
PHYSICAL REVIEW D 71, 056004 (2005)
Topcolor breaking through boundary conditions

Michio Hashimoto*
Department of Physics, Pusan National University, Pusan 609-735, Korea

Deog Ki Hong†

Department of Physics, Pusan National University, Pusan 609-735, Korea
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 24 September 2004; published 10 March 2005)
*Electronic
mhashimo@u
Current addre
Science Centr
Canada N6A

†Electronic
mit.edu

1550-7998=20
The nontrivial boundary conditions (BC’s) for the topcolor breaking are investigated in the context of
the TeV-scale extra dimension scenario. In the gauge symmetry breaking mechanism via the BC’s we do
not need to incorporate a dynamical mechanism for the topcolor breaking into the model. Moreover, the
topcolor breaking can be realized without introducing explicitly a (composite) scalar field. We present a
six dimensional model where the top and bottom quarks in the bulk have the topcolor charge while the
other quarks in the bulk do not. We also put the electroweak gauge interaction in the six dimensional bulk.
The bottom quark condensation is naturally suppressed owing to the powerlike running of the bulk U�1�Y
interaction, so that only the top condensation is expected to take place. We explore such a possibility based
on the ladder Schwinger-Dyson equation and show the cutoff to make the model viable.
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I. INTRODUCTION

Recently, the model building along with the TeV-scale
extra dimension scenario [1,2] has been widely surveyed.
The gauge theories with extra dimensions have remarkable
features. Since the number of the Kaluza-Klein (KK)
modes which is the source of the attractive force increases
explosively in high-energy, the bulk gauge couplings grow
very quickly and get strong. Therefore the bulk gauge
theories can naturally trigger the dynamical chiral symme-
try breaking (D�SB)[3–8].

The top quark condensate [9–12], which is often called
the ‘‘top mode standard model’’ (TMSM), has been also
reexamined in the context of extra dimensions [3–6,13–
16]. In particular, Arkani-Hamed, Cheng, Dobrescu and
Hall (ACDH) [5] proposed a version of the TMSM where
the third generation quarks and leptons as well as the the
standard model (SM) gauge bosons are put in the bulk,
while any four-fermion interactions are not introduced in
the bulk unlike the original version of the TMSM in four
dimensions. In Refs. [6,14], the full bulk gauge dynamics
was investigated, based on the ladder Schwinger-Dyson
(SD) equation. The phenomenological implications were
studied in Ref. [15]. It is found that the model with D � 8
can be viable and both masses of the top quark and Higgs
boson are predicted as mt � 172 � 175 GeV and mH �
176 � 188 GeV, respectively. However it turns out that the
simplest scenario with D � 6 does not work.
address: michioh@charm.phys.pusan.ac.kr,
wo.ca
ss: Department of Applied Mathematics, Western
e, The University of Western Ontario, London ON
5B7.

address: dkhong@pusan.ac.kr, dkhong@lns.

05=71(5)=056004(12)$23.00 056004
On the other hand, it is known that field theories in six
dimensions have several interesting features relating to
proton stability [17], explanation of the number of the
generations of fermions [18], etc., In order to construct a
viable top-condensate model in six dimensions, we may
introduce the four-fermion interaction in the bulk. In other
words, one of possibilities is the model building based on
the gauged Nambu-Jona-Lasinio (NJL) model which is
defined as the gauge theory with four-fermion interactions.
The phase structure of such a gauged NJL model in the
bulk was analyzed in Ref. [16]. Another possibility is to
introduce a strong gauge interaction such as topcolor in the
bulk. Topcolor models in four dimensions have been ex-
tensively studied [19–21] (See for reviews Refs. [22,23]).
The top seesaw mechanism can be realized by introducing
five dimensional right-handed top quark [4,24,25].

The topcolor should be broken down in low energy. In
four dimensions, however, it is required to introduce some
involved dynamical mechanism in order to break the top-
color, unless a (composite) scalar field is introduced for
simplicity. As for the gauge symmetry breaking, the extra
dimension scenario has an advantage as well. It is known
that the gauge symmetry breaking can be easily achieved in
extra dimensions by imposing appropriate boundary con-
ditions (BC’s) [26]. On the basis of more general BC’s, the
Higgsless theory was proposed [27,28] and has been in-
vestigated by a number of authors [29–41]. Although it
may be difficult to construct Higgsless models consistent
with the precision measurements, the gauge symmetry
breaking mechanism via nontrivial BC’s can be also ap-
plied to other models for the dynamical electroweak sym-
metry breaking. Such an attempt has not yet been discussed
for far.

A topcolor model with nontrivial BC’s obviously has
some advantages: We do not need to incorporate a dynami-
-1  2005 The American Physical Society
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cal mechanism for the topcolor breaking. We can break
spontaneously the topcolor gauge symmetry without intro-
ducing explicitly a (composite) scalar field. We note here,
however, that such a model has implicitly a scalar field on
the boundary. In a sense, a theory with nontrivial BC’s is
equivalent to a model having a scalar field with a large
vacuum expectation value (VEV) which is put on the
boundary. In the infinite limit of the VEV the scalar field
is completely decoupled and hence the KK masses of the
gauge boson are controlled only by the compactification
scale. Therefore, we can neglect thoroughly such a scalar
field. In passing, the topcolor gauge bosons do not have
mass terms in the bulk in the gauge breaking mechanism
via the BC’s. The theory thus does not provide four-
fermion (NJL-type) interactions in the bulk, unlike four
dimensional topcolor models.

