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Twist-two matrix elements at finite and infinite volume
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We present one-loop results for the forward twist-two matrix elements relevant to the unpolarized,
helicity and transversity baryon structure functions, in partially-quenched (N; =2 and Ny =2 + 1)
heavy baryon chiral perturbation theory. The full-QCD limit can be straightforwardly obtained from these
results and we also consider SU(2]|2) quenched QCD. Our calculations are performed in finite volume as
well as in infinite-volume. We discuss features of lattice simulations and investigate finite volume effects
in detail. We find that volume effects are not negligible, typically around 5%—10% in current partially-
quenched and full-QCD calculations, and are possibly larger in quenched QCD. Extensions to the off-

forward matrix elements and potential difficulties that occur there are also discussed.
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L. INTRODUCTION

The quark and gluon substructure of hadrons has been
probed for many years in high energy scattering experi-
ments. Much of the information that has been gleaned is
encoded in the parton distribution functions (PDFs) that
describe the longitudinal momentum distributions of
quarks and gluons within hadrons. Cross sections for
deep-inelastic scattering, for example, have been shown
to factorize into short and long-distance contributions
[1,2]. The short distance pieces (Wilson coefficients) are
perturbatively calculable while the long range effects are
expressed in terms of the PDFs. The utility of such PDFs is
that they are universal; the same set of PDFs appear in
deep-inelastic scattering, Drell-Yan processes and heavy
vector boson production. Whilst PDFs are scale dependent,
once they are known at one scale they can be calculated at
higher scales via the DGLAP [3] evolution equations. A
number of groups [4,5] have exploited the universality of
PDFs and their known scale-dependence by performing
global analyses of experimental data, thereby providing
convenient parametrizations of the PDFs. Such parametri-
zations have proven very useful in testing perturbative
QCD in high energy processes and constraining new phys-
ics, but nothing is learnt about the nonperturbative origins
of the PDFs.

Whilst experiments continually increase our knowledge
of PDFs, there is much that is still unknown. Recent results
[6—8] have shown that i(x) # d(x), however other simple
qualitative questions such as whether Aii(x) = Ad(x) or
s(x) = §(x) remain unanswered. Even for the unpolarized
valence quark distributions, information is scarce at large x
and there is no experimental information about the trans-
versity distributions. Consequently, any insight that can be
gained directly from QCD would be very useful. Since the
PDFs encode the soft, hadronic scale physics of QCD
bound states, perturbative QCD is of little use. One can
turn to models to suggest the qualitatively important fea-
tures of PDFs (for example ii(x) # d(x) was predicted on

1550-7998/2005/71(5)/054510(31)$23.00

054510-1

PACS numbers: 12.38.Gc, 11.30.Rd, 12.39.Fe

the basis of the pion cloud [9]), but to make concrete
predictions with systematically improvable errors one
must solve QCD nonperturbatively. Currently this means
one must use lattice QCD.

In lattice QCD, one discretizes space-time and uses
Monte-Carlo techniques to evaluate the functional inte-
grals over the quark and gluons fields, necessarily making
a Wick rotation to Euclidean space in the process.
However, deep-inelastic scattering and related processes
are dominated by distances that are lightlike, and as such
are inaccessible in Euclidean space calculations. The way
around this difficulty is provided by the operator product
expansion (OPE) which relates matrix elements of certain
local operators to Mellin moments of the various quark and
gluon distributions (defined below). For quark distribu-
tions, the twist-two (twist = dimension — spin) operators
that arise from the OPE of the bilocal light-cone operators
in Ny =2 QCD are

QCD@%O)__.M" = i”[tﬁy{mﬁm ...EM}TAzp — traces], (1)

QCD > (4) ol T - P
O, = "[WY1u,¥sDy, - D, yTath — traces], (2)

QCD ™ T;(A) - - o
Oy = "0 i, YsD sy - Doy 1 TaY

— traces], 3)

where 74 is an isospin matrix (79 = 1, 71,3 are the Pauli
matrices), {...} indicates symmetrization of indices, the
gauge covariant derivative DM = %(5“ — D*), and
"traces’’ are subtracted in order that the operator transforms
irreducibly under the Lorentz group. Additional twist-two
operators can be built exclusively from gluon fields and
towers of higher twist operators can also be constructed,
but we shall not consider these here.

The above operators are related to the spin-averaged,
longitudinally polarized, and transversely polarized quark
distributions. We first define the Mellin moments of the
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quark distributions ¢ = ¢' + ¢!, Ag = ¢' — ¢! and 6q =
q" — gt (where ¢'V corresponds to quarks with helicity
aligned (antialigned) with that of a longitudinally polarized
target, and ¢ ') corresponds to quarks with spin aligned
(antialigned) with that of a transversely polarized target)
for flavor ¢ as

1
(), = ﬁ dxx'[g(x) — (—1)g(x)],
(s, = ﬁ Lo [Ag() + (—1)"Ag()] @
(sy = fo Lo [8(x) — (—1)8()].

These moments are then related to the forward hadron
matrix elements of the operators in Egs. (1)—(3) through

1
§Z<p’S|QCD@§9(’)3)M”|p, S> = 2<xn>’4tdp,u0 “'p:U“n’
S

~(03) .,
<Py SlQCD@p,O...,u,n |P; S> = 2<X >AuiAdS{,LL0p,u,| e Pu,b
~T3(0,3) 2
<p’S|QCD(9N«U~~H«n+I |p’ S>:M (5)
H

XX pu8dS o Pl -+ P b

where p is the momentum of the hadron, My is its mass
and § is its spin. The plus or minus signs in Eq. (5)
correspond to choosing isospin index 0 or 3, respectively.
The corresponding off-forward matrix elements are simi-
larly related to Bjorken-x moments of generalized parton
distributions (GPDs) which shall be discussed briefly be-
low (see [10] for a comprehensive review).

The hadronic matrix elements of the twist-two operators
in Eq. (5) can be calculated using standard lattice tech-
niques. Although a parametric form must be assumed in
order to invert [11,12] the Mellin transforms, Egs. (4), such
calculations will then lead to information about the parton
distributions directly from QCD.1 However, all lattice
calculations are necessarily performed on finite volumes
and at finite lattice spacings. Additionally, with current
computational resources, statistically meaningful simula-
tions can only be performed at quark masses, m,, consid-
erably larger than those found in nature. These three
restrictions have significant effects on calculations of
twist-two matrix elements which must be taken into ac-
count if realistic predictions are to be made.

Conveniently, the low energy QCD dynamics that these
matrix elements characterize can be described using effec-
tive field theory. Standard chiral perturbation theory (yPT)
as formulated in the infinite-volume continuum allows
systematic exploration of the quark-mass dependence of

"The reduced symmetry of the hyper-cubic lattice leads to
lower dimensional operator mixing for twist-two operators with
n > 3, and consequently calculations are only currently available
forn=1,2,3.
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low energy hadronic observables in the region where
m,, |pl <A, where p is a typical momentum and A, ~
1 GeV is the chiral symmetry breaking scale. Extensions to
include finite volume (FV) and finite lattice spacing effects
are also well developed (see Refs. [13,14] respectively for
recent reviews) as are the modifications necessary to treat
valence and sea quark masses independently —quenched
and partially-quenched yPT (QxPT and PQyPT) [15-18].
In our study, we shall ignore the effects of the discretiza-
tion of space-time” (whereby our results will only be
strictly applicable to lattice calculations in which a con-
tinuum extrapolation has been performed) and consider
continuum partially-quenched chiral perturbation theory
in a finite spatial volume of dimension L3. If the size of
the box is large compared to the inverse pion mass (the
lightest asymptotic state), ML >> 1, the power counting
of infinite volume yPT (p-counting) applies and the nec-
essary modifications are easily made, replacing momentum
integrals by sums over allowed momentum modes (see
Refs. [20—32] for recent examples). On the other hand if
M L ~ 1, one needs to treat pion zero modes (components
of the pion field with zero momentum) carefully since they
correspond to vacuum fluctuations of order unity. In such a
regime, modified power countings are required [33—35]. In
this analysis, we will restrict ourselves to the region
M,L> 1.

Using the low energy effective theory, it is possible to
compute the quark mass and volume dependence of had-
ronic observables such as the matrix elements of twist-two
operators. For the most part, the quark-mass dependence of
the various twist-two matrix elements has been studied
extensively [36—42] and lattice data have been analyzed
assuming an infinite volume [36,43,44]. However, the vol-
ume dependence of these observables has been ignored
(with the exception of the matrix element of the n = 0
helicity-dependent twist-two operator, the isovector axial
coupling g4 [30,34]) in such analyses. Nonetheless, finite
volume effects have been found to be important in many
observables; here we investigate the effect they have on
nucleon, and other octet baryon matrix elements of twist-
two operators.

