitational-wave detectors is far from
Gaussian. Typically it has a Gaussian or Gaussian-like
component (arising from electrical, thermal and shot
noise) but there is another ‘‘glitchy’’ component that
could be described as Poisson-like impulse noise. There
are many sources of this noise, including marginally
stable servo systems and environmental anomalies. The
effects of this noise on the filtering process described
above can be dramatic. Whereas the matched filter is
designed to give a large response when the signal wave-
form matches the template, it also can give a large
response when the instrumental noise has a large glitch.
Although the waveform of this glitch looks nothing like
the template, it nevertheless drives the filter output to a
large value.

The statistical test described here provides a way to
determine if the output of the filter is consistent with what
might be expected from a signal that matched the tem-
plate. To be effective, both the signal and the detector
must be broadband.

One way to understand how this test works is to imag-
ine that instead of a single broadband detector, one is
given p data streams from p different, independent nar-
row band detectors, each operating in a different fre-
-4



FIG. 1. A typical set of frequency intervals fj for the case
p � 4. These intervals are narrowest where the detector is the
most sensitive, and broadest where it is least sensitive.
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quency band. For each detector, one can construct an
optimal filter for the signal, and then one can ask if the
results are consistent, for example, if the p (potentially
different) fiducial times t0 which maximize the output of
each of the p independent detectors are consistent with a
single value.

Begin by assuming that, using matched filtering as
previously described, we have identified a time of arrival
t0 and an inverse distance D=d. The goal is to construct a
statistic which indicates if the filter output is consistent
with this signal.

We will do this by investigating the way in which z�t0�
gets its contribution from different ranges of frequencies.
To do this, we partition the frequency range f 2 �0;1�
into a set of p distinct subintervals f1; � � � ;fp whose
union is �0;1�. The frequency intervals:

f1 � ff j 0 � f < f1g;

f2 � ff j f1 � f < f2g;

� � �

fp�1 � ff j fp�2 � f < fp�1g;

fp � ff j fp�1 � f <1g;

(4.1)

will be defined by the condition that the expected signal
contributions in each frequency band from a chirp are
equal. (Note that one may also pick intervals which do not
satisfy this condition. In Sec. IX we show that when
suitably defined, the resulting statistic still has a classical
�2 distribution for the case of Gaussian detector noise.)

To define the frequency bands, it is helpful to introduce
a set of p Hermitian inner products (for j � 1; � � � ; p)
defined in analogy to (3.1) by

�A;B�j �
Z
�fj[fj

A��f�B�f�
Sn�f�

df: (4.2)

In each of these integrals, the range of integration is over
both the positive and negative frequencies. As discussed
following (3.1), since Sn�f� may be taken as infinite for jfj
greater than the Nyquist frequency fN , the effective upper
limit of the final frequency interval fp is fN rather than
1.

Since the frequency intervals do not overlap, but cover
all frequency values, the sum of these inner products

�A;B� �
Xp
j�1

�A;B�j (4.3)

yields the inner product (3.1) defined earlier. The p dis-
tinct frequency bands are uniquely determined by the
condition that

choose fj so that � ~T; ~T�j �
1

p
: (4.4)

A typical set of frequency intervals in shown in Fig. 1.
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For given instrumental noise Sn�f� the frequency in-
tervals fj depend upon the template T. However it may
be the case that many templates actually share the same
frequency intervals fj. A good example of this is the set
of stationary-phase post-Newtonian templates, where the
amplitude is calculated in the first post-Newtonian ap-
proximation, and the phase is calculated to higher order
[41,42]. For these templates, the frequency intervals are
determined by

� ~T; ~T�j �
1

p
� ~T; ~T�;

Z
fj

f�7=3

Sn�f�
df �

1

p

Z 1

0

f�7=3

Sn�f�
df;

(4.5)

provided that m1 and m2 lie in a range for which the
stationary-phase approximation holds within the detector
band [43]. For this family of templates, all the templates
share the same bands fj.

The SNR (3.2) is an integral over all frequencies, and
can be written as a sum of contributions from each of the
p different bands,

z �
Xp
j�1

zj with zj � � ~Q; ~s�j: (4.6)

The expected values of zj and its square are computed
using the same techniques as before, and give

hzji �
1

p
D
d
; and hz2j i �

1

p
�

1

p2

�
D
d

�
2

(4.7)

In the absence of a signal (take d! 1) one finds

hzji � 0 and hz2j i �
1

p
: (4.8)

This suggests an obvious statistical test to see if the signal
is consistent with the model.

Consider the p quantities defined by

zj � zj �
z
p
: (4.9)

These are the differences between the SNR in the band
fj, and the SNR that would be anticipated [44] in that
band, based on the total measured SNR in all bands. By
definition, these differences sum to zero

Xp
j�1

zj � 0 (4.10)

and their individual expectation values vanish
-5
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hzji � 0: (4.11)

To calculate the expectation values of their squares, first
note that the quantity hzjzi must, by symmetry, be
j-independent [45]. Since the sum over j of hzjzi yields
hz2i, one must have

hzjzi �
hz2i
p

�
1

p

�
1 �

�
D
d

�
2
	
: (4.12)

Thus the expectation value of the square of zj is

h�zj�2i �

�
zj �

z
p

�
2
�
� hz2j i �

hz2i

p2 �
2hzjzi

p

�
1

p

�
1 �

1

p

�
(4.13)

Notice that these quantities zj do not depend upon d. In
fact these quantities zj and their second-order statisti-
cal properties, are independent of whether or not a signal
is present. This motivates the definition of a discrimina-
tion statistic.

We define the �2 time-frequency discriminator statistic
by

�2 � �2�z1; � � � ; zp� � p
Xp
j�1

�zj�
2: (4.14)

This choice of statistic is one of the main results of the
paper: in what follows we will study its properties in
detail.

It follows immediately from (4.13) that the expected
value of �2 is

h�2i � p� 1 (4.15)

Up to this point, the only assumption we have made is that
the noise in the instrument is second-order stationary,
specifically that hn�t�n�t0�i depends only upon t� t0. To
further analyze the properties of this statistic, additional
assumptions are needed.

In the design of signal processing algorithms, it is
common to analyze the performance of a method in the
case where the instrument noise is both stationary and
Gaussian. In this case, Appendix A shows that probability
distribution function of �2 is a classical �2-distribution
with p� 1 degrees of freedom. The (cumulative) proba-
bility that �2 <�2

0 is

P�2<�2
0
�
Z �2

0=2

0

up=2�3=2e�u

��p2 �
1
2�

du (4.16)

�
!�p2 �

1
2 ;

�2
0

2 �

��p2 �
1
2�

(4.17)

where ! is the incomplete gamma function. In this case,
where the noise is assumed to be stationary and Gaussian,
the expected distribution of �2 values is quite narrow. One
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has

h��2�2i � p2 � 1 (4.18)

which implies that the ‘‘width’’ of the �2 distribution is

�h��2�2i � h�2i21=2 �
�������������������
2�p� 1�

q
(4.19)

Thus, if the noise were stationary and Gaussian, we
would expect to find �2 values in the range �p� 1 ��������������������

2�p� 1�
p

; p� 1 �
�������������������
2�p� 1�

p
. Since the fractional

width of this range decrease with increasing p, one might
expect that large values of p are desirable, since they
appear to give high discriminating power.