In this paper we investigate the topcolor breaking via
nontrivial BC’s in six dimensions. We assign the topcolor
charge, SU�3�1, to the top and bottom quarks in the bulk.
The quarks of the first and second generations in the bulk
are assumed to have the SU�3�2 charge. We then impose the
nontrivial BC’s so that SU�3�1 � SU�3�2 breaks down to
the diagonal subgroup, which is identified to QCD. We also
put the electroweak (EW) gauge interaction in the bulk.
The EW gauge sector is the same as the universal extra
dimension model [42] with the composite Higgs field. In
order to obtain the chiral fermion in four dimensions, we
apply the compactification on a square proposed by
Dobrescu and Pontón [43], which is closely related to the
compactification on the orbifold T2=Z4.

For a viable model it is required that only the top
condensation occurs while other condensations such as
bottom and leptons do not. We call the requirement
‘‘tMAC condition’’ and the energy scale ‘‘tMAC scale’’
as in Ref. [15]. Once we specify the model, the renormal-
ization group (RG) flows of the gauge couplings can be
determined through the truncated KK effective theory [2].
The running effects are very important to study the tMAC
scale. We note here that the bulk hypercharge interaction
U�1�Y rapidly becomes strong owing to the powerlike
running. Thus the U�1� tilting mechanism to suppress the
bottom quark condensation is automatically incorporated
in the model. The difference of the gauge coupling
strengths between SU�3�1 and SU�3�2 leads to suppression
of the up condensations and charm condensations. When
the theory behaves as a walking gauge theory [44– 48] and
the gauge coupling of SU�3�1 is very close to the critical
coupling for the D�SB, the situation that only the top
quark condenses is naturally realized. We analyze the
tMAC scale by using the ladder SD equation and depict
the results in two dimensional plane of the cutoff � and the
ratio of the topcolor and QCD couplings g2�R�1�=g2

3�R
�1�

at the compactification scale R�1�� 10 TeV�. For a slice
g2�R�1�=g2

3�R
�1� � 4:6, for example, we find that the

tMAC scale is �R� 10 � 10:5. We also show that the
model is not excluded by constraints of S, T-parameters.
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The paper is organized as follows: In Sec. II we study the
BC’s for the topcolor breaking. In Sec. III we give the
model and study running effects of gauge couplings. In
Sec. IV we determine the tMAC scale by solving the ladder
SD equation. Sec. V is devoted to summary and discus-
sions. In Appendix A, we give the chiral compactification
on the square. In Appendix B, we describe the condition
that the five dimensional gauge symmetry is restored on the
boundaries.
II. BOUNDARY CONDITIONS FOR TOPCOLOR
BREAKING

We explore possibility of the top quark condensate in six
dimensions. For simplicity, we compactify extra two spa-
tial dimensions �y5; y6� on a square with 0 � y5; y6 � L.
We introduce the bulk topcolor gauge interaction in order
to trigger the top condensation. The topcolor should be
broken down in the low-energy effective theory. In this
section, we study nontrivial BC’s for the topcolor breaking.
First, we derive the BC’s for the pure gauge theory in the
bulk. Next, we incorporate the top quark in the bulk.

A. Pure gauge theory on a square

Let us analyze the SU�3�1 � SU�3�2 gauge theory in the
bulk. We assign the topcolor to the SU�3�1 gauge interac-
tion. The action is given by

S �
Z
d4x

Z L

0
dy5

Z L

0
dy6Lg; (2.1)

with the Lagrangian

L g � �1
4F

a
MNF

aMN � 1
4F

0a
MNF

0aMN; (2.2)

where M � 0; 1; 2; 3; 5; 6, and

FaMN 
 @MAaN � @NAaM � g6DfabcAbMA
c
N: (2.3)

fabc is the structure constant of the gauge group, g6D the
dimensionful bulk gauge coupling constant. The definition
of F0a

MN is the same as Eq. (2.3) with A0a
M and g06D. The

gauge fields AaM and A0a
M are associated with the gauge

groups SU�3�1 and SU�3�2, respectively. We also use the
notation

AM 
 AaMT
a; (2.4)

with Ta being the generator of the SU(3) Lie algebra.
We break the gauge symmetry SU�3�1 � SU�3�2 to the

diagonal subgroup by assigning nontrivial BC’s to the
gauge fields. The unbroken subgroup is identified to the
conventional QCD.

After integration by parts the variation of the action (2.1)
yields
-2



TOPCOLOR BREAKING THROUGH BOUNDARY CONDITIONS PHYSICAL REVIEW D 71, 056004 (2005)
�S�
Z
d4x

Z
dy5dy6f@MF

aMN�g6Df
abcFbMNAcM��A

a
N

�@MF
0aMN�g06Df

abcF0bMNA0c
M��A

0a
N g

�
Z
d4x

Z
dy6�Fa5��A

a��F0a
5��A

0a��j
�L;y6�

�0;y6�

�
Z
d4x

Z
dy5�Fa6��A

a��F0a
6��A

0a��j
�y5;L�
�y5;0�

�0;

(2.5)

where

Xj�L;y�
�0;y� 
 X�x�; L; y� � X�x�; 0; y�; (2.6)

and similar is the definition of Xj�y;L�
�y;0� . The vanishing re-

quirement of the first term in Eq. (2.5) corresponds to the
equation of motion.