In Section II, we introduce aspects of heavy baryon
chiral perturbation theory relevant for the analysis of
twist-two matrix elements and define our notation. In
Section III, we discuss the twist-two operators in QCD
and their matching in the low-energy effective theory and
present examples of results for the quark-mass dependence
of the nucleon matrix elements using two degenerate fla-
vors of quarks. Full results in the two flavor partially-
quenched case and results including the strange quark are
relegated to Appendices B and C respectively. In

>The additional, Lorentz noninvariant contributions to unpo-
larized twist-two operators that must be included when the
lattice spacing is nonzero have been considered in Ref. [19].
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Appendix D, the quenched theory is discussed. In
Section 1V, we discuss the general form of finite volume
corrections to these matrix elements and make compari-
sons with available data. Section IV C discusses the com-
plications that arise when nonforward matrix elements are
considered and Section V presents our conclusions.

II. HEAVY BARYON CHIRAL
PERTURBATION THEORY

Heavy baryon chiral perturbation theory (HB yPT) was
first constructed in Refs. [45—48]. In current lattice calcu-
lations, valence and sea quarks are often treated differently,
with sea quarks either absent (quenched QCD) or having
different masses than the valence quarks (partially-
quenched QCD).? The extensions of HB xPT to quenched
HBYPT [49] and partially-quenched HByPT [41,42] to
accommodate these modifications are also well established
and have been used to calculate many baryon properties
[40-42,49-53]. In this and the next sections, we will
primarily focus on the two flavor partially-quenched the-
ory; here we briefly introduce the relevant details following
the conventions set out in Ref. [41]. We leave the three
flavor and quenched cases to Appendices C and D.

A. Pseudo-Goldstone mesons

We consider a partially-quenched theory of valence (u,
d), sea (j, I) and ghost (i1, d) quarks with masses corre-
sponding to the matrix

mg = diag(m,, my, mj, my, mg, my), (6)

where m; ; = m, 4 such that the QCD path-integral deter-
minants corresponding to the valence and ghost sectors
exactly cancel.

The corresponding low-energy meson dynamics are de-
scribed by the SU(4|2) PQyPT Lagrangian. At leading-
order

f r

+ aq)a#q)oaﬂ(po - m%q)(%, (7)

where the pseudo-Goldstone mesons are embedded non-
linearly in

2id
=& =eu(77) ®)
f
with the matrix ® given by
_(M X
o=(" %) )

? At finite lattice spacing, different actions can even be used for
the different quark sectors (e.g., staggered-sea quarks and
domain-wall (DW) valence quarks), but we do not consider
this complication here.
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where
n, = J° LT

e T n, J L° P B,
A TR 7 i)
L~ L° Y, m (10)

Y- Xu, Xat X Xi*
Xz~ Xn, Xi- Xpo )

The upper left 2 X 2 block of M corresponds to the usual
valence-valence mesons, the lower right to sea-sea mesons
and the remaining entries of M to valence-sea mesons.
Mesons in M are composed of ghost quarks and antiquarks
and those in y of ghost-valence or ghost-sea quark-
antiquark pairs. Because of the graded symmetry of the
partially-quenched theory, the mesons in y are fermionic.
In terms of the quark masses, the tree-level meson masses
are given by

Mé),/_ = MZQ,,Qj = A[(mQ)ii + (mQ)jj]: (11)

where Q = (u, d, j, L, ii, d).

The singlet field @, = str(®)/+/2 has mass my at tree
level. The terms proportional to ag and my in Eq. (7) are
only relevant in the quenched theory (see Appendix D); in
PQxPT and xPT the singlet mesons acquire large masses
and can be integrated out. Furthermore, a¢ is suppressed
by 1/N, and we set it to zero throughout.

B. Baryons

In SU(4|2) HB xPT, the physical nucleons (those com-
posed of three valence quarks) enter as part of a 70-dimen-
sional representation. This is described by a three index
flavor-tensor, B [41,42,49]. The embedding of the physical
nucleon fields into B and the symmetry properties of B are
described in Ref. [41]. The A-isobar must also be included
in the theory since the mass-splitting, A, between the
nucleon and A-isobar is ~300 MeV, comparable to the
physical pion mass (and less than pion masses used in
current lattice simulations). The parameter A is assumed
to be small compared to the chiral symmetry breaking
scale. These fields are represented in a three index flavor-
tensor T # (a Rarita-Schwinger field) transforming in the
44-dimensional representation of SU(4/2).

The relevant part of leading-order Lagrangian describ-
ing these baryons and their interactions with Goldstone
mesons is
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Ly =i(Bv-DB)—i(T"v-DT,) + A(T"T )
+2a(BS#BA,) + 2B(BS+A,B)

+2H (T"S#A,T,) + \EC[(TVA,,B)

+ (BA,T")] (12)

where v# is the baryon velocity, $* is the covariant spin-
vector [45,47] and D* is the usual covariant derivative

DrB = §uB + [V#, B],

DT, =T, + [V, T,] (13)

The vector and axial-vector currents appearing in the above
expressions are given by

vi = Lgangt + grang)
2 (14)

An — %(fa%* )

where ¢ is defined in Eq. (8). The various Lorentz and
flavor contractions (indicated by the parentheses) are de-
fined in Ref. [41]. In order that T # correctly describes the
spin-3/2 sector, v+ T = 8§-T =0.

. In w{lat follows, we will substitute & = .% gatignB=
581 — 384, C = —gay and JH = ga, since these corre-
spond to the usual yPT couplings when the QCD limit,
where m; = m,, and m; = my, of the theory is taken.

III. TWIST-TWO OPERATORS AND
MATRIX ELEMENTS

A. Twist-two operators in (PQ) yPT

In the low energy effective theory, the twist-two quark
bilinear operators in Egs. (1)—(3) match onto hadronic
analogues constructed to obey the same symmetry trans-
formation properties. In two flavor QCD, the unpolarized
and helicity operators transform as either (3,1) & (1, 3)
(isovector) or (1,1) (isoscalar) of SU(2); X SU(Q2)g.

|

; l'n+1 f2 B . N - -
O%o),u = aﬁf‘)v ZSU'[ETTA 0 pp-r 0, 2+ 2Th0,
X

+ ,BSJA)UMO ... vﬂn(g?f; B) + 7£,rA)vM0 ... UM"(?p7§+ Tp) + a'ﬁf")
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When one considers SU(4[2), X SU(4|2); partially-
quenched QCD, there is more than one way to extend these
operators [41,42,54]. Imposing supertracelessness and the
correct QCD limit in the valence sector, the most general
extension of 75 (isovector) to the adjoint representation of
SU4|2), ¢ is

73 =diag(l, =1, 9, 91 96 9; + @1 — qi)- (15)

The freedom in choosing the values of the ¢;’s can be
advantageous in lattice simulations; certain choices of the
g;’s eliminate disconnected contributions (diagrams in
which the operator is on a quark line connected to the
external states only through gluons which are notoriously
hard to compute [55]) even away from the isospin limit.
The nonuniqueness of the extension of Gell-Mann flavor
matrices to PQQCD has additional consequences in that
are discussed in Appendix C.

For the isosinglet operator, the most convenient choice is

7o =diag(1,1,1,1,1,1), (16)

because it is purely in the singlet representation of SU(4/2).
Any other choice, such as diag(1, 1,0, 0, 1, 1) [which one
might choose as disconnected diagrams would be absent],
will contain contributions from other representations, and
hence introduce additional low energy constants.

The transversity operators in QCD are chiral-odd and
belong to the representation (2, 2) @ (2, 2). The most gen-
eral choice for their extension to SU(4|2) PQQCD is

7 = diag(L, ¥, ¥, Yoo Yoo Ym)- )

For this operator disconnected contributions vanish as the
matrix element involves helicity flip. Thus clean calcula-
tions of (x")s, and (x")s, are possible.

Based on these symmetry properties, at leading-order in
PQXPT the hadronic operators that match onto those of
PQQCD are

oo 9, 2T+ aser)v,uo---an (BB} )

= _
v{#o...vMH(TMHTA TM}) traces,

(18)
o' = AaMv v, (BS, B7 )+ A,B(r/*)v v, (BS, 7 B)
KO no Plug s Y Hat 2T A no Plug oo Y wat A
+ AYS{A)U{MO e UM,H(TPSM}%i Tp) + AO’S{A)U{MO e Uﬂn*S(Tﬂn72S:un717_-§ TM,,})
+(1 - c‘SAO)Acy")v{M0 . val[(T#”}?f B) + (f?f; ’TM})] — traces, (19)
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(9};0.“”‘”0{ = 36(,11){#0 . v[MW}(ﬁSa]B%f;) + 53”1}{#0 -
+ 80,V ...UMH(?MHS[Q%‘—?;T
where TA = 1(E1746 = £7,4€T) and 7ér = Hértm et =

E7,€), and the different Lorentz and flavor contractions
(indicated by the parentheses) are given in Ref. [41]. The
superscript on the low energy constants (LECs; a4,
Ao etc.) in the unpolarized and helicity operators
labels the chiral representation to which they belong; for
A = 0, ry = s (singlet) otherwise 4, = a (adjoint). In what
follows, we take A to be either O or 3. In QCD, the two
different ﬂavor contractlons of the operators proportional
to a( ") and ,BnA (and their spin-dependent analogues) are
identical.