Practice and experience have shown that large values of
p do not, in fact, work very well [11]. Partly this is
because the detector noise is neither stationary nor
Gaussian, and partly this is because the signal is not a
perfect match to the template. Large values of p tend to
spread nonstationary glitch noise over many frequency
bands, diluting its effect on �2. This is difficult or im-
possible to model analytically, and can best be understood
(as in [11]) by Monte-Carlo studies of simulated signals
added into real detector noise. However the effects of a
signal-template mismatch can be studied analytically;
this is done in Sec. VI.

V. HOW DOES THE �2 TEST WORK?

The �2 test was invented based on experience filtering
data from the LIGO 40m prototype instrument [2,3]. It
was observed that a binary inspiral filter bank registered
many events that (when converted to audio) did not sound
like inspiral signals. In particular, the low frequency
component of the signal did not arrive first, followed by
the midrange and high frequency components. The �2 test
first arose from considering a set of matched filters in
different bands, and testing to see if the filter outputs all
peaked at the correct time. The signal z1 was constructed
from the lowest frequency band, z2 from the next fre-
quency band, and so on. This is illustrated in Fig. 2 for a
single-phase test with p � 4 bands.

It is instructive to compare the values of the filter
outputs (single-phase test) for the two cases shown in
Fig. 2. For the simulated chirp, the signal-to-noise ratio
was z � 9:2 and the signal values in the different bands
were

z1 � 2:25 z2 � 2:44

z3 � 1:87 z4 � 2:64

z � z1 � z2 � z3 � z4 � 9:2

�2 � 4
X4
j�1

�zj � z=4�2 � 1:296

P�2�1:296 � 1 �
!�3=2; 0:648�

��3=2�
� 73%:

(5.1)
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FIG. 2. The output of p � 4 single-phase filters for a simulated chirp signal added into a stream of detector noise (left set of
figures) and a transient burst present in detector noise (right set of figures). For the simulated chirp, the filters in the different
frequency bands all peak at the same time offset t0: the time offset which maximizes the SNR. At this instant in time, all of the zj
are about the same value. However when the filter was triggered by the transient burst, the filters in the different frequency bands
peak at different times. At time t0 they have very different values (some large, some small, and so on).
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This is quite consistent with the value of �2 that would be
expected for a chirp signal in additive Gaussian noise.

For the spurious noise event shown in Fig. 2 the SNR
z � 8:97 was quite similar but the value of �2 is very
different:

z1 � 0:23 z2 � 0:84

z3 � 5:57 z4 � 2:33

z � z1 � z2 � z3 � z4 � 8:97

�2 � 4
X4
j�1

�zj � z=4�2 � 68:4

P�2�68:4 � 1 �
!�3=2; 34:2�

��3=2�
� 9:4 � 10�15:

(5.2)

The probability that this value of �2 would be obtained
for a chirp signal in additive Gaussian noise is extremely
small.
VI. EFFECT OF A SIGNAL/TEMPLATE
MISMATCH ON �2

In the previous two Sections, we analyzed an optimal
filter and constructed a �2 statistic for the case where the
signal waveform was known exactly. In practice, this is
062001
not possible. Typically, signal waveforms come from a
family characterized by a set of continuous parameters,
such as masses and spins. Thus, in practice, to search for
signals one uses a discrete set of templates, called a
template bank [35,36]. Such banks can contain anywhere
from dozens to hundreds of thousands of templates. Since
each template in the bank is defined by a point in pa-
rameter space, the template bank may be thought of as a
grid, or mesh, in parameter space. Typically, this grid is
laid out to ensure that any signal from the continuous
family of waveforms is ‘‘near’’ some point in the grid. In
this section, we analyze the case where the signal wave-
form is ‘‘close’’ to the template waveform, but not a
perfect match.

We begin by assuming that the signal is perfectly
described by a waveform T0, so that the detector’s output
is

s�t� � n�t� �
D0

d0
T0�t�: (6.1)

Adopting the same conventions as before, we assume that
D0 is chosen so that T0 obeys � ~T0; ~T0� � 1. For simplicity,
and without loss of generality, we take t0 � 0. Assume
that this signal is close to that of the template T, and
hence that the signal is detected in that template. The
SNR is
-7
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z � � ~Q; ~s� � � ~T; ~n� �
D0

d0
� ~T; ~T0�: (6.2)

Using Schwartz’s inequality, the inner product between
the two templates must lie in the range ��1; 1:

� ~T; ~T0�2 � � ~T; ~T�� ~T0; ~T0� � 1: (6.3)

One may think of the two templates as unit vectors
separated by an angle " and write this in the form

� ~T; ~T0� � cos"; for " 2 �0; �: (6.4)

This inner product is often called the fitting factor. The
expected value of the SNR

hzi �
D0

d0
cos"; (6.5)

is reduced by a factor of the fitting factor compared with
the expected SNR D0=d0 that would be obtained if the
template bank contained a template perfectly matching
the waveform T0.

The fractional difference between this ‘‘ideal case’’
expected SNR and the expected SNR in the mismatched
template is called the template mismatch #

cos" � 1 � #: (6.6)

The value of # must lie in the range # 2 �0; 2, and may be
restricted to the range # 2 �0; 1 by changing the sign of
T0 if needed. Hence, without loss of generality we will
assume that 0 � cos" � 1 and that 0 � # � 1. The case
of most interest is when #� 1. Typically template banks
are set up so that the worst-case mismatch corresponds to
a loss of event rate (for a uniform source distribution) of
10%. Since the volume inside a sphere of radius r grows
proportional to r3 and the SNR is inversely proportional
to distance, this corresponds to a typical worst-case tem-
plate mismatch of # � 0:033 � 3:3%.

Following the same procedures as in Sec. III one can
find the expected SNR squared, which is

hz2i � 1 �

�
D0

d0

�
2
cos2": (6.7)

Thus, the first- and second-order statistics of z are indis-
tinguishable from those that would be produced by a
signal from a perfectly matched template T with SNR
D0 cos"=d0.

To analyze the effects of the signal/template mismatch
on the �2 statistic is slightly more involved. We begin by
considering the way in which the templates overlap in
each individual frequency band. Define a set of p real
constants %1; � � � ; %p by

� ~T; ~T0�j � %j cos": (6.8)

It follows from (6.4) that these constants sum to unity,
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Xp
j�1

%j � 1: (6.9)

Hence, the average value over frequency bins of the %j is
1=p. The deviation away from this value is a measure of
how close together (or far apart) the templates T and T0

are in the frequency band fj.
The goal is to understand how the �2 statistic is af-

fected by signal/template mismatch. To determine this,
we first express the SNR in the j’th band as

zj � � ~Q; ~s�j � � ~T; ~n�j �
D0

d0
� ~T; ~T0�j (6.10)

� � ~T; ~n�j �
D0

d0
%j cos": (6.11)

Using calculations identical to Sec. IV the expected value
of the SNR and its square in the j’th band are

hzji �
D0

d0
%j cos"; (6.12)

and

hz2j i �
1

p
�

�
D0

d0

�
2
%2
jcos2": (6.13)

As before, we define zj � zj � z=p, giving

zj � � ~T; ~n�j �
1

p
� ~T; ~n� �

D0

d0

�
%j �

1

p

�
cos": (6.14)

