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Electron to selectron pair conversion in a supersymmetric bubble
with jet production by Bose enhancement
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In the standard model, energy release in dense stars is severely restricted by the Pauli exclusion
principle. However, if, in regions of space of high fermion degeneracy, there is a phase transition to a state
of exact supersymmetry (SUSY), fermion to sfermion pair conversion followed by radiative transitions to
the Bose ground state could lead to a highly collimated gamma ray burst. We calculate the cross section
for ee! ~e ~e in a SUSY bubble and construct a monte carlo for the resulting sfermion amplification by
stimulated emission.
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I. INTRODUCTION

Recently it has been proposed that the puzzling gamma
ray bursts seen over the last few decades in satellite ob-
servations [1] could be due to a transition to the SUSY
vacuum in compact astrophysical objects such as white
dwarf or neutron stars [2]. This phase transition could be
catalyzed by the high matter density of such stars and, once
nucleated, will spread through the entire star. Such a
catalysis has been demonstrated in low dimensional mod-
els [3] at high density and is probably a feature of dense
matter in arbitrary dimensions [4].

In such a SUSY bubble, normal particle pairs can con-
vert to sparticle pairs, which, being bosons, can drop to the
ground state through gamma ray emission. In this way, the
entire kinetic energy of a degenerate fermi sea can be
radiated away. It is possible that the high degree of colli-
mation observed in the gamma ray bursts could be due to
Bose enhancement as is familiar in terrestrial lasers. If this
transition occurs in white dwarf stars, there will be a
multicomponent structure to the bursts as various particle
species convert to their SUSY partners, possibly inter-
rupted by periods of fusion of supersymmetric nuclei. A
more complete discussion of the physical picture proposed
is contained in [2]. This model is dependent on the as-
sumption that the common particle and sparticle mass in
the exact SUSY phase is equal to (or less than) the particle
mass in the broken-SUSY phase. This mild though neces-
sary assumption is, perhaps, supported by the string theory
result that the ground state supermultiplets are of low (in
fact zero) mass.

The possibility of a phase transition between vacua
requires that the vacuum structure of the theory is dynami-
cally determined as in string theory and in certain other
models of SUSY breaking. The other possibility, that the
SUSY breaking is determined by arbitrary fixed parame-
ters as in the minimal supersymmetric standard model is
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probably less satisfying from a theoretical perspective. The
transition we consider (from an unstable de Sitter vacuum
with positive vacuum energy to a stable SUSY vacuum)
has been considered in the formal string theory study of
Ref. [5] although phenomenological consequences are not
part of that work.

In this article we treat the simplest component of the
phase transition, namely, the conversion of electron to
selectron pairs.

e��p1�e��p2� ! ~e��p3�~e��p4� (1.1)

This cross section was calculated previously in [6] neglect-
ing the electron mass as appropriate in the broken-SUSY
phase where the electron mass is many orders of magnitude
less than the selectron mass. In the exact SUSY phase the
electron and selectron masses are equal and the cross
section near threshold is needed. The corresponding simple
extensions of the cross section formulae are given in
Sec. II. The results are applicable to a possible SUSY
conversion in a white dwarf which, in the broken-SUSY
phase, is stable against gravitational collapse due to the
electron degeneracy. In a neutron star, the SUSY conver-
sion would be more complicated and the energy release
would be more slow since sneutrons will not efficiently
radiate. Even in the white dwarf case, nuclear processes
may be somewhat more important than the electron com-
ponent which we treat here. In Sec. III, we use the cross
section of (1.1) in an event generator for the differential
transition rate incorporating the Bose enhancement effect.
We assume that the entire kinetic energy of the selectrons
is released into gamma radiation as the scalars drop into the
ground state although we do not treat the radiative pro-
cesses explicitly in this paper. Section IV is reserved for a
summary of our conclusions.

II. CROSS SECTION CALCULATION

In the process e�e� ! ~e ~e the mediator of the interac-
tion is a Majorana spinor ~� as shown in Fig. 1.