There are additional classes of operators that formally
enter these expressions at the same order but do not con-
tribute to the next-to-leading order (NLO) matrix elements,
i.e., their contributions to one-loop diagrams vanish; for
example,

Mp—1 an i B)
2D
(BS /L”}TA “B).

Such operators are omitted in Eqs. (18)—(20). Also, NLO
counter terms, such as

@{Tf;*, M., }B),

where =

U{Mo e v,U«n 2(T

and U{Mo Mn 1

1 (22)
E(meQérT + mef)

are neglected in this work, since we are focusing on finite
volume effects arising from one-loop diagrams at NLO.

For the unpolarized isovector operators, these counter-
\

<N|(9§f§#|N> v, U (Za(a)

1

g 17 LR
i(1—6

+l( 6f2n0)vlu0.

8 (a) _
{3 gA[\/(V

U[p,n}(ﬁsa]%f; B) + 5ynv{M0 ..

wl) T8¢V, -

(a)
;)B}HMWM+Q}HM
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v (TP S 7 T )

v[Mn}[(?a]?f; B) + (B7ér T ,))] — traces,  (20)

‘terms are explicitly displayed in Ref. [41]; for the other
operators, they are simple generalizations.

Additional, higher-order operators arise when powers of
the baryon velocity are replaced by derivatives, such as
Vi, -G, (BS, 74 B). In the forward limit, these
operators only appear in loop diagrams, so their contribu-
tions to matrix elements start at next-to-next-to-leading
order (NNLO), therefore we do not include them in this
work.

B. Nucleon matrix elements

The one-loop diagrams that contribute to nucleon twist-
two matrix elements at NLO are shown in Fig. 1. The first
two diagrams, (a) and (b), represent the wave-function
renormalization while the other diagrams are operator
renormalizations. Diagrams (e) and (f) are absent for the
unpolarized or isoscalar operator matrix elements as the
transition between 70-plet and 44-plet baryon states
changes spin and isospin. Finally, diagrams in which the
twist-two operator is inserted on a meson line [(g), (h) and
(j)] are only present in the spin-averaged cases.

In Appendices B, C, and D, we give the results for the
independent matrix elements in SU(4|2) PQyPT, for
SU(6]3) PQyPT and for SU(2|2) quenched yPT in the
isospin limit. As an example, here we present the
SU(4[2) isospin limit (m, = mg, m; = m,), q; = g, result
for the nucleon matrix element of the isovector, unpolar-

ized operators (Oﬁfg..#,,:

B X [1+ (1 — 8,0) Wsva]

A+ aP[8i I(M,))

u]’

- 35-[(Muj’ 0)(2g1gA + 3g%) + 35-[(M7T’ 0)(2g124 + 2glgA + 3g%) + 1252(g1 + gA)zj-[n/(Mﬂ" 0)]

(a)[4lI(M ) - IZH(M,”, O)glgA + 35-[(M7Tr 0)(4glgA + gi) + 662(g1 + gA)zg-[‘r]/(Mﬁ’ 0)]}:

where WSU(4|2) is the nucleon wave-function renormaliza-
tion given in Eq. (Bl) and
8% = - M? = AX(m, — m;), 24)

uj

is proportional to the difference between sea and valence
quark masses. The functions I(M), H (M,A) and
H 5/ (M, A) are defined in Eqs. (A1),(33) and (34), below.
Finally, Up corresponds to the type B baryon spinor. To
take the QCD limit, we would set § — 0 and j — u. For
equivalent choices of the 7, our results reproduce those

(23)

‘found previously for the unpolarized isovector operator
[41,42]. One can also calculate the matrix elements of
these operators in the A-isobar (and the N-A transition in
the spin-dependent cases). However since these are not
stable particles in much of the region where yPT con-
verges, we do not present the expressions.

In these results, the only effect of the diagrams in which
the twist-two operator couples to a meson (diagrams (g),
(h) and (j) in Fig. 1) is to satisfy the number sum rule for
the n = 0 matrix elements, producing the 0, factors in the

054510-5



WILLIAM DETMOLD AND C.-J. DAVID LIN
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FIG. 1. Diagrams contributing to nucleon matrix elements of
the twist-two operators. The black square corresponds to an
interaction from the strong Lagrangian and the gray circle
represents an insertion of the twist-two operators in Eqs. (18)—
(20). The thin, thick and dashed lines are 70-plet baryons, 44-
plet baryons and mesons, respectively. The first two diagrams
represent the wave-function renormalization and the remainder
are operator renormalizations. Diagrams (e) and (f) are absent
for the unpolarized, and isoscalar operator matrix elements, and
diagrams in which the twist-two operator is inserted on a meson
line are only present in the unpolarized case.

above expression. For n > 0, these diagrams give sublead-
ing contributions, entering at O(p""2). The number sum-
rule also fixes

(a) B(G) — (a) =3,

0'6”) =0,

25
<S> =3, oy =0, )

ag;> + B85 =3,

and the n = 0 low-energy constants of the spin-dependent
operators can be fixed in terms of the usual axial couplings

Ay =2g,44,

a a 3
AO’B) = 0’ ACE)) = _\/;gAN’ (26)

Aag’ + ARG =20gs + g0 Ayy) =
Aot =o0.

o) — ABy = 684

IV. FINITE VOLUME CORRECTIONS

A. General discussion

In momentum space, the finite volume of a lattice simu-
lation restricts the available momentum modes. Here we

PHYSICAL REVIEW D 71, 054510 (2005)

shall consider a hyper-cubic box of dimensions L3 X T
with 7 > L. Imposing periodic boundary conditions on
mesonic fields leads to quantized momenta k = (ko, k),
k=2m/Lj = 2m/L(j,, j j3) with j; € Z, but k, treated
as continuous. On such a finite volume, spatial momentum
integrals are replaced by sums over the available momen-
tum modes. This leads to modifications of the infinite
volume results presented in the previous section; the vari-
ous functions arising from loop integrals are replaced by
their FV counterparts. In a system where M L > 1, finite
volume effects are predominantly from Goldstone mesons
propagating to large distances where they are sensitive to
boundary conditions and can even ‘“‘wrap around the
world”. Since the lowest momentum mode of the
Goldstone propagator is ~ exp(—M L) in position space,
finite volume effects will behave as a polynomial in 1/L
times this exponential if no multiparticle thresholds are
reached in the loop.

To investigate this behavior, we consider the various
finite volume sums occurring in the twist-two matrix ele-
ments. We first define

1 k,k,
E%]‘”‘O(kz —m? +ie)k-v— A+ ie)
iguv (207
— = m?)A
1672 A( 3 " )
= g, F(m, A) + v,v,G(m, A), 27

where the ultraviolet dlvergence has been subtracted in
dimensional regulansatlon with A = T —vg+
log(47r) + 1 (d is the number of dimensions). All finite
volume sums that occur in the baryon wave-function and
operator renormalizations involving baryon propagators
(diagrams (a)—(h) in Fig. 1, sunset-type diagrams) can be
expressed in terms of F(m, A) and its derivatives. The
tadpole diagrams in Fig. 1 are discussed in Appendix A.
In the baryon rest frame where v = (1, 0, 0, 0), Poisson’s
summation formula allows us to decompose F into its
infinite-volume limit and a volume-dependent part,

F(m, A) = F(m, A) + FFV(m, A). (28)

It is straightforward to show that the infinite volume piece
is

“It is important to note that because of the separation of scales,
FV effects (infrared) are essentially independent of method
chosen to regulate the divergent integrals (ultraviolet). Also,
the results presented in this work are derived in Minkowski
space. We are free to work in Minkowski space since the
sicknesses of quenched and partially-quenched theories dis-
cussed in Refs. [20,56] do not occur in our calculations.
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F(m, A) =

2
—}A + 2 (A7 =) 10g<

i 2A2 m2 10A2
2 Al + | — -
167 {['" } °g< ) [9
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_ \/2_72
A A m* + ze)} (29)
A+ VAT —m? + e

(u 1is the renormalization scale), and the finite volume corrections are given by

. Lo
FVmA) = —— 5 — [ dlk
(m, A) ]2#2;3MLL 1A

where i = (uy, u, u3) with u; € Z, u = |ii| and
A = e@[1 — Erf(z)] + ( : )[% (% B §>
+ <E -2 )e(zz)(l — Erf(z))} < )
G35
- (—% > (1 — Erf(z))} + (9<(umlL)3>’
with Gh

m 2

= (é) umL. (32)

Higher order terms in the 1/(umL) expansion in Eq. (31)
are easily calculated. For convenience, we also define the
functions

j‘[(m, A) = af(m, A),
dA (33)
F(m, A) = F(m,0)
K(m, A) = A :

and their finite volume counterparts which we denote by

\ —_— — —— A=0MeV

g °r \ ————— A = 150 MeV
e T D A = 300 MeV
< o N\ A = 450 MeV
2 N AN

2~\~~\\ N - L=2.5 fm

. —S==-T - T —

03 035 04 045 05 055 06 065

m (GeV)

FIG. 2 (color online).

|&| sin(ulk|L) <A N m2 >mL_>)>l im? Z e umL 2 30)
K2+ m? + A \/m =T

|
the corresponding roman letter with the superscript FV as

in Eq. (28), e.g. K — K.