The first difference between this analysis and the one for
matching templates is that in the mismatched case, the
expectation value of zj does not vanish:

hzji �
D0

d0

�
%j �

1

p

�
cos": (6.15)

As before, we can use the assumption that the detector
noise is second-order stationary to calculate

hzjzi �

�

� ~T; ~n�j �
D0

d0
%j cos"

	�
� ~T; ~n� �

D0

d0
cos"

	�
� � ~T; ~T�j �

�
D0

d0

�
2
%jcos2" �

1

p
�

�
D0

d0

�
2
%jcos2":

(6.16)

Using these results, it is straightforward to work out the
expectation value of �zj�2:

h�zj�
2i � hz2j i �

hz2i

p2 �
2hzjzi

p

�
1

p

�
1 �

1

p

�
�

�
D0

d0

�
2
�
%j �

1

p

�
2
cos2": (6.17)

The expectation value of the �2 discriminator statistic
(4.14) is therefore
-8
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h�2i � p� 1 �

�
D0

d0

�
2
cos2"

Xp
j�1

p
�
%j �

1

p

�
2

� p� 1 � hzi2
Xp
j�1

p
�
%j �

1

p

�
2
: (6.18)

This is in sharp contrast to the case where the signal
waveform matched the template perfectly. In that case,
the expectation value of �2 was independent of the signal
strength. Here, when the signal and template do not match
perfectly, the expected value of �2 depends quadratically
on the expected SNR hzi of the signal.

The dependence of the discriminator h�2i on the square
of the expected SNR hzi2 has a coefficient

& � p
Xp
j�1

�
%j �

1

p

�
2
� �1 � p

Xp
j�1

%2
j : (6.19)

The quantity & is manifestly non-negative; we now obtain
an absolute upper bound on its value. Schwartz’s inequal-
ity implies that

� ~T; ~T0�2j � � ~T; ~T�j� ~T
0; ~T0�j;

%2
jcos2" �

1

p
� ~T0; ~T0�j

)

%2
j �

1

pcos2"
� ~T0; ~T0�j:

(6.20)

Summing both sides over j one obtains

Xp
j�1

%2
j �

1

pcos2"
: (6.21)

Combining this with the definition (6.19) of &, one ob-
tains the bound

0 � & �
1

cos2"
� 1: (6.22)

Note that this result does not assume any relationship
between the signal waveform T and template waveform
T0.

For the case of most interest (small template mismatch
#� 1) this yields the bound

0 � & � 2# (6.23)

and hence one of the main results of this paper [46]

h�2i � p� 1 � &hzi2 with 0 � & � 2#: (6.24)

This relationship only assumes that the fitting factor
between the signal waveforms T and T0 is close to 1.

We can obtain a different and tighter bound on & if we
assume that the frequency bands defined by (4.1) and (4.4)
are the same for the waveforms T and T0. For example, as
discussed earlier in the context of Eq. (4.5), this is true
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for binary inspiral waveforms in the stationary-phase
approximation. In this case, since � ~T0; ~T0�j � 1=p,
Eq. (6.20) implies that

%2
jcos2" �

1

p2 : (6.25)

Thus one has

�1

p cos"
� %j �

1

p cos"
: (6.26)

It is convenient to define !j � 1=p� %j. In terms of
these quantities

& � p
Xp
j�1

!2
j : (6.27)

The values of !j are constrained by two relations:

Xp
j�1

!j � 0; (6.28)

and

1

p

�
1 �

1

cos"

�
� !j �

1

p

�
1 �

1

cos"

�
: (6.29)

If we assume that the number of frequency bands p > 2
and that the signal/template mismatch

# � 1 � cos" �
2

p
(6.30)

then the maximum of & is obtained when

!1 � �
p� 1

p

�
1 �

1

cos"

�
; and

!2 � � � � � !p �
1

p

�
1 �

1

cos"

�
:

(6.31)

The upper bound on & is

& � �p� 1�
�

1

cos"
� 1

�
2
� �p� 1�#2; (6.32)

where in the final part of the relation we assume as before
that the mismatch #� 1. This is one of the other main
results of the paper. In the case where the signal waveform
has the same bands fj as the closest matching template,
and p � 2=#, and # is small, one has

h�2i � p� 1 � &hzi2 with 0 � & � �p� 1�#2:

(6.33)

This result is beautifully consistent with the previous
limit (6.24) on h�2i. At the boundary of validity (6.30)
of (6.32), one has
-9
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& � �p� 1�
�

1

cos"
� 1

�
2
�

1

cos2"
� 1 � 2# (6.34)

which agrees exactly with the previous limit (6.22). The
limits that apply are summarized in Fig. 3. Note that
when the two different limits (6.22) and (6.32) are ex-
pressed approximately to lowest order in terms of #, they
appear to differ slightly at the boundary p � 2=#. In fact
they agree exactly: the approximate expressions differ at
higher order in #.

Appendix A shows that if the detector noise is
Gaussian, then the �2 statistic (computing with a per-
fectly matching template) has a classical �2-distribution
with p� 1 degrees of freedom. If the template does not
match perfectly, the distribution becomes a noncentral �2

distribution, with a noncentrality parameter determined
by the r.m.s. value of (6.15), which is &hzi2. This is
discussed in more detail at the end of Sec. VII. It follows
from the fact that the variance of the terms that appear in
the definition of �2,

h�zj�2i � hzji2 �
1

p

�
1 �

1

p

�
(6.35)

are independent of the signal amplitude.
VII. SIGNAL OF UNKNOWN PHASE

As mentioned earlier, the signal from an inspiraling
binary pair is a linear combination of two possible gravi-
tational waveforms with an a priori unknown phase �.
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Here, we repeat the analysis done in the previous three
sections, for this particular case of interest.

As in (2.6), the detector output is assumed to be of the
form

s�t� � n�t� �
D
d
�cos�Tc�t� t0� � sin�Ts�t� t0�;

with n�t� a random time-series drawn from a distribution
appropriate to the detector noise, and both � and d
unknown. We assume (as is the case for binary inspiral)
that the templates are orthonormal so that

� ~Tc; ~Tc� � � ~Ts; ~Ts� � 1; (7.1)

and

� ~Tc; ~Ts� � 0: (7.2)

Note that in the stationary-phase approximation, Tc and
Ts are exactly orthogonal.Were they not, a Gram-Schmidt
procedure could be used to construct an orthonormal pair
spanning the same space of signals [47].

There are several (easy) ways to efficiently search for
the unknown phase �. In substance, all of these methods
consist of filtering separately with the two templates Tc
and Ts, and then combining the two filtered data streams.
For our purposes a nice way to do this is to combine these
separate (real) filter outputs into a single complex signal.
Thus, we use the optimal filter

~Q � � ~Tc � i~Ts�e
�2�ift0 : (7.3)

Note that with this normalization the optimal filter is
normalized so that � ~Q; ~Q� � 2.