The zero modes of the gauge scalar fields A�0�
5;6 should be

eliminated from the low-energy spectrum. We thus impose
the Dirichlet BC’s on the gauge scalars,�

A5�0; y� � A5�L; y� � 0; A0
5�0; y� � A0

5�L; y� � 0;
A6�y; 0� � A6�y; L� � 0; A0

6�y; 0� � A0
6�y; L� � 0;

(2.7)

where we abbreviated the trivial argument x� in
A5�x�; 0; y�, etc., We rewrite the two integralsR
dy6;

R
dy5 in Eq. (2.5) to

R
dy by introducing a single

dummy index y. Then we obtain a BC for Aa� and A0a
� ,

�@5A
a
��A

a��@5A
0a
��A

0a��j
�L;y�
�0;y�

� �@6Aa��Aa��@6A0a
��A0a��j

�y;L�
�y;0� � 0: (2.8)

If the variations �A�0�
� on the boundaries, �0 or L; y� and

�y; 0 or L�, are independent, Eq. (2.8) yields two BC’s,

�@5Aa��Aa� � @5A0a
��A0a��j

�L;y�
�0;y� � 0; (2.9)

and

�@6Aa��Aa� � @6A0a
��A0a��j

�y;L�
�y;0� � 0: (2.10)

Since we adopt later on a chiral compactification on the
square with two adjacent sides identified, we use a general
expression (2.8) in the following discussion.

Now we further assign the following BC to A� and A0
�

on every boundary,

A�j�0;y�;�L;y�;�y;0�;�y;L� � tan�A0
�j

�0;y�;�L;y�;�y;0�;�y;L�; (2.11)

where � is a constant. Note that the derivative terms are not
identified at the boundary, i.e., @5A�j�0;y� � tan�@5A0

�j
�0;y�,

etc., The BC (2.8) is then rewritten as

@5A0a
� � tan�Aa���A0a�j

�L;y�
�0;y�

� @6A
0a
� � tan�Aa���A

0a�j
�y;L�
�y;0� � 0: (2.12)
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We here define the ‘‘gluon’’ field G� and the ‘‘coloron’’
field G0

� as

�G��x�; y5; y6� � A0
� cos�� A� sin�;

G0
��x�; y5; y6� � �A0

� sin�� A� cos�:
(2.13)

The gluon field should have zero modes. We thus impose
the Neumann BC’s on the gluon field G�:

@5G
a
�j

�0;y�;�L;y� � 0; @6G
a
�j

�y;0�;�y;L� � 0: (2.14)

By definition (2.13), Eq. (2.11) automatically yields the
Dirichlet BC’s for G0

�:

G0
��0; y� � G0

��L; y� � G0
��y; 0� � G0

��y; L� � 0:

(2.15)

Hence we obtain the KK decompositions for G� and G0
�,

G��x
�; y5; y6� �

1

L

X
n5;n6�0

Gn5;n6�
� �x��N

�
cos

�
"
L
n5y

5

�

� cos
�
"
L
n6y6

��
; (2.16)

with

N 
 2

																																												
1

�1 � �n5;0��1 � �n6;0�

s
; (2.17)

and

G0
��x

�; y5; y6� �
1

L

X
n5n6�0

G0n5;n6�
� �x��

� 2
�
sin

�
"
L
n5y5

�
sin

�
"
L
n6y6

��
; (2.18)

respectively. We note here that onlyG� associated with the
diagonal subgroup includes a zero mode, while G0

� does
not. We identify the unbroken gauge group to QCD,
SU�3�c.

We comment on our choice of the BC’s. Under the above
identification the gauge symmetry breaking SU�3�1 �
SU�3�2 ! SU�3�c takes place on all the boundaries. This
is not a unique choice:, for example, we can also construct
a model in which the gauge symmetry is broken down
only at a part of boundary like �0; y�; �L; y�. We choose
the BC’s (2.14)–(2.15) to be consistent with the chiral
compactification.

B. Topcolor model on a square

Let us take into account the top quark T in the bulk,
which has the SU�3�1 charge,

L t � �T�iDM�MT� � �T�iDM�MT�; (2.19)

with
-3
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�
1

2
@
$

M � ig6DAM

�
; (2.20)

where

�T@
$

M�MT 
 �T�M�@MT� � �@M �T��MT; (2.21)

and �M’s are the Gamma matrices in six dimensions. The
chiral fermions T� in the bulk are defined by

T� 
 1
2�1 � ��;7�T; (2.22)

where ��;7 is the chirality matrix in six dimensions. The
theory obviously has the chiral symmetry. We note here
that the chiral fermions T� contain both of the right and
left-handed components, i.e.,

T� � T�R � T�L; T�R;L 
 1
2�1 � ��;5�T�; (2.23)

with the four dimensional chirality matrix ��;5. Therefore
we must carry out the chiral compactification in order to
obtain the SM-like top quark in low energy.

Following Dobrescu and Pontón [43], we identify two
adjacent sides as follows:

�y; 0� 
 �0; y�; �y; L� 
 �L; y�; y 2 0; L�;

(2.24)

which is closely related to the orbifold compactification on
T2=Z4. We take a notation that T�R;�L include the SM-like
top quarks tR;L as the zero modes. In general, the value of a
field at two identified points differs by a nontrivial phase, if
a loop around the point is noncontractible. As in [43], we
assign the following BC’s

T�R�y; 0� � T�R�0; y�; T�R�y; L� � T�R�L; y�;

(2.25)

to the fermion T�R. The BC’s for T�L are the same. For
T�L and T�R different BC’s should be imposed. For de-
tails, see Appendix A and Ref. [43]. On the other hand, for
gauge fieldsG� and G0

� the chiral compactification further
requires

G��0; y� � G��y; 0�; G��y; L� � G��L; y�; (2.26)

and

@6G0
�j

�y;0� � �@5G0
�j

�0;y�; @6G0
�j

�y;L� � �@5G0
�j

�L;y�;

(2.27)

in addition to the BC’s (2.14) and (2.15). It is natural to
require that on the boundaries the theory is reduced into the
five dimensional one. Details are summarized in
Appendix B. We then find that the desirable BC’s for the
derivative terms of T are

@5T�R;�Lj�0;y�;�L;y� � 0; @6T�R;�Lj�y;0�;�y;L� � 0:

(2.28)

We note here that Eqs. (2.7) also imply Eq. (2.28). The KK
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decompositions of T�R;�L, G� and G0
� are obtained as