The function A represents the modification of the FV
effects due to the mass-splitting A; in the limit A — 0,
A — 1. Figure 2 shows the dependence of FV effects on
the scale A for the functions H™Y (m, A) and K¥V(m, A) that
arise from diagrams (a)—(f) in Fig. 1. It is clear that finite
volume effects in individual diagrams involving a 44-plet
are suppressed relative to those involving only meson and
70-plet baryon propagators, though this can be compen-
sated for by large coefficients. A very similar result was
found in the heavy meson sector [23] where the contribu-
tions involving B* mesons are suppressed compared to
those involving the B meson by the mass difference Ay =
mpg- — mp. However, the origin and behavior of the mass
difference in the current context is distinct. In contrast to
the heavy meson case where Ag ~ 1/my arises from the
breaking of heavy-quark spin symmetry and vanishes in
the heavy quark limit, the mass difference A is generated
by strong-interaction dynamics and remains finite in the
chiral limit. Empirically, A is almost constant over the
range of quark masses considered here.

When one considers quenched or partially-quenched
theories rather than standard yPT, one expects somewhat
larger finite volume effects because of the enhanced long-
distance behavior of double-pole structures in the singlet
meson propagators of these theories [20]. These double-
pole contributions are given by terms proportional to the

\ — e e— A =0 MeV
6.

5 \ — e o —— - A =150 MeV
>§ N N mmmmmmee- A =300 MeV
g 4t \

x A =450 MeV
X N

< AN

Dependence of finite volume effects on the mass-splitting A in individual integrals/sums corresponding to

diagrams (a)—(f) in Fig. 1. The point m = 0.3 GeV corresponds to mL = 3.8.
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functions
H oy, ) = 2D
m (34)
_ dXK(m, A)
j(:,,]/(m, A) = 7,

and the double-pole tadpole function I,,(m) given in

Appendix A [and their finite volume analogues constructed
as in Eq. (28)]. From Figs. 2 and 3 it is clear that H?’(m, A)

is about an order of magnitude larger than H"V(m, A) in
accordance with expectations.

In considering the magnitude of finite volume effects,
the standard chiral power counting can be misleading; the
FV effects of a diagram of a given order in the power-
counting may be larger than those of lower orders. For
some generic observable, one may consider two contribu-
tions, C; and C,, that enter at different orders, m; < m,, in
infinite volume yPT. As discussed above, the dominant
finite volume effects in these contributions will typically be
of the form 8C; ~ (M L)% exp(—M ,L) when ML > 1
and no multiparticle on-shell intermediate states can con-
tribute. In some situations, the presence of additional me-
son propagators or other infrared enhancement in the
higher-order contribution (C,) can amplify its finite vol-
ume shift relative to that of the lower-order contribution
(Cy). For some (contemporarily relevant) choices of
masses and volumes, the quantity

(MWL)‘?Z‘“(%)W " (35)

X
and the formally higher-order contribution will provide the
dominant finite volume effect. In the current calculation,
diagram (g) in Fig. 1, in which the twist-two operator is
attached to mesonic propagators, may indeed fall into such
a category. The finite volume corrections to these diagrams
will be given by

"I\
3 —_— — —— A=0MeV
£ 6 \
£ — = —— = - A =150 MeV
I | N eaaaaaoaoae A= MeV
L, \ 300 Me
< N A = 450 MeV
= N U

N ~ - L=2.5fm

~s~~\ - \
0 ) ‘~‘-‘-\ — ——
03 035 04 045 05 055 06 0.65

m (GeV)

FIG. 3 (color online). Dependence of finite volume effects in
double-pole contributions on the mass-splitting A. Note that the
scale here is 10 times that in Fig. 2. The point m = 0.3 GeV
corresponds to mL = 3.8.
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. . 1 M¢T+l a
SIM ~ 4@ AT WFFV(M,T, 0), (36)
X o

compared with those of the corresponding baryon operator
diagrams (diagram (c) in Fig. 1)
o _ay’
6IN -~ 7 HFV(MW., O) (37)

From this we see that the ratio

SIY M\ 1 ML
s~ () a5 0w
a1 A,) 4/M,L 2

where there is an undetermined coefficient involving a'®,

a'® and other numerical factors that we assume to be O(1).
Whilst formally the magnitude of this ratio is indeed
greater than unity for any # in the limit ML — oo, both
81 and 311(\;‘) are exponentially suppressed. For realistic
pion masses and volumes used in current lattice simula-
tions this ratio is consistently smaller than 1 and the FV
effects of diagrams (g), (h) and (j) in Fig. 1 can be ne-
glected. The only exception to this is in the » = 0 unpo-
larized matrix elements, the isoscalar and isovector quark
numbers. Here, the volume dependence of diagrams in
Fig. 1 with mesonic operators exactly cancels that of those
involving baryonic operators and wave-function renormal-
izations to give an overall result that is independent of the
volume.

B. Relevance to lattice data

Lattice calculations of twist-two matrix elements have a
long history, with the first calculations occurring in the
1980s [57]. Over the last decade, a considerable effort has
been made to study them in detail with major contributions
from the QCDSF, LHP, RBCK and ZeRo collaborations. In
Table I, recent simulation parameters are shown. State-of-
the-art lattice simulations are beginning to enter the region
of quark masses and lattice volumes in which the use of
NLO chiral perturbation theory is justified (naively, this
requires m,/A, < 1/3 and m,L = 4). At the moment
however, there is little data in this region and a realistic
fit of the combined mass and volume dependence in our
PQyPT formulas (and thereby a determination of the
LECs) is not possible; only general trends can be extracted.

In order to address the expected size of finite volume
corrections arising from our calculation, we first define the
finite volume correction

<N| (9|N>0ne—100p o <N|@|N>0n:—loop
N|O|N FV L L=
< l l > <N| @|N>tree—level

, (39)

for each of the operator matrix elements we calculate.
These corrections depend on a number of low-energy con-
stants and couplings, some of which involve the A reso-
nance. In principle, all of these parameters can be extracted
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Summary of recent lattice calculations of nucleon twist-two matrix elements. Not

all calculations involve the full set of twist-two operators.

Notes

Group m, [MeV]  Volume [fm?]
Dynamical simulations (N, = 2)

QCDSF [58] 560-940 1.13, 1.5%, 2.2
LHP [59] 340 3.5°
LHP [59] 340-730 2.63
LHP-SESAM [60] 730-900 1.6°
LHP-SCRI [60] 480-670 1.53
RBCK [61] 560-700 1.9
Quenched simulations

QCDSF [62] 580-1200 1.6
QCDSF [63] 310-1000 1.53
QCDSF [64] 440-950 1.53,2.33
LHP [60] 580-820 1.6°
RBCK [65] 390-850 1.23,1.6%, 2.4
ZeRo [66] 750-910 1.13,1.53, 2.23,3.0°

Clover, a ~ 0.08-0.12 fm
Staggered sea, DW valence, a ~ 0.13 fm
Staggered sea, DW valence, a ~ 0.13 fm

Wilson, a ~ 0.1 fm
Wilson, a ~ 0.1 fm
DW, a~0.13 fm

Clover, a ~ 0.05,0.07, 0.09 fm
Wilson, a ~ 0.09 fm
Overlap, a ~ 0.095 fm
Wilson, a ~ 0.1 fm
DW, a~0.15 fm
Clover, a ~ 0.093 fm

from fits of the yPT forms to lattice data on nucleon matrix
elements (thereby bypassing issues of the structure of
unstable particles and transition matrix elements), however
this is not practical at the present stage. Therefore, to fix the
twist-two low-energy constants (a,(f), 87y, etc.) we assume
that large-N, relations [39] amongst the parton distribu-
tions in the nucleon, A-isobar and N—A transition are
valid, leading to

a a a a l a a
YO =2af) — B0 Ay = Loaal - apY)

1
A =Lona — a9 = ol + 89
c 2( a Bn") Y a 40)

Ay = Aol + ABY,

g ocy,.
The remaining LECs are not constrained by large-N,. rela-
tions in QCD, and for want of accurate lattice data with
which to fit them, we set B = a{®9, AR = A
and o'®) = Agl®?) = do, = 0. Throughout, we use f =
0.132 GeV, and keep A = 0.3 GeV fixed independent of
the quark mass. For the parameters appearing in the flavor
matrices 73 and 7p, we set ¢; = ¢; = g, = 0 and y; =
Vi = y; = ¥, = 0, and set y; to be either £ 1. As discussed
above, if one is using lattice data to determine the LECs,
the g’s and y’s are fixed by the details of the lattice
calculation. After making all of the above substitutions,
the isospin limit results become proportional to the corre-
sponding bare matrix elements and the finite volume ef-
fects given by Eq. (39) are easily studied.