We follow the Feynman rules as reviewed in [7]. In
particular the vertex factor for an incoming left (right)
-1  2005 The American Physical Society
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FIG. 1. Feynman graphs for the conversion of an electron pair
to selectrons, Eq. (1.1), via photino exchange .
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handed Dirac fermion of spinor index �, an outgoing
SUSY partner, and an outgoing Majorana fermion of
spinor index � is

�ie
���
2

p �1� �5���

2
(2.1)

and for a Majorana fermion line with double incoming
arrows as in Fig. 1 carrying momentum q from this vertex
to one where the Majorana fermion is emitted with index �,
the propagator is

i
�C�1�q6 	m�
��
q2 �m2 	 i�

: (2.2)

Acting on the Dirac spinor the charge conjugation operator,
C, has the effect

uT�p; s�C�1 � �v�p; s�: (2.3)

For the associated production of left and right selectrons,
the amplitudes corresponding to graphs a and b in figure
one are then

Ma �
ie2

2�t�M2
~��
uT�p1��1	 �5�

TC�1

� �6p 1 � 6p 3 	M~���1� �5�u�p2�

Mb �
ie2

2�u�M2
~��
uT�p1��1� �5�

TC�1

� �6p 1 � 6p 4 	M~���1	 �5�u�p2�:

Here and throughout the paper the Mandelstam variables
are

s � �p1 	 p2�
2 t � �p1 � p3�

2 u � �p1 � p4�
2:

The squared matrix elements take the form:
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jMLRj
2 � �ss0 �MaM

y
a 	MbM

y
b 	MaM

y
b 	MbM

y
a �

� e4
�

1

�t�M2
~��

2 �ut� 2tm2
e � �m2

~e �m2
e�

2


	 t$ u	
4m2

e�m
2
~e �m2

e�

�t�M2
~���u�M2

~��

�
(2.4)

where �ss0 denotes averaging over the spins of incoming
particles. The production of two left or two right selectrons
is obtained from the above by the appropriate changes in
the helicity projection operators and dividing by the statis-
tical factor for the identical final state particles.

jMRRj
2 � jMLLj

2

�
e4M2

~�

2!
�s� 2m2

e�

�
1

t�M2
~�

	
1

u�M2
~�

�
2
:

(2.5)

In the limit of negligible electron mass, these agree with
the spin-averaged formulas of [7] and with the squared
helicity ampltudes of [6]. Other authors have considered
the effect of other neutralino exchanges [8,9] but, since
these particles in the SUSY phase have masses comparable
to the W and Z, they are negligible for our purposes.

In the numerical calculations of Section III, we will need
the integrated matrix elements squared:

fAB�s� �
1�����������������������

s�s� 4m2�
p Z 0

4m2�s
dtjMABj

2: (2.6)

The total cross sections are related to the fAB by

�T�ee! ~eA~eB� �
fAB�s�

16�
�����������������������
s�s� 4m2�

p : (2.7)

Calculations for the different Matrix elements in the
SUSY phase (me � m~e � m) will give us the following:

fLR�s� � 2e4

������������������
s� 4m2

s

s ��2s� 2M2
~� 	 6m2

s� 4m2 	M2
~�

	
s� 2m2 	 2M2

~�

s� 4m2 ln
s� 4m2 	M2

~�

M2
~�

�
fLL�s� � fRR�s�

�
4e4�s� 2m2������������������������
s�s� 4m2�

p �
s� 4m2

�s� 4m2 	M2
~��

	
2M2

~�

s� 4m2 	 2M2
~�

ln
s� 4m2 	M2

~�

M2
~�

�
:

These are only logarithmically sensitive to the photino
mass. The selectron momentum and angular distributions
to be calculated in the next section are even less sensitive to
the photino mass since they depend only on the shape of
the cross sections and not on the absolute values. Integrals
-2
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FIG. 2. Behavior of the t integrated matrix elements squared as
a function of s� 4m2.
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of fLL and fLR as required in the conversion rates dis-
cussed in the next section are finite in the limit of zero
photino mass. However, a more precise treatment of pho-
tino mass effects requires a careful treatment of experi-
mental resolution beyond the scope of this study. The
behavior of the functions fLL�s� and fLR�s� for M~� �

m=4 is shown in figure 2. For larger values of the photino
cutoff mass, fLR lies below fLL although the near constant
values of the two f0swell above threshold are not affected.
III. EVENT GENERATION