T�R;�L�x�; y5; y6� �
1

L

X
j�k�0

Tj;k�
�R;�L�x

��fj;k�cc �y5; y6�;

(2.29)

G��x�; y5; y6� �
1

L

X
j�k�0

Gj;k�
� �x��fj;k�cc �y5; y6�; (2.30)

G0
��x

�; y5; y6� �
1

L

X
j>k>0

G0j;k�
� �x��fj;k�ss �y5; y6�; (2.31)

with

fj;k�cc 
 N cc

�
cos

�
"
L
jy5

�
cos

�
"
L
ky6

�

� cos
�
"
L
ky5

�
cos

�
"
L
jy6

��
; (2.32)

fj;k�ss 
 N ss

�
sin

�
"
L
jy5

�
sin

�
"
L
ky6

�

� sin
�
"
L
ky5

�
sin

�
"
L
jy6

��
; (2.33)

where N cc and N ss are the normalization factors given in
Appendix A. In particular, the function f0;0�cc for the zero
mode is given by

f0;0�cc � 1: (2.34)

In our compactification, the KK masses for Gj;k�
� and

G0j;k�
� are labeled by integers j and k as

M2
j;k 


"2

L2 �j
2 � k2�: (2.35)

The lightest KK mass for G� is, as usual,

MG 
 M1;0 �
"
L
: (2.36)

However, the coloron field does not include the KK com-
ponents of �j > 0; k � 0� and �j; k � j�. Therefore the
lowest KK mass for the coloron is given by

MC 
 M2;1 �

			
5

p
"
L

: (2.37)

We also comment that the total number of KK modes for
G0
� below the cutoff � is slightly smaller than that for G�.

Such a difference is, however, negligible for a large �.
From the symmetry breaking pattern SU�3�1 �

SU�3�2 ! SU�3�c, the gauge couplings of SU�3�1 and
SU�3�2 are not arbitrary, but they are related to the QCD
coupling. Integrating the six dimensional Lagrangian over
dy5 and dy6, we define the four dimensional theory,

L 4D 

Z L

0
dy5

Z L

0
dy6L6D; (2.38)
-4



TABLE I.

SU�3�1 SU�3�2 SU�2�W U�1�Y

�t; b�� 3 1 2 1=6
t� 3 1 1 2=3
b� 3 1 1 �1=3
�,-; -�� 1 1 2 �1=2
-� 1 1 1 �1
�c; s�� 1 3 2 1=6
c� 1 3 1 2=3
s� 1 3 1 �1=3
�,�;��� 1 1 2 �1=2
�� 1 1 1 �1
�u; d�� 1 3 2 1=6
u� 1 3 1 2=3
d� 1 3 1 �1=3
�,e; e�� 1 1 2 �1=2
e� 1 1 1 �1
 X 3 1 1 0
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with

L 6D � Lt �Lg: (2.39)

By using Eqs. (2.29), (2.30), and (2.31) and the definition
(2.13), we find the interaction term between zero modes of
the top and the gluon as

L int �
g6D sin�

L
�T0;0�
�R;�L�

�G0;0�
� T0;0�

�R;�L: (2.40)

We note here that the definition (2.38) implies the relations
between the six and four dimensional gauge couplings as

g2
6D � L2g2; g026D � L2g02; (2.41)

where g and g0 denote the four dimensional gauge coupling
constants for SU�3�1 and SU�3�2, respectively.
Equation (2.40) then yields the relation

g3 � g sin�; (2.42)

where g3 is the four dimensional QCD coupling. In the
same way, we obtain a similar relation between QCD and
SU�3�2 couplings,

g3 � g0 cos�: (2.43)

Equations (2.42) and (2.43) read

1

g2
3

�
1

g2 �
1

g02
: (2.44)
III. THE MODEL

We now incorporate all quarks and leptons of the SM
into the model. We put all of gauge fields and SM fermions
in the six dimensional bulk. We may introduce right-
handed neutrinos in the bulk, which is not relevant in the
following analysis.

Let us assign the bulk top and bottom quarks to the
SU�3�1 charge while the quarks of the first and second
generations to the SU�3�2 charge. We assume that the
electroweak gauge sector is the same as the model of the
universal extra dimensions [42]. We perform the chiral
compactification described in Sec. II, Appendix A, and
Ref. [43]. The topcolor interaction should be sufficiently
strong to trigger the top condensation, so that we may
further introduce vectorlike (heavy) fermions  X having
the SU�3�1 charge in order to adjust the RG flow of SU�3�1.
We show the charge assignment in Table I.

While SU�3�1 and SU�3�2 are vectorlike, the SU�2�W and
U�1�Y representations are chiral. Although the six dimen-
sional theory is anomalous under the charge assignment in
Table I, the anomalies can be cancelled out by the Green-
Schwarz mechanism [49]. We assume that the Green-
Schwarz counterterm does not change the results in the
following analysis.