The axial couplings g4, g1, and gy occurring in our
results are the chiral limit couplings and there is some
uncertainty in their values. We will fix g4 = 1.3 (though
even the chiral limit value of this is not well known [67]),
lgan| = 1.5 and vary g, = *g,. In the QCD limit, results

4
56‘(” = _45:811 = gayn =

are independent of g; since in this case it only involves
couplings to the n’ meson which remains massive in the
chiral limit and can be integrated out.

Using these parameters, Figs. 4 and 5 illustrate the
typical size of finite volume effects in the various matrix
elements. In Fig. 4, we consider a (2.5 fm)3 box with a sea
quark mass set such that the corresponding sea—sea
Goldstone boson has a mass M;; = 0.35 GeV and take
g1 = g4. Figure 5 is similar except here we take g; =
—g, to show the effect of this undetermined parameter.
Variation of g4 and g, within reasonable bounds leads to
similar modifications as those for varying g;. At the small-
est pion mass in these plots, ML ~ 3 and one must start to
worry that infinite volume p-counting is no longer appro-
priate; at the largest pion mass in the plots, M, /A, ~1/2
and one must worry that the convergence of the chiral
expansion becomes questionable. From these figures, it is
nevertheless apparent that NLO PQxPT predicts finite
volume effects in twist-two matrix elements that are ge-
nerically < 5-10% for the range of masses and volumes
studied here. However, there is some evidence that finite
volume effects from higher orders of the standard chiral
power-counting can be significant [68,69].

Recently, staggered-sea, domain-wall-valence results
have become available from the LHP collaboration [59]
for very large volume (L = 3.5 fm) calculations of g4 ata
pion mass of 337 MeV. Also available are results on a
somewhat smaller lattice (L = 2.6 fm) at the same pion
mass. Although these two data points are consistent within
their statistical errors (which will be reduced by ongoing
calculations), their central values differ by ~15%. If we
ignore the issues of nonlocality due to the ‘“‘fourth-root”
trick used in calculating the staggered quark configurations
and possible unitarity violations arising from the different
valence and sea quark actions (which must vanish in the
a — 0 limit that we have assumed), one can ask whether
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FIG. 4 (color online).
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Indicative finite volume effects in SU(4/|2) matrix elements. The results in the first row are for the isovector

unpolarized (left) and helicity (right) operators and those in the second row are similarly for the isoscalar unpolarized (left) and helicity
(right) operators. The third row corresponds to the transversity “isovector’” y; = —1 (left) and “isoscalar’” y; = 1 (right) matrix
elements. In each plot, the solid curve shows the total result, while the short-, medium- and long-dashed curves correspond to the
individual FV effects arising from diagrams (c)—(f), diagrams (a) and (b), and diagram (i) in Fig. 1. In all of these results, we have
considered a (2.5 fm)? box and set g, = g; = 1.3 and |gay| = 1.5. M, = 0.25 GeV corresponds to M, L = 3.2.

the NLO PQ yPT formulas presented here can describe this
dependence. To address this question, we consider the
isospin symmetric QCD limit (m, = m; = m; = m;) and
define

() ~(3)

B <N|@,u |N>2nefloop _ <N|(9p, |N>zn:;loop
5gA B pe) tree —level (41)
(N0, IN)

For this case, the LECs can be expressed in terms of the

axial couplings through Eq. (25) and the FV shift, 6g4,
depends only on the pion mass, the volume and the chiral
limit couplings g4, gan and gaa- In Fig. 6, we show the FV
shift in g, that NLO yPT predicts at the LHP pion mass,
M, = 337 MeV. To illustrate uncertainties in the results,
we vary the different axial couplings. In the central fits
(indicated by the curves in the plot), we set g4 = 1.3,
gay = —1 and gap = —3 while the shaded band corre-
sponds to 8g, for 1.0=g, = 1.5, 0= |gayl =2 and
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FIG. 5 (color online).

gapr = —3. Whilst, a shift of 15% between L = 2.6 and
3.5 fm is not predicted, the FV effects are substantial.
However, without accurate knowledge of the chiral limit
couplings, even the sign of the finite volume correction to
g4 is not well determined.

As discussed in the previous subsection, in quenched
lattice calculations, FV effects will be enhanced because of
the double-pole contributions to singlet meson propaga-
tors. In Fig. 7, we plot the volume dependence of the
polarized, isovector twist-two matrix elements in SU(2|2)
quenched yPT (the analytic forms of these results are
presented in Appendix D). In contrast to partially-
quenched yPT, in the quenched theory the LECs occurring
in the Lagrangian and the twist-two operators are unrelated

As in Fig. 4 except with g, =
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—ga.- M = 0.25 GeV corresponds to M, L = 3.2.

to those in standard yPT (though we denote them by the
same symbols for convenience). To be definite, we choose
mgy = 0.7 GeV and the quenched operator LECs to satisfy
Aaff’) = Aﬁﬁ,“) = SAyﬁf) = 2Ac5f) (as in the partially-
quenched case), set the quenched axial couplings to g, =
1.3, |gan| = 1.5 and let g, and y vary between *g, as
indicated by the shaded region. The curves in the figure
correspond to g, = g4/2 and y = 0. As expected, the
volume dependence here is enhanced over that in the
PQyPT and yPT cases.

C. Off-forward matrix elements

The off-forward matrix elements (in which the incoming
and outgoing hadrons carry different momenta) of the
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FIG. 6 (color online). Finite volume effects in QCD calcula-
tions of g4 at M, = 337 MeV (as appropriate for the recent
LHP simulations [59]). L = 2 fm corresponds to M, L = 3.4.
The shaded region corresponds to varying 1.0 = g, = 1.5, 0 =

lgan! = 2.

twist-two operators correspond to moments of generalized
parton distributions. Very little is known from experiment
about GPDs though major programs are underway at
HERMES, Jefferson Lab and COMPASS to investigate
them. As such, moments of GPDs are important quantities
to extract from lattice calculations and much progress is
being made in this direction [70]. It is therefore important
to investigate the quark mass dependence” and size of finite
volume effects in these calculations. Here we shall only
discuss the novel features that appear in regard to finite
volume effects when off-forward matrix elements are con-
sidered. A full analysis of the low-energy behavior of these
matrix elements will be given elsewhere [73].

To be specific, we shall consider the proton matrix
elements (p'|2°O') , |p) in which four momentum
g* = (p' — p)* (with |¢?| < A2) is injected through the
twist-two operator. The analysis of these matrix elements is
significantly more complicated than in the forward limit.
This is primarily because the number of possible indepen-
dent tensor structures in the matrix element grows with n;
for example,

(PO . |p)

= Up(p/)[Z{y{mqm coglipRi 'I_)M"}Aifi)(qz)

even

o
- 3
q,U«U .
Lareat (A)(qZ) }U,,(p), 42)
m n even

SRefs. [71,72] address this issue for the infinite volume n = 1
matrix element relevant for the spin content of the proton in
SU(2) HByPT.

PHYSICAL REVIEW D 71, 054510 (2005)

0.1
0
2 -0.1
z Total
028 e Sunset
?C_)i -3t @ ——— - Wavefunc
< ~0.4 —— = —— Tadpole
-05 lganl = 1.5, ga = 1.3, L=2.5fm

0.25 0.3 0.35 0.4 0.45 0.5
M, (GeV)

FIG. 7 (color online). Finite volume effects in the isovector,
helicity matrix elements in the proton in SU(2|2) quenched xPT.
The shaded region corresponds to variation of the axial cou-
plings g, and vy between =g, with g4 = 1.3, gay = 1.5 and
assuming large N, relations for the operator LECs. The point
M, = 0.25 GeV corresponds to M, L = 3.2.

where p = % (p' + p). For each of the coefficient functions
Aﬁfi)(qz), Bﬁfi)(qz) and C%(qz), there is an independent
finite volume yPT expansion.