In a typical white dwarf (solar mass and earth radius)
there are

N0 � 6 � 1056 (3.1)

electrons in a degenerate Fermi sea:

dN �
2p2dp d�cos�#�
 d$

�2� 
h�3
: (3.2)

The Fermi momentum is

pmax �

�
3N
8�V

�
1=3

2� 
h � 0:498
�
n
n0

�
1=3

MeV=c: (3.3)

Here n is the electron number density and n0 is that of the
nominal white dwarf of solar mass and earth radius. The
event rate for process (1.1) in a volume V is given in terms
of the differential cross section by
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� �
Z
d�

�
dNivi
V

�
dNt; (3.4)

where the incident and target distributions are given by
(3.2). The differential cross section is given in terms of the
invariant matrix element squared by

d� �
j M j2d�f

4E1E2v
: (3.5)

Here m is the common electron and selectron mass in the
SUSY bubble. The energies, Ei and the incident velocity,
v, are those of the target rest frame. The final state phase
space is

d�f �
d3p3

2E3

d3p4

2E4

)4�p1 	 p2 � p3 � p4�

�2��2
(3.6)

where any statistical factors that occur for identical final
state particles are put into the matrix element squared.
Thus the Lorentz invariant event rate per unit volume is

d�
V

�
4 j M j2

�2��8
d3p1

2E1

d3p2

2E2

d3p3

2E3

d3p4

2E4

� )4�p1 	 p2 � p3 � p4�: (3.7)

The p2 integral can be done trivially using the ) function
and the p1 integral is then conveniently done in the CM
frame with p̂3 � êz.

d3p1

2E1

)��p3 	 p4 � p1�
2 �m2
 �

�dt

2
�����������������������
s�s� 4m2�

p : (3.8)

Thus

d�
V

�
j M j2

�2��7
�����������������������
s�s� 4m2�

p dt
d3p3

2E3

d3p4

2E4
(3.9)

or

d�
V

�
j M j2

�2��7
�����������������������
s�s� 4m2�

p dt
p2
3

2E3

�
p2
4

2E4
dp3d cos�#3�d$3dp4d cos�#4�d$4: (3.10)

For pmax we use the value of (3.3) corresponding to the
Fermi energy in a white dwarf of earth radius and solar
mass.

The final state of the process consists of two distinct
species of scalars, ~eL and ~eR. Thus the effective matrix
element squared in (3.10) and elsewhere above is actually

j M j2�j MLR j2 	�j MLL j2 	 j MRR j2�: (3.11)

In a bath of preexisting selectrons each matrix element
squared is related to the elementary matrix element
squared calculated with no preexisting selectrons by the
Bose statistical factors
-3
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j M j2 �j M0LR j2 �NL� ~p3� 	 1
�NR� ~p4� 	 1


	 �j M0LL j2 �NL� ~p3� 	 1
�NL� ~p4� 	 1


	 j M0RR j2 �NR� ~p3� 	 1
�NR� ~p4� 	 1
�: (3.12)

The matrix elements of the previous section, calculated for
the case of no selectrons in the initial state, are the M0 of
this section. For the present we treat only the LL final state.
The RR final state implies that there could be at least four
gamma ray jets in each burst and possibly many more if
different energy levels in the Fermi sea lead to independent
gamma ray bursts. This suggests a picture where the
gamma ray jets are much more numerous in each stellar
explosion and, individually, much more narrow and less
energetic than currently assumed. A more detailed analy-
sis, beyond the scope of the current paper, is needed to
explore this point but we speculate that this could be the
cause of the ‘‘spikey’’ nature or rapid time variability of
many of the observed bursts.

Our remaining analysis in this paper, restricted to the LL
jets, allows us to drop, the L subscript on the occupation
numbers. The CM energy

���
s

p
is determined by ~p3 and ~p4.