Let us study running of gauge couplings in the ‘‘trun-
cated KK’’ effective theory [2] based on the MS-scheme.
056004
In this section, we use the unit of the extra momentum R�1

instead of L,

R�1 

"
L
: (3.1)

We expand bulk fields into KK modes and construct a four
dimensional effective theory. Below R�1 renormalization
group equations (RGEs) of four dimensional gauge cou-
plings gi�i � 3; 2; Y� are given by those of the SM,

�4"�2�
dgi
d�

� big
3
i ; ��<R�1�; (3.2)

with b3 � �7; b2 � � 19
6 and bY � 41

6 . Above R�1 QCD
should be replaced by the SU�3�1 � SU�3�2 gauge interac-
tion. We also need to take into account contributions of KK
modes in � � R�1. Since the KK modes heavier than the
renormalization scale � are decoupled in the MS-RGEs,
we only need summing up the loops of the KK modes
lighter than �. We estimate the total number of KK modes
below � by the volume of the momentum space of extra
dimensions dividing by the identification factor n,

NKK��� �
"��R�2

n
; ��� R�1�: (3.3)

Note that we impose additional BC’s such as Eq. (2.28)
other than the BC’s for the T2=Z4 compactification.
Therefore our model corresponds to the case of

n � 8: (3.4)

The estimate (3.3) works well for �R� 1. (See, e.g.,
Ref. [15]. ) Within the truncated KK effective theory, we
obtain the RGE

�4"�2�
dg
d�

� NKK���btcg3; �� � R�1�; (3.5)
-5
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with

btc � �
22

3
�

4

3
� NX; for SU�3�1; (3.6)

where NX is the number of  X with the fundamental
representation. Other RGE coefficients are given by

b0 � �14
3 ; for SU�3�2; (3.7)

b02 �
4
3 �

1
6nh; for SU�2�W; (3.8)

b0Y � 40
3 � 1

6nh; for U�1�Y: (3.9)

In the following analysis, we assume that one composite
Higgs doublet appears in the low-energy spectrum, i.e.,
nh � 1.

When the RG flow of SU�3�1 is ‘‘walking’’ more slowly
than that of SU�3�2, the top condensation is favored rather
than the up and charm condensations. Thus we require
btc > b0, i.e.,

NX � 3: (3.10)

We now define the dimensionless bulk gauge coupling ĝ
as ĝ2 
 g2

6D�
2 and thereby obtain

ĝ 2��� � �"R��2g2���; (3.11)

where we used Eq. (2.41). Combining Eq. (3.11) with the
RGE (3.5), we find RGEs for the dimensionless bulk top-
color coupling ĝ,

�
d
d�

ĝ � ĝ� !NDAbtcĝ3; (3.12)

with !NDA being the D-dimensional loop factor in the
naive dimensional analysis (NDA),

!NDA 

1

�4"�D=2��D=2�
: (3.13)

The RGEs for SU�3�2, SU�2�W , and U�1�Y are the same as
Eq. (3.12).

Once we specify NX and the topcolor coupling at R�1,
the RG flow of ĝ2 is completely determined. [See also
Eq. (2.44).] We show typical RG flows in Fig. 1. We used
the following values of 1i
 g2

i =�4"�� at � � MZ��
91:1876 GeV� as inputs of RGEs: [50]

13�MZ� � 0:1172; (3.14)

12�MZ� � 0:033 822; (3.15)

1Y�MZ� � 0:010 167: (3.16)

We also note the value of 13 at R�1 � 10 TeV evolved by
the 1-loop RGE,

13�10 TeV� � 0:072 64: (3.17)
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The U�1�Y gauge interaction has the Landau pole �LY at
which the gauge coupling diverges. (See Fig. 1. ) The bulk
gauge coupling ĝY��� rapidly grows due to the powerlike
behavior of the running. As a result, the Landau pole �LY
is not so far from the compactification scale R�1. We thus
need to introduce a cutoff � smaller than the Landau
pole �LY .
IV. ANALYSIS OF THE LADDER SD EQUATION

We explore the energy region where only the top quark
condenses while others do not (tMAC region). Since our
model explicitly breaks the six dimensional Lorentz sym-
metry, it is not obvious whether or not the approach of the
ladder SD equation for the bulk fermion is appropriate.
Nevertheless we may adopt the ladder SD equation in six
dimensions, supposing the cutoff �R�O�10� is large
enough.

The powerlike running of the gauge couplings is crucial
for the analysis of the tMAC region. Thus we should
incorporate the running effects in the ladder SD equation.
Several methods have been applied to the phenomenology
of the low-energy QCD in four dimensions. Simplest one is
the Higashijima-Miransky approximation in which the
gauge coupling is replaced by [51]

g2 ! g2�max��p2;�q2��; (4.1)

where p and q are external and loop momenta of
the fermion, respectively. However the Higashijima-
Miransky approximation is inconsistent with the axial
Ward-Takahashi (WT) identity. A natural choice is
to take the argument of g to the gluon loop momentum
�p� q�,

g2 ! g2�� �p� q�2�: (4.2)
-6
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FIG. 2. The tMAC region for the model with NX � 3. The
coupling constants of the topcolor and QCD at the compactifi-
cation scale R�1 are represented as g2�R�1� and g2

3�R
�1�,

respectively. In the top region only the top condensation occurs
(tMAC region). In the ‘‘bottom’’ region the bottom quark con-
denses as well. No condensation takes place in the region of ‘‘no
condensation.’’ For 2�2 >�2

LY the argument of the gauge
coupling in the kernel of the ladder SD equation exceeds the
Landau pole of U�1�Y .
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In this case, the ladder approximation can be consistent
with both of vector and axial WT identities [52]. A demerit
of the method is that the angular integration cannot be
performed analytically, i.e., the numerical calculation be-
comes complicated. In Ref. [53], it is shown that the
approximation

g2 ! g2�� �p2 � q2�� (4.3)

works well in four dimensions. We may adopt Eq. (4.3)
even in extra dimensions.