Another complication enters when one considers the
operators that match onto the twist-two operators in the
low-energy effective theory. The presence of the new scale
g means that considerably more operators must be in-
cluded in Eqgs. (18)—(20);, for example, the term propor-

tional to a(“) in Eq. (18) is replaced by

n
[Z (Wl wki(=ig)#im L (=id)#) — tr)
Jj=0

o9 (=iay . (—ia —tr):|(§7'?+f3). 3)

Note that only terms with an even number of derivatives
contribute here. Each LEC in the forward case is replaced
by O(n) LECs. Additionally, the vector g allows more
tensor structures to enter and we must also include

Z A(r*‘)[v{"o R (i)

(BBS T ) ]

since S - ¢ # 0. When we also take into account the 44-
plet fields 7 #, many more structures are possible since
g+ T # 0. Even for the n < 3 matrix elements that have
been calculated on the lattice, a large number of LECs need
to be determined. This makes a reliable extraction of the
physical matrix elements from finite volume, unphysical
mass, lattice calculations a challenging proposition.

In terms of FV effects, the modifications for the off-
forward case are relatively simple and it is worthwhile to
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investigate them in some detail. There are essentially two
classes of diagrams: ones where the twist-two operator
injects momentum into a (heavy) baryon field (e.g., (c) in
Fig. 1); and ones where a meson receives the additional
momentum (e.g., (h) in Fig. 1). The former class is rela-
tively uninteresting since for heavy fields, derivatives in the
twist-two operators pick out only the momentum transfer

between the external states, ¢, and can therefore be fac-
|

dky S - (=K)S - (k + g)[(—k)tr ..

=Rk + gy ..

PHYSICAL REVIEW D 71, 054510 (2005)

tored out of the integral. For this type of diagram, finite
volume effects will be the same as those in the forward
limit as we are free to work in the Breit frame where
q-v=0.

For diagrams in which the twist-two operator is on a
meson line, the situation is different since the derivatives in
the operator can result in powers of the integration mo-
mentum. The relevant integrals are of the form

(k + g)*! — ]

Y ks

=4]0 dx] d/\_ ]d&)s (€+a)§\4§f3+b)

after introducing Feynman and Schwinger parameters and
shifting the momentum integration k — € = k + xq — Av.
Here a = —xqg + Av, b = (1 — x)g + Av and

M? = M(x, A, m? ¢* A)
=m?—x(1 —x)g> + A2 + 2)A. (46)

The trace subtractions prevent any of the £#i’s arising from
the operator from contracting with one another, conse-
quently the nonvanishing scalar integrals/sums whose fi-
nite volume effects we are interested in will be of the form

fdxf dA 3Zf‘;f:(€2

where r =0, 1 or 2.

Without going into further details of the tensor structure
[73], it is already clear from Eq. (46) that the effect of the
momentum injection on overall finite volume shifts is very
similar to the effect of the N-A mass-splitting. Since x(1 —
x) >0, when spacelike momentum (g> = —|g|*> <0 in
Minkowski space) is injected, FV effects are suppressed
as the meson receiving the momentum injection moves
further away from its mass shell. However, if timelike
momentum is injected the situation is more complicated.
Provided the virtual particle cannot reach its mass shell,
finite volume effects are enhanced over the forward case
but will still remain formally exponentially suppressed.
However, if the injected energy-momentum is enough to
put the intermediate particles on shell, it leads to a cut in
Minkowski space in infinite-volume. In this case, finite
volume effects are only suppressed by powers of 1/L in
QCD. In (partially) quenched QCD, volume corrections for
isoscalar twist-two matrix elements may be proportional to

(€2

@

(—1)Y[(€ + a)o ..

(k-v—A+ie)k> —m?>+ie(k+ q)> —m? + ie]

(€ + a)*i (€ + b)Hi1 ... (€ + byt — tr]

(45)

‘positive powers of L whereby the infinite volume limit will
be undefined. This suppression of finite volume effects
with spacelike momentum injection and enhancement in
the timelike case (which is relevant for twist-two matrix
elements between states of different masses, e.g. N — A
transitions) will occur in hadronic form-factors that are
specific cases of twist-two matrix elements.

V. CONCLUSIONS

We have studied the matrix elements of twist-two op-
erators that determine the moments of the unpolarized,
helicity and transversity quark distributions to NLO in
(partially) quenched chiral perturbation theory in both
infinite and finite volumes. We have performed our calcu-
lations in Ny =2 and Ny =2+ 1 partially-quenched
heavy baryon chiral perturbation theory and also studied
the SU(2]2) quenched theory. These results will be relevant
for extrapolations of lattice calculations of these matrix
elements in the proton and other octet baryons (e.g., the A
hyperon [74]).

We have focused primarily on the effects of the finite
volumes used in lattice calculations. Without accurate data
in the chiral regime with which to fit the various low-
energy constants on which the results depend, it is difficult
to be specific, however it is clear that for most current
simulations FV effects are not negligible. For typical full-
or partially-quenched- QCD calculations, they are < 5-
10% but may be significantly larger in quenched
simulations.

In the case of the off-forward matrix elements relevant to
generalized parton distributions, we have not presented full
results for arbitrary moments [73]. However, we have
analyzed the finite volume effects in these matrix elements.
We find that they should decrease with respect to the
forward matrix elements if spacelike momentum is in-
jected. On the other hand if timelike momentum is trans-
ferred, finite volume effects will be enhanced; in QCD they
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may become only 1/L suppressed, and in (partially)
quenched QCD finite volume isoscalar matrix elements
may even be proportional to powers of L.
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APPENDIX A: TADPOLE INTEGRALS AND
FINITE VOLUME SUMS

The sums that appear in tadpole diagrams, after sub-
tracting A, are

dko m2 -
+
T (m) = ZfZW K —m?>+ie 167 A (AD
and
dk, L
+
Ty (m) = L3Z]27T (kz—m + ie)? 772/\
daI(m)
== (A2)

Using Poisson’s summation formula, it is straightforward
to show that

I (m) = I(m) + IV (m), (A3)‘

1 a
(NIO) ., IN) = 3 UNVsy -V, Uy2al?

- 3£za)) X1+ (1= 8,0) Wsuup] +
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where

de%k i m2
I(m) = p*™4 + A
(m) = Qm)d 2 —m2 + ie 1672

(A4)

is the infinite-volume limit of J(m), and

1 mL>1 1 mar [ 1
) =25 — K uml)"Z' ¥ [T
(m) 47TZZML 1(umL) 477'22 2uL<uL>
u#0 u#0
3 15
X —umL 1+ —
¢ { SumL  128(umL)?
1
+ O ———|L A5
(G| (A

APPENDIX B: RESULTS FOR SU(4/|2) PQxPT

In this section, we present the results for twist-two
matrix elements in the isospin limit in SU(4|2) PQxPT.
The results in this and the following appendices have been
independently calculated by both authors and are available
on request in a Mathematica notebook. The various masses
and the mass-splitting 6 are defined in Sections II and III.

The nucleon wave-function renormalization is

i
W spap) = TJQ{H(MW 0)(—5g1 — 48184 + £3)
AL H (M A) + H (M, Mgy
+(—6g7 — 12g,g4 — 683)8°H (M, 0)}.
(B1)

The isovector, unpolarized nucleon matrix element is

l(l - nO) 7

12f2 UN Mo U,un UN

4 (a)

+ (151”){_41'](1‘/11{]')(_4 +3q; +3q) + 4iI(M,)(q; + q;) + 3[—H (M,;, 0)(4g3(q; + q;)
+28184Q2+ q; + q) + 836+ q; +q) + HM,, 004531 + q; + q) + 28,842 + q; + q)

+ 836+ q; + q) + 88%(g) + g2 H (M, )] — B4 I(M

uj)(2 + 3QJ + 3‘11)

—4iI(M,)(q; + q;) +3[H (M, 0)g,(—8gs +3g1(q; + q)) + H (M, 0)(8g,84 + 283

—3g2(q; + q) + 46%(g, + g2 H (M, o>]}).