The output of the filter is complex and is

z � � ~Q; ~s�

� � ~Q; ~n� �
�

~Q;
D
d
�cos� ~Tc � sin� ~Tse�2�ift0

�
:

Its expectation value is the complex number

hzi �
D
d
�cos�� i sin�� �

D
d

ei�: (7.4)

The modulus of this complex number is the (expected)
inverse distance, and its phase is the (expected) phase.
Note that because the normalization of ~Q has changed,
the expected value

hjzj2i � 2 �

�
D
d

�
2
: (7.5)

is larger than in the single-phase case. The additional
uncertainty about the phase � means that the distance
to the source can not be determined as accurately as in the
single-phase case. Following conventional practice in the
field, the modulus jzj will be called the ‘‘Signal-to Noise
Ratio’’ (SNR) although since in the absence of a source its
-10
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mean-square value is two, one might argue that jzj=
���
2

p
is

the quantity that should legitimately carry this name.
To construct the �2 statistic, we choose frequency

bands as before. We will assume that ~Tc and ~Ts have
identical frequency bands and are orthogonal in each of
these bands [48]. For inspiral sources, this is exactly true
in the stationary-phase approximation where ~Ts�f� �
i ~Tc�f� for f > 0 and ~Ts�f� � �i~Tc�f� for f < 0. Thus

� ~Tc; ~Tc�j � � ~Ts; ~Ts�j �
1

p
; (7.6)

and

� ~Tc; ~Ts�j � 0: (7.7)

We define the complex signal zj in the j’th band as before

zj � � ~Q; ~s�j

and also define zj as before

zj � zj �
z
p
: (7.8)

One then finds

hzji �
1

p
D
d

ei� cos" hjzjj
2i �

2

p
�

1

p2

�
D
d

�
2

hz�jzi �
2

p
�

1

p

�
D
d

�
2

hjzjj
2i �

2

p

�
1 �

1

p

�
:

(7.9)

The �2 statistic is defined by [49]

�2 � p
Xp
j�1

jzjj2 (7.10)

and thus from (7.9) has expected value

h�2i � 2p� 2: (7.11)

In Appendix A we show that if the detector noise is
Gaussian, then �2 has a classical �2 probability distribu-
tion. Because both the real and imaginary parts of zj
sum to zero, the number of (real) degrees of freedom is
2p� 2.

We now consider the case where the astrophysical
waveform h�t� � D0

d0 T
0�t� does not exactly match any lin-

ear combination of the templates Tc and Ts. This is to be
expected from real signals if the templates form a dis-
crete finite grid in parameter space. As before, with no
loss of generality we assume that t0 � 0 and that D0 is
chosen so that

� ~T0; ~T0� � 1:

Consider the possible values, as  2 �0; 2�� varies, of the
inner product

�cos ~Tc � sin ~Ts; ~T
0�:

Since both cos ~Tc � sin ~Ts and ~T0 are unit length,
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Schwartz’s inequality implies that this inner product
lies in the range ��1; 1, and its maximum value must
lie in the range �0; 1. This maximum value (see
Appendix B) is

cos" �
�����������������������������������������
� ~Tc; ~T

0�2 � � ~Ts; ~T
0�2

q
; (7.12)

which defines " 2 �0; �=2. This in turn defines the mis-
match # � 1 � cos" between the template T0 and the one-
parameter family of templates. Note that (in contrast to
the single-phase case) the maximization over  automati-
cally leads to cos" 2 �0; 1 and hence # 2 �0; 1. We can
also define � 2 �0; 2�� by

cos� cos" � � ~Tc; ~T
0�; and sin� cos" � � ~Ts; ~T

0�:

(7.13)

Thus one has

� ~Tc � i~Ts; ~T
0� � ei� cos": (7.14)

This equation may be taken as the definition of � and ".
The filter output is given by

z � � ~Q; ~s� � � ~Q; ~n� ~h�

and thus has expectation value

hzi �
D0

d0
� ~Tc � i~Ts; ~T

0� �
D0

d0
ei� cos": (7.15)

The expected square modulus of the filter output is

hjzj2i � 2 �

�
D0

d0

�
2
cos2" � 2 � jhzij2:

We now investigate the effect of the template/signal mis-
match on the �2 statistic.

To begin, we need to characterize the overlap between
the signal and the templates in the j’th frequency band.
Define complex quantities %j by

� ~Tc � i~Ts; ~T
0�j � %jei� cos": (7.16)

Using (7.14), these complex quantities are constrained by

Xp
j�1

%j � 1: (7.17)

The filter output in the j’th frequency band is given by

zj � � ~Tc � i~Ts; ~n�j �
D0

d0
%jei� cos":

and the various expectation values in the j’th band are
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hzji �
D0

d0
%je

i� cos";

hjzjj
2i �

2

p
�

�
D0

d0

�
2
j%jj

2cos2";

hz�jzi �
2

p
�

�
D0

d0

�
2
%�jcos2";

hjzjj2i �
2

p

�
1 �

1

p

�
�

�
D0

d0

�
2
��������%j � 1

p

��������2
cos2":

The expected value of �2 is then

h�2i � 2p� 2 � &jhzij2 (7.18)

with

& � p
Xp
j�1

��������%j � 1

p

��������2
� �1 � p

Xp
j�1

j%2
j j: (7.19)

To place an upper limit on &, note that from Schwartz’s
inequality, for any value of the angle  , one has [50]

�cos ~Tc � sin ~Ts; ~T
0�2j �

1

p
� ~T0; ~T0�j;

�cos � ~Tc; ~T
0�j � sin � ~Ts; ~T

0�j
2 �

1

p
� ~T0; ~T0�j:

The maximum value of the left-hand side as 4 varies (see
Appendix B) is

� ~Tc; ~T
0�2j � � ~Ts; ~T

0�2j �

�<�%jei� cos"�2 � �=�%jei� cos"�2 �

j%jj2cos2";

where we have made use of (7.13) and (7.14). Thus

j%jj2 �
1

pcos2"
� ~T0; ~T0�j:

Summing both sides over j and making use of (7.19) this
implies that

0 � & �
1

cos2"
� 1: (7.20)

This result makes no assumptions about the form of the
mismatched signal ~T0. As in the single-phase case, if we
assume that the mismatch is small, #� 1, we obtain

0 � & � 2#: (7.21)

This result does not assume any relationship between the
frequency bands of the signals T and T0.

If we assume that the bands fj for the mismatched
signal T0 are the same as those for the templates Tc and Ts
then we can obtain a much stronger upper bound. For
example, this is the case if all three templates are drawn
from a family of stationary-phase approximate inspiral
chirps. In this case, � ~T0; ~T0�j � 1=p and the same logic as
in the single-phase case can be used to establish that
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& � �p� 1�
�

1

cos"
� 1

�
2
� �p� 1�#2; (7.22)

provided that p > 2 and # � 1 � cos" � 2=p. Thus, with
some minor modifications, all the single-phase results
apply to the unknown phase case.

In the case where the signal and template are not a
perfect match, the expected value of zj does not vanish:

hzji �
D0

d0
ei� cos"

�
%j �

1

p

�
:

If the detector noise is stationary and Gaussian, then for a
given astrophysical signal T0 and filter-template Tc;s this
means that the probability distribution of �2 is a classical
noncentral �2 distribution [51] with 2p� 2 degrees of
freedom and noncentrality parameter

% � p
Xp
j�1

jhzjij2 � &jhzij2:

Unfortunately, for a set of candidate events, which corre-
spond to different waveformsD0T0=d0 and ring off differ-
ent templates T, the values of & have different, unknown
values, bounded only by (7.20) or (7.22). In this case,
since the average of noncentral �2 distributions with
different values of % is not a noncentral �2 distribution,
one can only bound the expected distribution, not deter-
mine it from first principles.
VIII. THRESHOLDING CONDITIONS

As described in Sec. I, the �2 time-frequency discrim-
inator is most often used as a veto. For a given data set, the
threshold value �2

� is usually determined using Monte-
Carlo simulation of signals, analytic guidance, and expe-
rience. If the signal and template were known to have
identical form, then the threshold �2

� would be a number.
However since the signal and template are not expected to
match perfectly, the threshold �2

� is a function of the
observed SNR.