The t integral has been done analytically in Sec. II:
We define a grid of Nbin points in each of the six

variables. In practice we chooseNbin � 15. The discretized
i0th integration variable in (3.10) is

vi � vi;min 	 �vi;max � vi;min��Ni 	 1=2�=Nbin (3.13)

where

0 � Ni � Nbin � 1: (3.14)

In order to generate events with probability defined by
(3.10) and (3.12), it is convenient to linearize the six
dimensional integral. We define the composite integer
variable

j �
X6
i�1

N6�i
bin Ni (3.15)

with limits

0 � j � N6
bin � 1: (3.16)

Each value of j corresponds to a unique value of each of the
six integration variables. The distribution of events is then
defined as an integer valued array with N6

bin grid points. To
handle 156 grid points requires careful memory manage-
ment techniques. 1 The integer j can be decomposed into
two integers j3 and j4 which encode the three dimensional
vectors ~p3 and ~p4, respectively.

j3 � j=N3
bin j4 � jmodN3

bin j � N3
binj3 	 j4:

(3.17)

The first of these equations is defined by integer division,
1We thank Doug Leonard for consultation on these techniques.
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i.e., j3 is the largest integer less than or equal to j=N3
bin. The

event generation follows standard techniques [10] except
that the probability distribution changes with each event
due to the Bose enhancement factors. In the event genera-
tion of the selectron distributions, constant overall factors
in (3.10) play no role. We begin by putting all the selectron
occupation numbers to zero and calculating the (unnormal-
ized) probabilities

P�j� � fLL�s�
p2
3p

2
4

E3E4
�N�j3� 	 1
�N�j4� 	 1
: (3.18)

We then define the partial sum

R�j� �
Xj
i�0

P�i� (3.19)

as well as the complete sum

Pint �
XN6
bin
�1

i�0

P�i�: (3.20)

R�j� is a monotonically increasing function of j. One then
calls a random number w between zero and one. For the
unique value of j for which w> R�j� 1�=Pint and w �
R�j�=Pint one increments the selectron occupation num-
bers by one:

N�j3� ! N�j3� 	 1; N�j4� ! N�j4� 	 1: (3.21)

P�j0� changes in the jth bin only by a factor

f � �N�j3� 	 1
�N�j4� 	 1
=�N�j3�N�j4�
: (3.22)

Here N�j3� and N�j4� are the new occupation numbers
(after incrementing). R�j0� changes for each j0 � j

R�j0� ! R�j0� 	 P�j��f� 1� for j0 � j: (3.23)

In addition

Pint ! Pint 	 P�j��f� 1�: (3.24)

After making these replacements, one adjusts P�j�:

P�j� ! P�j�f: (3.25)

One then repeats the process as many times as possible
choosing new random values of w. After very many events
the distribution is amplified at two particular values of ~p3

and ~p4.
In the simulation two problems arise. The first is that the

enhanced probability to put subsequent events in some
particular j0th bin is a very mild enhancement at first.
Only after some huge number of events does the structure
lock in on a particular j value. Since the number of
available fermions in a compact star is of order 1056, this
is not a problem in principle but it does pose technical
problems with computers of currently available speed and
memory. To accelerate the buildup of jet structure, instead
of incrementing the selectron occupation numbers by one
-4



TABLE I. Selectron momentum and angular distributions
showing the effect of boson enhancement. In this run the
occupation numbers are incremented by two at each throw of
the dice.

p (MeV) N(p) cos# N( cos#) $ N($)

0.017 42 �0:93 60914 0.209 16692
0.050 360 �0:80 87034 0.628 56060
0.083 986 �0:67 41284 1.047 94394
0.116 1948 �0:53 28832 1.466 30174
0.149 3178 �0:40 14672 1.885 63792
0.183 4690 �0:27 24064 2.304 127048
0.216 6572 �0:13 16452 2.723 607026
0.249 8410 0.00 52874 3.142 13538
0.282 11510 0.13 660320 3.560 50778
0.315 13548 0.27 16302 3.979 21316
0.349 17198 0.40 33942 4.398 46504
0.382 26284 0.53 112400 4.817 25394
0.415 63298 0.67 23458 5.236 13670
0.448 82526 0.80 23878 5.655 31868
0.481 1034494 0.93 78618 6.074 76790
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FIG. 4. Polar angle distribution for conversion of those elec-
tron pairs whose center of momentum is that of the star. One
quadrant of the angular space is shown with a balancing selec-
tron jet in the opposite direction.
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at each throw of the dice, we increment by two. If one
increments by more than one at each throw, the f of (3.22)
has the obvious redefinition. The distributions in selectron
momentum, polar angle cosine, and azimuthal angle after
600 000 throws (or 1:2 million events) is shown in Table I.
The jagged polar angular distribution shown in Fig. 3 is an
interesting feature of the calculation.