The isovector, helicity matrix element in the nucleon is

(B2)
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(NI(QS(? aIN) = UNU{MO Yy, Su, }UN(2Aa(”) B(a)) X (1+ Wsuap) + 52 12f2 UnVipy -V, S}
16 .
X UN{ 3 \/;gANAC( K (M7, 8) 884 + 812 = 3¢; = 3q) + K(M,;, A)(8gx + g1(=2+3; + 3q)]
20 2 (@) A(Tﬁla)
- ﬁgANDH(Mm A)(—4+q;+q)— HM,; M@ +3q, + 3611)]<A7 T)

+ Aagla)[lzi](Mﬂ')(qj +q)— 4i](Muj)(_4 + 3(]]‘ +3q) + H(Muj: 0)(48/24(%’ +q1)
+281842+ q; + q) + 816+ q; + q) — H(M,,0)(4g5(1 + q; + q) + 281842 + q; + q))
+ 826+ q; + q)) — 88%(g) + g4 H (M, 0]+ AL [12iI(M ,)(q; + q))

—4iI(M, ;)2 +3q; +3q;) + H(M,;,0)8,(—8g, +3g1(q; + 1) + H (M, 0)(88184 + 243

—3g2(g, + qp) + 462(g, + g2 H (M, o>]}, (B3)

and the isoscalar, unpolarized matrix element is

T7 A\ S i TT7
(NIOY) . INY =Ty, ...v, Uy(a) + BOY) X [1 + (1 = 8,0) Wspup] + 25 U

2f2 Nvﬂ(»"'UMnUN(l - 5,10)

Mo **

{4[3{ (M, A) + H (M, A)]gAN( © ) (@) + BIH (M., 0)(5¢2 + 4g,84 — £2)

— H(M,;, 0)(5g> + 4g, g4 + 882) + 68%(g, + g2 H (M, 0)]}. (B4)

The isoscalar, helicity matrix element is

~0)
Mo---Mp

<N|@ |N> = UNU{/LO NN U/L,,,IS,!L,,}UN(Aal(f) + Aﬂﬁ,S)) X (1 + WSU(4|2)) + — UNU{MO vﬂn*]S:UVn}UN

12f2
x (LA, ) + 20, Ak (474 - Ao )+ () + A2 (4,0

X (5g1 +4g184 — &5) + 2H (M,;, 0)(5g7 + 48184 + 883) — 128%(gy + g4)* H ,, (M, 0)]}- (B3)

Finally, the transversity matrix elements are
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~T 1—
(NIO,, . olN)= 6UNU{,L0 U118 JUNIS +y)8a, +2(1 +2y,)88,] X (1 + Wsuap)
i — 16 2
+ WUNU{MO he U[M}SM]UN(? ggAN{K(Muj’ A)[4ga(l —y;) + g (=4 =2y, +3y; + 3y,)]

20
+ KM, A)4ga(l —y;) + g4+ 2y, — 3y, — 3y,) }8c, + == gxy[H (M,;, A)(10 + 2y, + 3y; + 3y;)

27
360, )
. ) + 80, [2i(I1(M,;)(10 + 2y; + 6y, + 6y)

+3H (M, A)(6+ 2y, —y, — ym)]<57n -
+ I(M,)(1+5y; — 6y, = 6y,,)) —4(5 + )81, (M) + H (M,;,0)[g3(7 + y; + y; + y1)
+2g1842+y; +y) 4851 +y; +y; +y)]+ H (M, 0)[g3(3 + Ty; — 4y, — 4y,,)
—28184Q2+ v +y,) — &7 +y; +y +y,)]1—2(g1 + 845 +y) 82 H (M, 0)]

+ 6B, [4i(I(M,))(2 +4y; +3y; +3y,) + I(M )2 + y; — 3y, — 3y,)) — 8(1 +2y,)6% 1 (M)
+ H (M, 0)[88184y; + 883 (1 +y;) + g2(2 +2y; + 3y, + 3y) ]+ H (M, 0)[283 — 88184V

— 22+ 2y, + 3y, + 3y)] — d(gy + g1+ 290823 (M, o>]).

APPENDIX C: RESULTS FOR SU(6/3) PQxyPT WITH
m, = myg ¥+ m;

In three-flavor QCD, one seeks to determine the up,
down and strange quark, unpolarized, helicity, and trans-
versity distributions in the octet baryons. Consequently, the
goal of lattice calculations is to determine the correspond-
ing twist-two operator matrix elements for each of these
flavors in the octet baryons. The SU(6|3) results presented
in this appendix will be relevant for chiral and infinite-
volume extrapolations of lattice calculations of moments
of the strange-quark distributions in the nucleon® and the

various parton distributions in, for example, the A hyperon
[74].

If we consider the extensions of three-flavor QCD to -
partially-quenched theories, we are naturally led to
SU(6/3) HB yPT. The Lagrangian of this theory is very
similar to that described in Sec. Il with some simple
modifications. Obviously the meson field @ is enlarged,
becoming a 9 X 9 matrix encoding the 80-plet of pseudo-
Goldstone mesons. The octet baryons are now embedded in
a 240 representation and the decuplet baryons in a 138
representation. Additionally, the couplings «, 8 and C in
Eq. (12) are replaced by @« — 2D + 2F, B— —3D + F
and C — C so that the nomenclature is the same as in
SU(3) xPT. For definiteness, the quark masses we consider
are mg = diag(m,, my, m, mj, my, m,, m,, My, mg) and Q

®One can also study strangeness in the nucleon using two-
flavor yPT [75] thereby sidestepping issues of the slow(er)
convergence of the chiral expansion around the physical
strange-quark-mass.

(B6)

\
after Eq. (11) is replaced by Q = (u, d, s, j, I, r, ii, d, 3).
Further details are given in Ref. [42].

To calculate the independent moments of the PDFs in
three-flavor QCD, one constructs three independent flavor
combinations of operators. The standard choice is

"yl Dy, ... D, {1 A3, Ay,

where I' = vy, y7ys, o represents the appropriate Dirac
structure and the A; are the usual Gell-Mann basis for
SU(3). The unpolarized and helicity operators are in the
singlet (1,1) or adjoint (8,1) ® (1,8) representations of
SU(3);, X SU(3)g. From a lattice practitioner’s point of
view, A5 is somewhat special since in the limit m, = my
there are no disconnected contributions to matrix elements
of such operators. On the other hand, both the singlet and
Ag operator require such contributions and no choice of
flavor basis can ameliorate the situation. In partially-
quenched QCD, there is again freedom in the extension
of the above QCD operators; a natural choice with a
smooth QCD limit is

(ChH

A3 = diag(1, —=1,0,1, —1,0, 1, —1,0),

Ay = diag(1,1, -2, 1,1, —2,1,1, —2). (€2)
In our results, only a single adjoint representation operator
is presented, corresponding to

Aagj = diag(1, g1, =1 — g1, 1, g2, =1 — q»,

1’ ql)_l _CII); (C3)

and to determine A; and Ag, we set g, = g, = *1.
Keeping ¢, # ¢, will allow SU(3) breaking effects to be
analyzed in detail. However, the singlet operator is
uniquely defined
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Ao =diag(1,1,1,1,1,1,1,1, 1 C4 ‘ 52 (M% — M%, — 287
o = diag( ) () 6 = - 0 Ma =M =257
. : . M2 — M2, —28% — 46
and disconnected loops involving sea quarks are 3
unavoidable. B
_ The transversity operators in QCD belong to the (3, 3) ® ( M2 — M2, — 28%)% + 85°
(3, 3) representation of SU(3), X SU(3)g irrespective of D = M2 M‘2‘ 05 —as (C11)
the choice of flavor structure in Eq. (C1). For the partially- 8
quenched QCD extension of these operators, we choose the
operators built from S2(M2 — M2 + 252
5 . C=-i—3 2( 772 Ssz 3 o (C12)
Ap = dlag(l’ Y1,52.0,0,0, 1, y1, y,) (C5) (M7T - Mss)(Mﬂ' - M5 + 6%+ 26 )
and then setting {y,, y,} = {1, 1}, {—1, 0}, {1, —2} gives the y
required flavor combinations. ~ , 52 (M2 — M2, — 26?)
In this section, we gi 1 i i & =2 ‘ o (C13)
, we give results for the matrix elements in (M2 — M2) (M2 — M2, — 282 — 48?)
the proton, A°, 3%, 2~ as well as the 3°—A° transition. i e ¥
Other octet matrix elements are simply related to these by and the functions,
isospin symmetry. In the results of this section, the low-
energy coefficients (o, Ay"), etc) occurring in the OQuu = ULy + B, + (1 =B)I,
SU(6]3) versions of Egs. (8), (19), and (20) are different 0, =CI  +DI, +(1-D)I (C14)
from those in SU(4|2). With this caution, we use the same s SS ’
notation.
The SU(6|3) tree-level meson masses, M,,, M,,, M,,, R, = Q[j—[n, wF BH,, + (1= B)Hy,
and M,;, are defined through Eq. (11), § is defined in N ’
- = \U ! A - @
EQ- (24)9 RSS Q‘j—[n,ss + @g{ss + (1 )}[X’ (CIS)
< Ry=CH,, +FH,+(1—-C—-F)Hy,
52 — M%s M2 — )‘(m ) (C6) us uu 8; s ( ¢ (5) X
d
o = UK e + B, + (1 — B) Ky,
1 ~
M5 = S[MZ +2M3, = 2(8% + 26°)] (€7 Ses = CX s + DK + (1 DKy (c16)
The QCD limit is easily recovered, taking 6 — 0, 5—0, = CXou + 8K + (1= €= K,
j—u, l— d and r — s. To make the presentation suc- and
cinct, we define the following ratios,
o — _; (M7 — M+ 267) ) Ty =UAHY, , +BHG, + (1 —B)HE,
M — M3 + 8% + 26 Ty =CHp +DHL+ (1 -D)Hy, (C17)
~ — A % A _ _ < A
% (MZ M%Y + 252)2 + 254 (Cg) Tus @Httu + 15’5'[” + (1 ¢ %)_’]‘[X,
2(M2 M2+ 8% +26%)% where
|
= I(MU) I”’]’,ij= J /(Mij)’ 3'[ H(Mlj’o)’ g-[n/,ijzg-[n’(Mij’O)’ g-[A j-[(MU’ A),
j-[ﬁ/‘ }[ (sz’ A)’ j(- K(M,/, A)’ :](1]’, =X (MU’ A): (Clg)
]X = ‘I(MX)’ HX = g-[(MX’ 0): :]-[?( = H(MX) A)’ KX = K(MX: A)’ (Clg)
and
H e =2H (M, 0) + H (M, 0),  H o = H(My,0)— H(M,.,0), HB, =2H (M, A)+ H (M, A),

jl[ﬁbc = H(Mab’ A) - H(Mac’ A);
:](abc = ZK(Mab: A) + K(Muc) A)’