It is helpful to understand the threshold that would be
appropriate for stationary Gaussian noise. In this case, the
optimal threshold is given by the inverse of the noncentral
�2 cumulative distribution function [52]. A putative sig-
nal whose �2 value is smaller than this ‘‘Gaussian noise’’
threshold is likely to merit further examination, even if
the noise is not Gaussian [53]. So in most cases a reason-
able threshold will be greater than or equal to the thresh-
old appropriate for Gaussian detector noise.

In the stationary Gaussian case, for fixed T and T0, the
expected value, variance )2, and standard deviation ) of
the noncentral �2 distribution with 2p� 2 degrees of
freedom are [54]
-12
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h�2i � 2p� 2 � % � 2p� 2 � &jhzij2;

)2 � h��2�2i � h�2i2 � 4p� 4 � 4%; and

) �
��������������������������������������
4p� 4 � 4&jhzij2

q
: (8.1)

In the neighborhood of the maximum, for values of the
noncentrality parameter % significantly larger than 2p�
2, the noncentral �2 distribution is approximately a
Gaussian of width ), centered about the mean value 2p�
2 � %. In this case, the optimal �2 veto threshold for
Gaussian noise is well-approximated by

�2
� � h�2i � few);

where ) are the expected statistical fluctuations in �2

evaluated for the ‘‘worst-case’’ value of &. If we assume
that the putative signals and templates do not share the
same frequency bands fj, so that the upper limit of
(7.20) applies, then we obtain a �2 threshold of the form

�2
� � 2p� 2 � 2#jSNRj2 � few

������������������������������������������
4p� 4 � 8#jSNRj2

q
;

(8.2)

where we have replaced the expected SNR by the mea-
sured SNR [55]. Although we have justified this approxi-
mation to the threshold for large noncentrality parameter
%, it turns out to be a reasonably good approximation even
when the noncentrality parameter % is small [56].
0 10 20 30
Expected SNR <|z|>

0
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<χ2>=14+0.06<|z|>
2

LIGO S1 χ2
∗ = 40+0.15|z|

2

<χ2>+4.9σ

0.025%

FIG. 4. A comparison of different thresholds �2
� for the �2

time-frequency discriminator, for the LIGO S1 two-phase case
with p � 8, # � 0:03, and worst-case & � 2#. The bottom solid
line shows the expected value of �2 for stationary Gaussian
noise given by (8.1). The top solid line shows a threshold (8.4)
set 4:9) above this expected value. The upper dashed line
shows the heuristic threshold (8.3) used for the LIGO S1
analysis, which was determined from Monte-Carlo studies.
The lower dashed line shows the threshold which would be
exceeded with probability 0.025% in stationary Gaussian noise.

062001
It is interesting to compare the threshold appropriate
for Gaussian noise to the �2 threshold used in the LIGO
S1 analysis for p � 8 and # � 0:03, which is equation
(4.7) of Ref. [9]

LIGO S1�2
� � 40 � 0:15jSNRj2; (8.3)

shown as the upper dashed line in Fig. 4. The lower solid
curve shows the expectation value of �2 given by (7.18),
and the upper solid curve shows a 4.9 standard deviation
threshold given by (8.2), which is

�2
� � 14 � 0:06jSNRj2 � 4:9

������������������������������������
28 � 0:24jSNRj2

q
: (8.4)

As is clear from the graph, the heuristic threshold is
reasonably well matched by the sort of threshold that
one might set based on a worst-case analysis for
Gaussian detector noise.

For very large SNR, the Gaussian threshold condition
(8.2) consists of two terms. The dominant term (quadratic
in SNR) comes from the mean value h�2i and has coef-
ficient exactly &. The subdominant term (linear in SNR)
comes from a few times ). Hence, a threshold like the
LIGO S1 choice would not veto high SNR events that
could be confidently vetoed in Gaussian noise. This is
illustrated in Fig. 5.

In the LIGO S1 analysis, which sets an upper limit on
the Galactic inspiral rate, the probability of observing a
close inspiral (very large SNR) is far smaller than the
probability of observing a more distant (low SNR) event
from near the Galactic center. Thus, applying the more
0 100 200 300
SNR

0

6000

12000

T
hr

es
ho

ld
 χ

2 ∗

LIGO S1

Gaussian noise

FIG. 5. A comparison of different thresholds for the �2 time-
frequency discriminator, at large SNR. The upper solid curve is
the LIGO S1 threshold (8.3). The lower (dashed) curve is the
threshold that would be exceeded with probability 0.025% in
stationary Gaussian noise. (On the scale of this graph the
approximation (8.4) to the dashed curve is difficult to distin-
guish from the exact result obtained from the inverse of the
noncentral �2 distribution.)
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stringent thresholding condition at high SNR would
probably not have had a significant detrimental effect
on the analysis: it would not have significantly decreased
the detection efficiency. However it also would not have
improved the analysis, since the highest SNR events that
passed the �2 threshold had SNR less than 16.
IX. UNEQUAL EXPECTED SNR FREQUENCY
INTERVALS

One may also define a �2 time-frequency discriminator
using frequency intervals which do not make equal ex-
pected contributions to the SNR, and almost all of the
previous results hold [58]. For simplicity, in this Section
we treat only the single-phase case.

Begin by making the same initial assumptions as in
Sec. VI, but choose frequency intervals which do not
make equal expected contributions to the SNR. Thus

choose fj so that � ~T; ~T�j � qj; (9.1)

where the qj 2 �0; 1 do not necessarily equal 1=p.
Template normalization � ~T; ~T� � 1 implies that they sat-
isfy

P
jqj � 1.

Define the SNR in the j’th band as previously

zj � � ~Q; ~s�j; (9.2)

and define zj as the difference between observed SNR in
the j’th band, and the value that would be anticipated [59]
based on the total SNR observed. Thus we define

zj � zj � qjz; (9.3)

where as before the observed SNR is z �
P
jzj � � ~Q; ~s�.

Note that by definition the sum
P
jzj vanishes.

Consider the case of a signal waveform T0 which may
be mismatched to the template T, so �T; T0� � cos" and
(without loss of generality) 0 � cos" � 1. Within the j’th
band, the template T0 has overlap

� ~T; ~T0�j � %j cos"; (9.4)

which may be taken to define the quantities %j. As before,
the sum

P
j%j � 1. Taking the signal to be

s�t� � n�t� �
D0

d0
T0�t�; (9.5)

we can now compute the various expectation values.
It follows immediately from the above definitions that

these expectation values are given by
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hzi �
D0

d0
cos"; hzji �

D0

d0
%j cos";

hzji �
D0

d0
�%j � qj� cos";

hz2i � 1 �

�
D0

d0

�
2
cos2";

hzjzki � qj�jk �
�
D0

d0

�
2
%j%kcos2";

hz2j i � qj �
�
D0

d0

�
2
%2
jcos2"; and

h�zj�2i � qj�1 � qj� �
�
D0

d0

�
2
�%j � qj�2cos2";

(9.6)

where (the Kronecker symbol) �jk � 1 if j � k and van-
ishes otherwise. The formulae of Sec.VI correspond to the
special case in which qj � 1=p.