Let us solve the ladder SD equation including running
effects. For consistency with the vector Ward-Takahashi
identity, we choose the Landau gauge and then obtain the
ladder SD equation for the fermion mass function Bf as
follows:

Bf�x� � �D� 1�
Z �2

R�2
dyyD=2�1

Bf�y�

y� B2
f�y�

5f�x� y�

x� y

� KB�x; y� � �x$ y��; (4.4)

with f � t; b; c; u; ‘, and x 
 �p2, and y 
 �q2, where
the kernel KB is given by [6]

KB�x; y� �
1

x

�
1 �

y
3x

�
��x� y�; for D � 6: (4.5)

We identified the infrared (IR) cutoff of the SD equation to
the compactification scale R�1. The binding strengths 5f’s
are

5t��2� � CFĝ2���!NDA � 1
9ĝ

2
Y���!NDA; (4.6)

5b��
2� � CFĝ

2���!NDA � 1
18ĝ

2
Y���!NDA; (4.7)

5c;u��
2� � CFĝ

02���!NDA �
1

9
ĝ2
Y���!NDA; (4.8)

5‘��
2� � 1

2ĝ
2
Y���!NDA; (4.9)

for the top, bottom, charm, up and lepton condensates,
respectively. The constant CF�� 4=3� is the quadratic
Casimir of the fundamental representation of SU�3�. In
the following analysis, we study these four channels. The
argument of 5f should be smaller than the Landau pole of
U�1�Y , i.e.,

max�x� y� � 2�2 <�2
LY: (4.10)

We numerically solve the SD equation by using the
iteration method, whose details are described in Ref. [6].
In the analysis, we fix the compactification scale R�1 to
10 TeV. For other values, the results are essentially un-
changed. We depict the result for the models with NX � 3
in Fig. 2. The ‘‘top’’ region in Fig. 2 corresponds to
the tMAC. If we choose the ratio of the values of the
topcolor and QCD couplings at R�1 � 10 TeV to
g2�R�1�=g2

3�R
�1� � 4:2 � 4:6, the tMAC region is �R�
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10 � 10:5. In the region it turns out that the up and charm
condensations do not occur. For �R> 10:5 the lepton
condensation is favored.

Similarly, the tMAC regions are also found for models
withNX � 4; 5. However the regions become narrower: for
g2�R�1�=g2

3�R
�1� � 2:1 � 2:3, �R� 10:2 � 10:5, �NX �

4�; for g2�R�1�=g2
3�R

�1� � 1:3 � 1:4, �R� 10:3 � 10:5,
�NX � 5�.
V. SUMMARY AND DISCUSSIONS

We studied the topcolor model in the six dimensional
bulk. We assigned the nontrivial BC’s to the topcolor gauge
fields so that the topcolor is broken down on the bounda-
ries. As a three generation model we considered the model
whose charge assignments are shown in Table I. Since the
top and bottom quarks have the topcolor charge while the
other quarks do not in the model, the up and charm con-
densations are unlikely to occur. When the bulk U�1�Y
interaction is sufficiently strong, the bottom condensation
is also suppressed. In this way, we can expect that only the
top quark condenses, which is required for a viable model.
In order to demonstrate the existence of such a situation,
we analyzed the ladder SD equation including the RGE
effects of the bulk gauge couplings. We then found that the
situation can be realized in the top region shown in Fig. 2,
which is the result for the model with three extra (heavy)
vectorlike fermions having the topcolor charge, i.e., NX �
3. For example, when the ratio of the couplings of topcolor
and QCD is taken to g2�R�1�=g2

3�R
�1� � 4:2 � 4:6 with
-7
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R�1�� 10 TeV� being the compactification scale, the cut-
off � should be �R� 10 � 10:5. The models with NX �
4; 5 may be possible as well.

The electroweak gauge sector of the model is the same
as the universal extra dimension model [42]. The compac-
tification scale R�1 is severely constrained by the LEP
precision data [50]. Since the KK modes of bulk fermions
are vectorlike, the constraint from the S parameter is sup-
pressed,

S � 10�2
X
j;k

m2
t

M2
j;k

:

Hence the T-parameter constraint is essential. We may
estimate the T-parameter as in Ref. [42],

T � 0:76
X
j;k

m2
t

M2
j;k

; (5.1)

where we neglected O�m4
t =M

4
j;k� contributions. When we

take max�Mj;k� � � or
			
2

p
� with � � �10 � 10:5�R�1,

the estimate of the T-parameter is

T � �4 � 5� � 10�2 �1 TeV2�

R�2�TeV2�
: (5.2)

The current constraint T < 0:02 at 95% C.L. with the
Higgs boson mass mH � 117 GeV [50] yields R�1 >
1:4 � 1:6 TeV. For larger mH the lower bound of R�1

gets smaller. For the reference value R�1 � 10 TeV, we
can expect that the contributions of KK modes to the
T-parameter is negligibly small, even if we take into
account errors arising from nonperturbative effects. In
this case, however, we may need to allow the fine tuning
of O�m2

t R
2� � 3 � 10�4.

Our approach is very sensitive to the cutoff, i.e., the UV
physics. The UV completion by theory space [54,55] may
be required.
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APPENDIX A: SQUARE COMPACTIFICATION

We summarize the chiral compactification on the square
with 0 � y5; y6 � L. Following Dobrescu and Pontón [43],
we identify two adjacent sides as

�y; 0� 
 �0; y�; �y; L� 
 �L; y�; y 2 0; L�; (A1)

which is closely related to the orbifold compactification on
T2=Z4. We include a gauge field as well as a chiral fermion
in the bulk. Here we argue the bulk fermion with positive
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chirality. It is straightforward to extend the arguments to
fermions with negative chirality.