In a simplified run, (not shown here) where we look at
the conversion of two electrons at the Fermi surface,
-.8 -.4  0 .4 .8
cos(θ)

610

510

N

FIG. 3. angular distribution after 600 000 throws, showing
effect of Bose enhancement. In this run, the bins are incremented
twice at each throw
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although there are no observable jets in the first million
events, a clear jet structure emerges at 9 � 107 events even
when selectron occupation numbers are incremented by
one at each event as is physically required. In this run it is
not required that the electron pair has zero total momentum
in the rest frame of the star.

The second problem is the following. We have treated
the star as having an inexhaustible supply of electrons of
each momentum in the fermi sea. In practice this number is
very large but not infinite. Only after all the electrons have
been exhausted will the selectron momenta add to zero in
the rest frame of the star. For the present one can artificially
circumvent this problem by considering electron to selec-
tron conversion among those electron pairs whose center of
momentum frame is that of the star. Then we can choose
one selectron according to the distribution of (3.10) with
the other selectron necessarily having the balancing mo-
mentum. In this case we can rapidly see the jet structure
develop incrementing each selectron occupation number
by one at each throw of the dice. The corresponding
selectron distribution is shown in Fig. 4 after only 50 000
events.
IV. CONCLUSIONS

The results after 600 000 throws of the dice are shown in
Table I. Since the integrated squared matrix elements
vanish at threshold and the phase space element favors
high momenta, the typical selectron momentum is thus
somewhat greater than the estimate in [2] based on the
-5
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average energy in the electron Fermi sea. The selectron
momentum distributions given in Table I will more or less
directly carry over into photon distributions since bosons
will necessarily fall into the ground state via photon emis-
sion. Thus the firm prediction of MeV level photons in the
burst is a quantitative, and perhaps the primary, result of
the current paper. A secondary result is that, due to the
increased production probability for higher photon energy
(i.e., selectron kinetic energy in Table I), the initial spikes
in a gamma ray burst would be expected to be of higher
average photon energy than later components. This is
consistent with observations [11]

The minimum duration of the burst was fixed in [2] by
assuming that the SUSY bubble, once nucleated, would
grow at the speed of light and that photons in the dense star
would travel with effective index of refraction one. Both of
these assumptions might need to be more closely
examined.

In particular, since one should probably regard the bub-
ble surface as a mechanical membrane, a more reasonable
estimate of the burst duration might be given by assuming
that the bubble expands at the speed of sound rather than
the speed of light. Then, if one takes into account the range
of masses and radii among white dwarfs and if one esti-
mates the bubble expansion speed by the speed of sound in
a star of corresponding average density, the range of pre-
dicted burst durations extends well into that of the obser-
vations. A detailed study of the duration distribution taking
into account density inhomogeneities and other effects is a
high priority subject of future study.

Finally, we should discuss our expectation that the
SUSY bubble is confined to the dense star and does not
escape to take over the universe. If one is in the false
vacuum of broken-SUSY, bubbles of true vacuum (exact
SUSY) are constantly being produced with a steeply falling
distribution in bubble radius, r. At creation, or at any later
stage in its development, a bubble of radius r will expand or
contract depending on which behavior is energetically
favorable. The condition for expansion depends on the
surface tension, S, of the bubble and the energy density
in the region immediately outside the bubble. Consider, for
example, a bubble of exact SUSY in a larger region of
broken-SUSY. Outside the bubble the energy density will
be �	 1where � is the vacuum energy and 1 is the outside
ground state matter density if any. If the SUSY bubble were
to make a virtual expansion into an infinitesimally larger
spherical shell, its ground state energy density would be 1s.
The difference between 1 and 1s is the excitation energy
density of the electrons in the broken-SUSY phase.
Classically, the ground state energy after such a virtual
expansion minus the previous ground state energy is