Define the �2 time-frequency discriminator in the un-
equal expected SNR interval case to be

�2 �
Xp
j�1

�zj�
2=qj: (9.7)

To characterize the statistical properties of �2, it is help-
ful to express it in terms of a different set of variables.
Begin by writing �2 as

�2 �
Xp
j�1

�zj � qjz�zj=qj �
Xp
j�1

zjzj=qj

�
Xp
j�1

z2j=qj �

 Xp
j�1

zj

!
2

; (9.8)

where we have made use of the fact that the zj sum to
zero. Define new variables uj � zj=

�����qjp , which have vari-
ance unity and are uncorrelated:

hujuki � hujihuki � �jk;

In terms of these variables, the statistic is

�2 �
Xp
j�1

u2
j �

 Xp
j�1

�����
qj

p
uj

!
2

: (9.9)

To characterize the probability distribution of �2, it is
convenient to change variables once again.

We introduce new variables vj which are linear combi-
nations of the uj and are most conveniently written in
matrix form as

v1

..

.

vp

2664
3775 � M

u1

..

.

up

2664
3775 (9.10)

where M is a p� p square matrix. Choose M to be an
orthogonal matrix, which thus satisfies MtM � MMt �
I, where t denotes transpose and I is the p� p identity
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matrix. These linear transformations (9.10) are rotations
[60] that map Rp ! Rp.

Since the transformation is orthogonal, the new varia-
bles vj also have variance unity and are uncorrelated:

hvjvki � hvjihvki �
Xp
‘�1

Xp
m�1

Mj‘Mkm�hu‘umi � hu‘ihumi

�
X
‘

X
m

Mj‘Mkm�‘m

�
X
m

MjmMkm

�
X
m

Mjm�Mt�mk

� �MMt�jk � Ijk � �jk: (9.11)

Moreover

Xp
j�1

u2
j �

Xp
j�1

v2
j ; (9.12)

since rotations do not change the length of a vector.
The rotation M may be chosen so that any given or-

thonormal basis is mapped onto any other orthonormal
basis of the same orientation (handedness). Thus one may
choose the rotation so that the last of the new variables is

vp �
�����
q1

p
u1 �

�����
q2

p
u2 � � � �

������
qp

p
up: (9.13)

This corresponds to constraining the final row of M to be
�
�����
q1

p
; � � � ;

�����
qn

p
�, or equivalently to requiring that M map

the vector on the left hand side (l.h.s.) below to the final
(p’th) basis vector.

�����
q1

p

..

.�����
qn

p

2664
3775 M���!

0
..
.

0
1

266664
377775

In terms of these new variables, �2 given in (9.9) may be
written using (9.12) and (9.13) as

�2 �

 Xp
j�1

v2
j

!
� v2

p �
Xp�1

j�1

v2
j : (9.14)

This form makes it easy to characterize the statistics of
�2 if the detector noise is Gaussian [61].

If the noise is Gaussian, then the uj are uncorrelated
(and hence independent) Gaussian random variables with
unit variance, and the vk are also uncorrelated (and hence
independent) Gaussian random variables with unit vari-
ance. Thus, in the case of Gaussian noise it immediately
follows from (9.14) that �2 has a classical noncentral �2

distribution with p� 1 degrees of freedom. In the two-
phase case, each of the vj is a complex variable with
independent real and imaginary parts and the resulting
distribution has 2p� 2 degrees of freedom.
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The noncentrality parameter % may be evaluated by
calculating the expected value of �2. Using (9.6) and (9.7)
this is

h�2i � p� 1 � &
�
D0

d0

�
2
cos2" � p� 1 � &hzi2; (9.15)

and hence the noncentrality parameter is given by % �
&hzi2. The constant &, which is determined by the choice
of intervals, the spectrum of the detector noise, and the
frequency-dependence of the mismatch between tem-
plates, is given by

& �
Xp
j�1

�%j � qj�
2=qj �

Xp
j�1

�%2
j=qj � 2%j � qj�

� �1 �
Xp
j�1

%2
j=qj: (9.16)

Clearly & is non-negative. One can easily obtain an upper
limit on & even in this case where the frequency intervals
are not ‘‘equal SNR’’ intervals.

To obtain a limit on &, begin with Schwartz’s inequal-
ity, which implies that

� ~T; ~T0�2j � � ~T; ~T�j� ~T
0; ~T0�j%

2
jcos2" � qj� ~T

0; ~T0�j ) %2
j=qj

�
1

cos2"
� ~T0; ~T0�j: (9.17)

Summing both sides over j and using (9.16) yields

0 � & �
1

cos2"
� 1; (9.18)

and hence for #� 1 one has 0 � & � 2#, just as in the
‘‘equal SNR interval’’ case.

One can also establish a stronger limit analogous to
(6.32) for the case where the templates T and T0 have the
same values of qj for a given set of frequency intervals. In
this case, Schwartz’s inequality implies that

� ~T; ~T0�2j � � ~T; ~T�j� ~T
0; ~T0�j; %2

jcos2" � q2
j ;

and hence that

�
qj

cos"
� %j �

qj
cos"

: (9.19)

Without loss of generality, relabel the frequency intervals
so that

q1 � q2 � � � � � qp:

The value of & is maximized by setting:

%1 � 1 � �q1 � 1�= cos"

%2 � q2= cos"

� � �

%p � qp= cos": (9.20)

This choice satisfies the constraint that
P
j%j � 1, and the
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r.h.s. of (9.19). In order that %1 satisfy the l.h.s. of the
constraint (9.19) we need to have

1 � cos" < 2q1 (9.21)

or equivalently # < 2q1. For the values of %j given in
(9.20) one then obtains

& �
Xp
j�1

�%j � qj�
2=qj

� ��q1 � 1�= cos"� 1 � q1
2=q1 � q2

�
1

cos"
� 1

�
2

� � � � � qp

�
1

cos"
� 1

�
2

� ��q1 � 1�2=q1 � q2 � � � � � qp
�

1

cos"
� 1

�
2

�

�
1

q1
� 1

	�
1

cos"
� 1

�
2
:

For p > 2 this gives the upper bound on &.
Denote the smallest value of qj (q1 just above) by qmin.

Then, in the case where the templates T and T0 have the
same values of qj for a given set of frequency intervals,
and 1 � cos" < 2qmin one has

0 � & �

�
1

qmin
� 1

��
1 � cos"

cos"

�
2
: (9.22)

If # � 1 � cos" is much less than unity, then this may be
written

0 � & �

�
1

qmin
� 1

�
#2 if # < 2qmin: (9.23)

These reduce to the previous results of Sec. VI when all
the qj (and hence qmin) equal 1=p.