Let us study the Lagrangian,

L � L �
�Lgauge; (A2)

with

L  �
� � �iDM�M �; (A3)

and

L gauge � �
1

4
FaMNF

aMN; (A4)

where M � 0; 1; 2; 3; 5; 6,

DM 

1

2
@
$

M � ig6DAM; (A5)

and

FaMN 
 @MAaN � @NAaM � g6DfabcAbMA
c
N: (A6)

The chiral fermions  � in the bulk are defined as

 � 
 P� ; (A7)

with the chiral projection operators P�,

P� 
 1
2�1 � ��;7�; (A8)

where the chirality matrix ��;7 in six dimensions is

��;7 
 �0�1�2�3�5�6; ��;7��;7 � 1: (A9)

Hence the fermions  � have four components. For our
purpose, it is convenient to use four dimensional right/left-
handed notations. The four dimensional chirality matrix
��;5 is

��;5 
 i�0�1�2�3; ��;5��;5 � 1: (A10)

The matrices ��;5 and ��;7 satisfy

��;5;��;7� � 0; (A11)

so that ��;5 and ��;7 are simultaneously diagonalizable.
Thus we further decompose  � into the four dimensional
right/left-handed fermions:

 � �  �R �  �L; (A12)

where

 �R 
 PR �;  �L 
 PL �; (A13)

with the four dimensional chiral projection operators PR;L,

PR;L 
 1
2�1 � ��;5�: (A.14)

Noting

f��;��;5g � 0; for � � 0; 1; 2; 3 (A15)

and

�m;��;5� � 0; for m � 5; 6; (A16)
-8
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the Lagrangian L �
is rewritten in terms of  �R and  �L

as follows:

L  �
� LRR�LL �LRL�LR; (A17)

with

L RR�LL 
 � �RiD��� �R � � �LiD��� �L; (A18)

and

L RL�LR 
 � �RiDm�m �L � � �LiDm�m �R: (A19)

Under the identification (A1), the Lagrangian should be
the same:

L j�y;0� � Lj�0;y�; Lj�y;L� � Lj�L;y�: (A20)

We then impose the BC’s on fermions as

 �R�y; 0� � ei"=2n �R�0; y�; (A21a)

 �L�y; 0� � iei"=2n �L�0; y�; (A21b)

and

 �R�y; L� � ��1�‘ei"=2n �R�L; y�; (A22a)

 �L�y; L� � i��1�‘ei"=2n �L�L; y�; (A22b)

where the integers n and ‘ can take the values of n �
0; 1; 2; 3 and ‘ � 0; 1, respectively. Differentiating the
BC’s (A21) and (A22) with respect to y, we find

@5 �R�y; 0� � ei"=2n@6 �R�0; y�; (A23a)

@5 �L�y; 0� � iei"=2n@6 �L�0; y�; (A23b)

and

@5 �R�y; L� � ��1�‘ei"=2n@6 �R�L; y�; (A24a)

@5 �L�y; L� � i��1�‘ei"=2n@6 �L�L; y�: (A24b)

We further impose the BC’s on the derivative terms as

@6 �R�y; 0� � �ei"=2n@5 �R�0; y�; (A25a)

@6 �L�y; 0� � �iei"=2n@5 �L�0; y�; (A25b)

and

@6 �R�y; L� � ��1�‘�1ei"=2n@5 �R�L; y�; (A.26a)

@6 �L�y; L� � i��1�‘�1ei"=2n@5 �L�L; y�: (A26b)

The BC’s of the derivative terms imply the identification of
gauge bosons as

A��y; 0� � A��0; y�; A��y; L� � A��L; y�;

A5�y; 0� � A6�0; y�; A5�y; L� � A6�L; y�;

A6�y; 0� � �A5�0; y�; A6�y; L� � �A5�L; y�:

We differentiate Eq. (27) with respect to y and find
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@5A�j�y;0�;�y;L� � @6A�j�0;y�;�L;y�; (A28a)

@5A6j
�y;0�;�y;L� � �@6A5j

�0;y�;�L;y�: (A28b)

The identification (A20) for the gauge sector Lgauge then
requires the BC’s

@6A�j�y;0�;�y;L� � �@5A�j�0;y�;�L;y�; (A.29a)

@6A5j
�y;0�;�y;L� � �@5A6j

�0;y�;�L;y�: (A29b)

Now it is easy to check that the identification (A20) is
satisfied. From the BC’s (A21) and (A22), LRR�LL defined
by Eq. (A18) is obviously identical to the reflection under
Eq. (A1). To see the identity for LRL�LR, we apply the
relations

�5PRP� � �i�6PRP�; �5PLP� � �i�6PLP�;

(A30)

and then find

LRL�LR � � �R�D5�
6 �D6�

5� �L

� � �L��D5�
6 �D6�

5� �R: (A31)

By using the BC’s of Eqs. (A21)–(A26), we can easily
confirm the identification L �

j�y;0�;�y;L� � L �
j�0;y�;�L;y�.

How about the identification of the gauge sector? The
derivative of Eq. (27) with respect to x� and Eqs. (A28)
and (A29) yield

Fa�,j
�y;0�;�y;L� � Fa�,j

�0;y�;�L;y�; (A32a)

Fa�5j
�y;0�;�y;L� � Fa�6j

�0;y�;�L;y�; (A32b)

Fa�6j
�y;0�;�y;L� � �Fa�5j

�0;y�;�L;y�; (A32c)

Fa56j
�y;0�;�y;L� � Fa56j

�0;y�;�L;y�; (A32d)

so that the identification Lgaugej
�y;0�;�y;L� � Lgaugej

�0;y�;�L;y�

is clearly satisfied.
We can show that the phase factor should be ei"=2n �n �

0; 1; 2; 3� after some algebraic calculation. [43] We will not
repeat it here. In this paper, we take the convention

n � 0; ‘ � 0: (A33)

The BC’s yield the Kaluza-Klein (KK) decomposition of
the gauge field A�:

A��x�; y5; y6� �
1

L

X
j�k�0

Aj;k�
�;cc�x��f

j;k�
cc

�
1

L

X
j>k>0

Aj;k�
�;ss�x��f

j;k�
ss ; (A34)

with

f0;0�cc 
 1; fj�0;0�
cc 
 cos

�
"
L
jy5

�
� cos

�
"
L
jy6

�
;