#E �
4�
3

��r	 )r�3 � r3
�1s � 1� ��

	 4�S��r	 )r�2 � r2
 (4.1)
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or

#E � �4�r)r�r��	 #1� � 2S
 (4.2)

where we have put

#1 � 1� 1s: (4.3)

Classically therefore, the system will find it energeti-
cally advantageous to expand if r > 2S

�	#1 . Similarly, the
bubble will contract if its radius is below this density
dependent critical value. A more exact instanton calcula-
tion [12] in vacuo (1 � 1s � 0) replaces 2S by 3S in
Eq. (4.2). One would, therefore, expect the critical radius
for a SUSY bubble to be

Rc �
3S

�	#1
: (4.4)

In vacuo or ignoring the effect of the Pauli principle, #1 �
0. In a homogeneous region, if a bubble is created at greater
than the critical radius, it will expand indefinitely. If how-
ever, the bubble comes to the boundary of a dense region
outside of which 1 and #1 are zero, the critical radius
jumps discontinuously to its vacuum value, effectively
confining the bubble to the high density region.

Given the indirect hints of supersymmetry from dark
matter and accelerator experiments, given the positive
vacuum energy suggested by the acceleration of the uni-
verse, and given the persistent suggestion of string theory
that the true vacuum of the theory is supersymmetric, a
phase transition from our broken-SUSY phase to the exact
SUSY phase is probably inevitable. There are also good
reasons to believe the transition to the true vacuum would
be catalyzed in dense matter [4]. In addition, given the
Bose nature of the final state particles, collimation due to
stimulated emission is to be expected on physical grounds.
Only our assumption that the probability of transition is
sufficient in compact stars to reproduce the rate of gamma
ray bursts might be considered speculative.

It is, however, clear that many points remain to be
investigated in the current SUSY phase transition picture
of gamma ray bursts. Some of these are:
(1) c
-6
alculation of the hadronic component of SUSY
conversion. This will become even more essential
if the bursts originate in Neutron stars and not in
white dwarfs.
(2) c
alculation of the gamma ray spectrum from radia-
tive SUSY conversion and (not independent) brem-
strahlung from the final state selectron gas. Since the
selectrons are bosonic, all of their kinetic energy
will emerge as photons.
(3) d
epletion effects in the Fermi sea

(4) fu
sion of SUSY (or partially SUSY) nuclei. This

could lead to temporary interruption of the gamma
ray bursts.
(5) p
olarization effects
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Only after many of these effects have been studied can
one attempt to predict the angular width of jets, the energy
spectra, the ‘‘light curves’’, and other features of the rap-
idly growing observational data. As shown here and in [2]
the SUSY phase transition model provides a framework for
discussing other details of this phenomenon that is alter-
native to the more traditional astrophysical approaches.
These latter approaches based on relativistic ejection of
large bodies of neutral matter from black hole accretion
disks with the subsequent conversion of a large amount of
kinetic energy into collimated gamma rays on subsecond
time scales attempt to describe gamma ray bursts within
the boundaries of standard model physics but have not as
yet led to sharp predictions for typical photon energies or
total burst energies untied to free parameters in the models.
In addition the physical basis of the energy release (central
engine) or the mechanism for production of collimated
gamma rays are not yet as fully defined in the accretion
models as in the current phase transition model. For recent
papers marking the current status of traditional astrophys-
ical approaches and giving references to earlier work along
those lines see [13,14].

Another important area that needs study is the possible
role of a SUSY phase transition in supernova collapse. This
055001
is potentially of great interest since it has become apparent
in recent years that the current standard model of super-
nova explosion (energy deposited by neutrinos in a sur-
rounding shell of matter) is not effective in producing the
observed explosions [15,16]. This problem might also raise
questions about the efficiency of 33 annihilation into an
e	e� cloud available for production of a relativistic fire-
ball to explain gamma ray bursts as suggested in [13].

Examples of other new physics suggestions for gamma
ray bursts can be found in [17] and references contained
therein. Again, it seems that these models might not have
the same success in predicting the salient features of
gamma ray bursts as does the SUSY phase transition
model.
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