This ‘‘unequal expected SNR’’ �2 discriminator may
be of practical use when it is impossible to construct equal
SNR intervals. It may also permit the construction of
discriminators which are specifically tuned to common
types of detector noise.
X. OTHER TYPES OF �2 TESTS

There are many possible �2 tests that could be used
to discriminate spurious signals from genuine ones. Here
we compare the �2 time-frequency discriminator of this
work with a standard �2 test used by Baggio et al. [37],
which we denote by ��2. This tests ‘‘goodness of fit’’ for a
modeled signal embedded in stationary Gaussian noise,
and is used in analyzing data from AURIGA, a narrow
band resonant-bar gravitational wave detector.

It is instructive to express this standard test in the
notation of this paper. ��2 is constructed in two steps.
First one picks a time interval �t1; t1 � 0 whose length
0 is not less than the time duration of the signal-model
template T convolved with S�1

n , and which includes the
support of S�1

n � T [62].
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Then one constructs a function of a single real ampli-
tude A (or, potentially, additional parameters describing
the signal)

�� 2�A� � �~s� A ~T; ~s� A ~T� � �~s; ~s� � 2A�~s; ~T� � A2:

(10.1)

Here, ~s is computed from (2.1), but the integral is taken
only over the time interval �t1; t1 � 0. As a function of A,
��2 has an absolute minimum at

A � �~s; ~T� � z:

The minimum value of ��2�A� defines ��2:

�� 2 � �~s; ~s� � �~s; ~T�2 � �~n; ~n� � �~n; ~T�2: (10.2)

Thus, ��2 measures the difference between the squared
amplitude of the detector output and the squared SNR. It
is clear from this equation that ��2 is quite different from
the �2 discriminator defined in this paper. In particular, if
the detected SNR vanishes (z � 0) then ��2 � �~s; ~s�,
whereas �2 �

Pp
j�1�~s; ~T�

2
j . In this case ��2 is measuring

the ‘‘total length’’ of ~s, while �2 is measuring the sum of
squares of the components of ~s obtained by projecting it
onto p orthonormal components of ~T.

It is also instructive to compute the expected value of
��2 in our frequency-domain-based formalism [63].
Denote the instrument’s data acquisition sample time by
t, so that the Nyquist frequency is fN � 1=�2t� and the
number of data samples is N � 0=t. After setting s�t� to
zero outside of the time interval �t1; t1 � 0, one has

hj~n�f�j2i �
Z 0

0
dt
Z 0

0
dt0hn�t� t1�n�t0 � t1�ie2�if�t�t0�

�
Z
df0

Z 0

0
dt
Z 0

0
dt0Sn�f0�e2�i�f�f0��t�t0�

�
Z
df0

Z 0

0
dt
Z 1

�1
dt0Sn�f0�e2�i�f�f0��t�t0�

�
Z
df0

Z 0

0
dtSn�f0���f� f0�e2�i�f�f0�t

�
Z 0

0
dtSn�f� � 0Sn�f�: (10.3)

In going from the second to the third line, we have
assumed that 0 is greater than the characteristic time
over which the autocorrelation function of the noise falls
off. From (10.3) it follows immediately that

h�~n; ~n�i �
Z fN

�fN

hj~n�f�j2i
Sn�f�

df � 2fN0 � N; (10.4)

where, as before, N is the number of data samples. And
provided that the interval �t1; t1 � 0 includes the support
of the template T, we have already shown that h�~n; ~T�2i �
1. Combining this with (10.2) and (10.4) one finds the
expectation value
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h ��2i � N � 1; (10.5)

corresponding to the fact that ��2 has a classical �2

distribution with N � 1 degrees of freedom.
As this analysis and counting makes clear, the defini-

tion of ��2 given in [37] includes the degrees of freedom
associated with every pixel in the time-frequency plane.
In contrast to this, the �2 time-frequency discriminator
defined in this paper includes only blocks of pixels cen-
tered along the time-frequency track of the template T. In
fact, when ��2 is actually computed from data, the number
of degrees of freedom is reduced to include only those
degrees of freedom in the sensitive band of the detector
[64].
XI. CONCLUSION

This paper defines a �2 time-frequency discriminator
which is an effective veto for the output of a matched
filter. The statistic looks along the time/frequency track of
purported signal to see if the SNR accumulates in a way
that is consistent with the properties of the signal and the
second-order statistics of the detector’s noise. Small val-
ues of �2 are consistent with the hypothesis that the
observed SNR arose from a detector output which was a
linear combination of Gaussian noise and the putative
signal waveform. Large values of �2 indicate that either
the signal did not match the template, or that the detector
was producing very non-Gaussian noise. The method
appears to work well for broadband detectors and signals,
and may have wider applicability.

The main results of the paper are the definitions of �2

given in (4.14) and (7.10) and Eqs. (6.24), (6.33), and
(7.18), which give upper bounds on the expected value
of �2 if the signal and template are slightly mismatched.
We also showed that the �2 time-frequency discriminator
is distinct from the standard ‘‘goodness of fit’’ �2 test
described in [37].

Recently the TAMA group has been experimenting
with using jzj2=�2

r as a thresholding statistic for detection
purposes [7], where �2

r is �2 divided by the number of
degrees of freedom. In Monte-Carlo simulation studies,
they have shown that this prevents simulated high SNR
events from being rejected by the discriminator. This is
one way to accommodate mismatch between templates
and signals.

The construction of �2 requires the (a priori or poste-
rior) choice of how many frequency bands to use. An
outstanding research question is ‘‘what is the best way to
set the value of p? ’’ The correct answer to this question
probably depends upon a number of factors. These include
(i) T
he ultimate goal of the analysis (i.e., setting
upper limits, or detecting sources).
(ii) T
he statistical properties of the detector noise
(both broadband background and transient
glitches).
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(iii) T
-17
he maximum mismatch # of the template bank.

(iv) T
he accuracy to which the putative signal wave-

forms can be calculated or predicted.

One possible answer comes from the behavior of �2 as a
function of the template mismatch #. We have shown that
there are two possible types of behavior, depending upon
whether or not the two templates have the same power
spectrum (which implies that they share the same intrin-
sic frequency bands). In some situations, it may make
sense to work along the boundary in the �p; #� plane that
separates these two types of behavior, as shown in Fig. 3.

Some interesting work on this topic has been done by
Babak [11] who has found the optimal value of p for the
GEO detector by studying the relative distributions of �2

in the presence and absence of simulated inspiral chirp
signals.

A related issue concerns the construction of a template
bank. The minimum number of required templates is
fixed by physics and the behavior of the detector: one
divides the volume of parameter space by the volume
covered per template [35]. However within this constraint
the actual locations of the templates and their precise
parameters are quite arbitrary. It may be possible to break
this degeneracy by constructing a template bank in such a
way that the effects on �2 of a signal/template mismatch
are minimized, or bounded significantly below the abso-
lute limits that we have obtained. Roughly speaking this
corresponds to placing the templates in such a way that
the overlap � ~T; ~T0�j is simultaneously maximized in
each of the different bands j � 1; � � � ; p. This might
also require varying the value of p as one moves across
the template bank.

While the �2 test was specifically constructed for
broadband signals, it may be generalized to signals that
are normally thought of as ‘‘narrow band’’. One example
is the Continuous Wave (CW) signals expected from a
rapidly rotating neutron star (pulsar). In fact, these CW
signals are not so narrow band. Typically, the Earth’s
motion around the solar system modulates such a signal
by a part in 104 over a six-month-long observation. Since
the intrinsic frequency of such a source is of order 1 kHz,
and the frequency resolution during six months is of order
10�7 Hz, these signals are actually spread over approxi-
mately 106 frequency bins. Thus a �2 test could be em-
ployed for such signals.