(A35)
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fj;j�cc 
 2 cos
�
"
L
jy5

�
cos

�
"
L
jy6

�
; �j � 0�; (A36)

fj;k�cc 

			
2

p �
cos

�
"
L
jy5

�
cos

�
"
L
ky6

�

� cos
�
"
L
ky5

�
cos

�
"
L
jy6

��
; �j > k > 0�;

(A37)

and

fj;k�ss 
 �
			
2

p �
sin

�
"
L
jy5

�
sin

�
"
L
ky6

�

� sin
�
"
L
ky5

�
sin

�
"
L
jy6

��
: (A38)

The KK expansions of  �R and  �L are given by

 �R�x
�; y5; y6� �

1

L

X
j�k�0

 j;k�
�R;cc�x

��fj;k�cc

�
1

L

X
j>k>0

 j;k�
�R;ss�x

��fj;k�ss ; (A39)

and

 �L�x�; y5; y6� �
1

L

X
j�k�0

 j;k�
�L;1�x

��gj;k�1

�
1

L

X
j>k>0

 j;k�
�L;2�x

��gj;k�2 ; (A40)

with

gj;k�1 

j																

j2 � k2
p fj;k�sc �

ik																
j2 � k2

p fj;k�cs ; (A41)

and

gj;k�2 
 �
ik																

j2 � k2
p fj;k�sc �

j																
j2 � k2

p fj;k�cs ; (A42)

where

fj;k�sc 


																	
2

1 � �k;0

s �
sin

�
"
L
jy5

�
cos

�
"
L
ky6

�

� i cos
�
"
L
ky5

�
sin

�
"
L
jy6

��
; (A43)

and

fj;k�cs 


																	
2

1 � �j;0

s �
cos

�
"
L
jy5

�
sin

�
"
L
ky6

�

� i sin
�
"
L
ky5

�
cos

�
"
L
jy6

��
: (A44)

The KK decompositions of  �L and  �R are the same as
those of  �R and  �L:
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 �L�x�; y5; y6� �
1

L

X
j�k�0

 j;k�
�L;cc�x

��fj;k�cc

�
1

L

X
j>k>0

 j;k�
�L;ss�x

��fj;k�ss ; (A45)

and

 �R�x
�; y5; y6� �

1

L

X
j�k�0

 j;k�
�R;1�x

��gj;k�1

�
1

L

X
j>k>0

 j;k�
�R;2�x

��gj;k�2 : (A46)

In this way, the chiral compactification on the square
leaves the zero modes A0;0�

�;cc;  
0;0�
�R;cc, and  0;0�

�L;cc.
APPENDIX B: GAUGE SYMMETRY ON
BOUNDARIES

We study the gauge symmetry on the boundaries. The
four/five dimensional notations are more convenient than
the six dimensional one. We thus rewrite L �

by using the
following representation of the gamma matrices,

�� �
9� 0
0 9�

� �
; (B1)

�5 �
0 i95

i95 0

� �
; (B2)

�6 �
0 95

�95 0

� �
; (B3)

where 9� and 95 are 4 � 4 matrices. We take the space-
time metric to diag��;�;�; � � � ;��, so that the five di-
mensional gamma matrices are 9�; i95. Noting that

��;7 
 �0�1�2�3�5�6 �
�95 0

0 95

� �
; (B4)

the chiral fermions  �L;�R should be

 �L !
 �L

0

� �
;  �R !

0
 �R

� �
: (B5)

In the four/five dimensional notations, the Lagrangian
L �

�� LRR�LL �LRL�LR� is represented as

L RR�LL �  �RiD�9� �R �  �LiD�9� �L; (B6)

and

LRL�LR �  �RiD5 �D6��i95� �L

�  �LiD5 �D6��i95� �R: (B7)

By performing integration by parts, we obtain the RL�
LR part of the action,
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SRL�LR �
Z
dx4

Z
dy5dy6L0

RL�LR

�
1

2

Z
dx4

Z
dy6� � �R �L� � �H:c:���L;y

6�

�0;y6�

�
1

2

Z
dx4

Z
dy5i� � �R �L� � �H:c:���y

5;L�
�y5;0�

(B8)

with

L0
RL�LR 
 ��i@5 � @6� � �R�i95� �L

� � �Rg6DA5 � ig6DA6��i95� �L

� � �L�i@5 � @6 �g6DA5 � ig6DA6��i95� �R:

(B9)

The surface terms in Eq. (B8) are vanishing thanks to the
BC’s (A21) and (A22). Therefore we may use L0

RL�LR
instead of LRL�LR.

Now we impose the BC’s in order to restore the five
dimensional gauge symmetry on the boundaries. Since the

TOPCOLOR BREAKING THROUGH BOUNDARY CONDITIO
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gauge scalars should be massive, it is natural to assign the
Dirichlet BC’s to A5 and A6, i.e.,

A5j
�0;y�;�L;y� � 0; A6j

�y;0�;�y;L� � 0: (B10)

Then the derivative term of  �R should be zero simulta-
neously from Eq. (B9),

@5 �Rj
�0;y�;�L;y� � 0; @6 �Rj

�y;0�;�y;L� � 0: (B11)

In order to ensure nonvanishing L0
RL�LR, we impose

�@5 � i@6� �Lj
�0;y�;�L;y�;�y;0�;�y;L� � 0: (B12)

The BC’s for the gauge bosons are easily found as

@5A�j
�0;y�;�L;y� � 0; @6A�j

�y;0�;�y;L� � 0; (B13)

and

@5A6j
�0;y�;�L;y� � 0; @6A5j

�y;0�;�y;L� � 0: (B14)

We did not fix the gauge yet, so that the mixing terms of
A�A5 and A�A6 remain. For completeness, one may in-
troduce R: gauge fixing terms, etc.
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