In fact a corresponding �2 test could be implemented
in the time-domain for any type of signal. In effect, one
simply breaks the template (viewed as a function of time)
into p contiguous and nonoverlapping sections, each of
which gives an equal expected contribution to the total
SNR [65]. One then forms the �2 statistic by seeing if
these relative contributions are clustered around the ex-
pected SNR (which is a fraction 1=p of the total SNR).
Note that an analysis like the one done in this paper shows
that this quantity does not have a classical �2 distribution
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if the detector noise is Gaussian and colored. This is
because the noise in two nonoverlapping time intervals
is correlated. However if the length of the time intervals
is long compared to the characteristic correlation time of
the noise, or if the detector output and template are
whitened, then the resulting quantity would have a clas-
sical �2 distribution for Gaussian noise.
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APPENDIX A: DISTRIBUTION OF �2 FOR
STATIONARY GAUSSIAN DETECTOR NOISE

Here, we derive the probability distribution function
(pdf) of the �2 discriminator under the assumption that
the detector’s noise is stationary and Gaussian. For sim-
plicity we treat the single-phase case; the two-phase case
corresponds to replacing p and p� 1 by 2p and 2p� 2
respectively.

Since the different zj are each constructed from differ-
ent, nonoverlapping frequency bands, they are themselves
Gaussian random variables. Hence their pdf is

P�z1; � � � ; zp� �
Yp
j�1

�2�)��1=2e��zj�1=p2=2) (A1)

with ) � 1=p and 1 � hzi.
We need to calculate the pdf of zj � zj � z=p. This is

complicated by the fact that these variables are correlated
[66] since their sum vanishes exactly.We denote the pdf of
zj by �P�z1; � � � ;zp�. It is defined by the relation that
the integral of any function of p variables F�u1; � � � ; up�
with respect to the measure defined by this probability
distribution satisfies
Z
du1 � � �

Z
dup �P�u1; � � � ; up�F�u1; � � � ; up� �

Z
dv1 � � �

Z
dvpP�v1; � � � ; vp�F

�
v1 �

Xp
j�1

vj
p
; � � � ; vp �

Xp
k�1

vk
p

�
:

(A2)

We can use this definition to find a closed form expression for �P.
Let F�u1; � � � ; up� �

Qp
j�1 ��uj � zj� in (A2). One obtains

�P�z1; � � � ;zp� �
Yp
j�1

Z
dvj

e��vj�1=p2=2)

�2�)�1=2
�
�
vj � zj �

Xp
k�1

vk
p

�
: (A3)

To evaluate the integral, change to new variables w1; � � � ; wp�1; W defined by

v1 � W=p� w1

� � �

vp�1 � W=p� wp�1

vp � W=p� w1 � � � � � wp�1: (A4)

The Jacobian of this coordinate transformation is

J � det
� @�v1; � � � ; vp�

@�w1; � � � ; wp�1; W�

	
� det

1 0 � � � 0 1=p
0 1 � � � 0 1=p

� � �

0 0 � � � 1 1=p
�1 �1 � � � �1 1=p

2666664

3777775: (A5)

Using the linearity in rows of the determinant, it is straightforward to show that J � 1.
The integral may now be written as
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�P�z1; � � � ;zp� �
Z
dw1 � � �

Z
dwp�1

Z
dW � �2�)��p=2e���v1�1=p�2������vp�1=p�2=2)

���w1 � z1� � � ���wp�1 � zp�1� � ��w1 � � � � � wp�1 � zp�: (A6)

The argument of the exponential may be expressed in terms of the new integration variables as

�v1 � 1=p�2 � � � � � �vp � 1=p�2 � w2
1 � � � � � w2

p�1 � �W � 1�2=p� �w1 � � � � � wp�1�
2 (A7)

and thus the integral yields

�P�z1; � � � ;zp� �
Z
dW�2�)��p=2e��z21�����z2p��W�1�2=p=2)��z1 � � � � � zp�

� �2�)��p=2�2�)p�1=2e��z21�����z2p=2)��z1 � � � � � zp�: (A8)
This pdf is easily visualized. In Rp it vanishes except on
the �p� 1�-plane z1 � � � �zp � 0. On that hyperplane
it is a spherically-symmetric function of the distance
from the origin.

This probability distribution arises because we do not
know the true expectation value hzi but can only estimate
it using the single measured value of z. This issue arises
whenever the mean of a distribution is not know but must
be estimated (problem 14-7 of [67]). This probability
distribution is ‘‘as close as possible to a Gaussian’’ subject
to the constraint that the sum of the Sj must vanish. It is
significant that this pdf is completely independent of 1,
which means that if the detector noise is Gaussian then
the properties of the zj do not depend upon whether a
signal is present or not.

We can now compute the probability distribution of
�2 � p�z21 � � � �z2p� using (A8). The probability that
�2 <�2

0 is the integral of (A8) inside a sphere of radius
�0=

����
p

p
. To evaluate the integral, introduce a new set of

coordinates �x1; � � � ; xp� on Rp obtained from any special
orthogonal SO�p� transformation of the p coordinates����
p

p
�z1; � � � ;zp� for which the new p’th coordinate is

orthogonal to the hyperplane z1 � � � � � zp � 0. For
example take xp � z1 � � � � � zp. Let r denote the
radius from the origin r2 � x2

1 � � � � � x2
p, and note that

�2 � r2. The probability is then

P��< �0� �
Z
r<�0

�P�z1; :::;zp�p
�p=2dpx

� �2�)p�1=2�p=2
Z
r<�0

e�r
2=2��xp�d

px:

The integral over the coordinate xp is trivial, yielding a
spherically-symmetric integral over Rp�1:
062001
P��< �0� � �2�)p�1=2�p=2
Z
r<�0

e�r
2=2dp�1x: (A9)

Since this is spherically-symmetric, we can write the
volume element dp�1x � %p�2rp�2dr where %n �
2��n�1�=2

���n�1�=2 is the n� volume of the unit-radius n� sphere
Sn. One then has

P��< �0� � �2�)p�1=2��p=2�%p�2

Z �0

0
rp�2e�r

2=2dr:

Changing variables to u � r2=2 this takes the form

P��< �0� �
1

��p2 �
1
2�

Z �2
0=2

0
u�p=2��3=2e�udu

�
!�p2 �

1
2 ;

�2
0

2 �

��p2 �
1
2�

which is the classical �2 cumulative distribution for p�
1 real degrees of freedom, expressed in terms of the
incomplete !-function.
APPENDIX B: MAX OF A cos� � � B sin� �

Twice in this paper, we require the maximum of
f� � � A cos � B sin , for fixed values of A and B, as
 varies in the interval �0; 2��. This is trivial to obtain.
Setting the derivative df=d to zero gives B cos 0 �
A sin 0 � 0, implying that at the maximum tan 0 �
B=A. Thus one has sec2 0 � 1 � tan2 0 � 1 � B2=A2

and hence cos 0 � A=
������������������
A2 � B2

p
and sin 0 �

B=
������������������
A2 � B2

p
. Substituting these into f yields the maxi-

mum value f� 0� �
������������������
A2 � B2

p
.
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