-Iabc
Kabc

= ZI(Mab) + I(Mac)
j<:(Mub) A) - K(Muu A)

Tope = I(M,) = I(M,,), (C20)
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and finally
Y2 and  §= 1+4q,
1+ V1 1+ ql'

= (C21)
1. Wave-function renormalization

The wave-function renormalizations for the different octet states are

W(p)

it 1¢* + H ,;,(5D* — 6DF + 9F?) — 43 ,,D(D — 3F) — 3iR,,(D — 3F)*}  (C22)

6l3) — fiz{[ﬂ"[ﬁu + Hy

ujr

for the proton,

1C? + H (D +3F)* + 2H ,;,(1D* — 12DF + 9F?)

S

SUGl3) ujr

wh 3%2{3[3{3‘, + HA, + HA
—2H ,,(5D* — 6DF — 9F?) — 24 ,,(D?> — 12DF + 9F?) + i[—R,,(3F + D)?

+ R,,(8D? + 12DF — 36F?) — 4R,,,(2D — 3F)*]} (C23)

for the A baryons,

W 3}2{[55{53 F O, 2HD 4 A

SU(6]3) = sjr ujr 2i(Tss - 2Tus + Tuu)]cz + 3[3-7-[sjr(D - F)2

+2H (D> + 3F?) — 2H ,(D* — 3F*) — 2H ,(D* — 6DF + 3F*)] — 9i[R((D — F)?
+ 4R, ,F(F — D) + 4R, F*]} (C24)

for the X baryons, and

® i .
W e = 372{[55{ B+ HY, + HN +2HY, — 20T, — 2T, + T,,)IC* + 3[3H ,;,(D — F)* + 2H ,;,(D*

+ 3F?) —2H ,,(D* — 6DF + 3F?) — 2 (D> — 3F?)] — 9i[4R,,F*> — 4R, ,F(D — F) + R,,(D — F)*]}
(C25)

for the Z baryons.

2. Isovector unpolarized matrix elements

U,v

<p|@$)u |p> _ “pTpe U,u,” Up[(s + ql)a’fla) + 2(1 + 2('11)Bﬁ1a)]
0 n

6

(p)
X [1 + Wg%(ﬂg)(l - 6;10)]

)5+ qy) +3(1 + C]z)j'[ﬁjr]cz

U v o U U (1—=368,0) (i (a) 0'210) A A
+ s l}z £ (9<7n _?>[(3j{uu+g{ujr

1 N
+ aﬁza){g(_s - QI)Iujr + (1 + ‘h)lujr - ig-[ujr[3D2 — 6DF + 5F2 + (D2 + Fz)%]

+ 4i3H ,,D(D — 2F — Fq,) — i(1 + q,)(D? + 3F) 3, — %RW(D —3F)2(5 + ql)}
—1
3
+ 4iH DD — 2F — Fqy) — 3i(1 + 2)(D — FYF 0y — Run(D — 3F)(1 + 2q1)}). (C26)

+ Bgza){ (1 + 26]l)Iujr + (1 + Q2)jujr - 2ig_[ujrl:D2 + F2(1 + 2%)]
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(AOD)...,, |A%) = CUpovy,..v, Un(l + q))
0 n

(i — (“)>><[1+W(A> (1= 8,0)]

4 NUGE
Upovy, ...v, Up(l+ g1 — 8,) 4 A
4 TNV, -V, ;2 ! 0 < 6(7( ) )(33—[A + HE, —25H,;,)C?
o[l q 5 7
+ aE‘l ){4(_11417 + 2Isjr) + g(-[ujr + Isjr) + u]r(7D 9F)(D - 3F)

- H (D +3F)? — 5—[ w(7D* = 12DF + 9F2) — L 3{, (5D — 3F)(D + 3F)
j 6

: . . 1
- iq(D +3FRH,, — iq(SDZ — 6DF + 9F)H . + —[R,,(D + 3F)?
6 g j

12
1 .
— 4R,,(2D — 3F)(D + 3F) + 4R,,(2D — 3F)2]} + Bff){— E(2IW- +1,)+ 31,

+ éﬂuj,(mz + 6DF — 9F?) — éﬂsj,(p +3F)? — %5{“”(71)2 — 12DF + 9F2)
/ 5 1
- %j{m(mﬂ ~ 12DF + 9F?) = 3i(D = FPH = Z[Ry((D + 3F)

_4R,.(2D — 3F)(D + 3F) + 4R, (2D — 3F)2]}). €27)

Usiv,, .. v, Use[(—4 + q)al? +2(1 + 2¢,) 8]
6
Us+ Us+(1 — 6 ]
e ( W(;(w )[HA FUIHA - 4HE, — [3, + 2303
~~A ~~A .
+ j-[A ]611 + (1 + QZ)(Hujr + 2}[sjr) - 2l(T5s - 2Tus + Tuu)(l - QI)]CZ

ujr

(SF1OR) -, 157) = -

X [1 + w( U(6|3)(1 nO)]

+ asp{g[—sfuj, + 1,0+ q)+ (1 +g)6T,, + T+ %Hujr[(D — F)(D + 3F)

$2D2 + g1 = 2 (D = FR = i, J4F + (D~ F)(D + Flg,]

+ iH [A(D? — DF + F?) + (D* + 4DF — F?)q,] — %(1 + @2)(D? + 2DF + 5F)H

- é(l + Q2)(D - F)zji[sjr + %[Rss(D - F)2 - 4RusF(D - F) + 4RuuF2](ql - 4)}

+ B&”{%[—Iuﬁ + 21,1+ q) + (1 + )T, + 2131 = iH ,;,[(D — F)D + 3F) — 4F2¢,]
—iH (D~ F)* +2iH ,(D* + F* + 2F%q,) + 2iH ,[D* — 2DF — F* + 2(D — F)Fq,]
—i(1 + g2)(D = FP(H jy + 29 ;) + [R (D = FP = 4R, F(D — F) + 4R, F*](1 + 2q1)}).

(C28)
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|

(a) (a)
f— 3 f— Eiv -V ,,UE’[(S +4611)an _2(_1 + ‘h)IBn ] =
(B0 |B 7y = ——F—to Tk . X1+ Wi (1 = 840)]

Usz- Uz-(1 -9, ] 5{‘)
U2V v U 020w (0 Oy a3 04 ) + M35+ 11gy)
f2 9 3 sjr

FAHA (1 + qp) — (1 + g)RFH wy + H53)) = 2i(Tyy — 2T + To)2 + q1)1C

ujr
(1 5 5 5i

+ ag'l ){6[_1u1rql + S‘Islr(l + QI) + (1 + qZ)(Iujr + 51?1}")] + Elg-[u]r(D - F)z(l + ql)

+ %:l—[sj,[z)2 —2DF + 5F* — (D — F)(D + 3F)q,] — i, (D* — 5F2 — 4F2g,)

—iH [3D — 5F)(D — F) + 4(D* — DF + F%)q,] — %(1 +g)(D — FRH,,;,

- %(1 + ¢,)(D* + 2DF + 5F2)53[sj, + %[4R”F2 — 4R, F(D — F)+R,,(D — F)*](5 + 4q1)}

+ 8O 2T gy + T+ g + (1 + @) @T 0, + T+ i3 (D + F)?
n 3 ujr41 sjr 1 2 ujr sjr sjr

+ (D — F)(D + 3F)q,] — 2iH ,[D* — F?> + (D* + F?)q,] — 2iH ,[D? — 4DF + F?

+(D* = 2DF — F¥)q,] — i(1 + ¢,)(D — F)z(zj:[ujr + g:[sjr) +iH,;,[(D = F)?(1 + q)]

+ [4RssF2 - 4RusF(D - F) + Ruu(D - F)z](l - %)}) (C29)
Usovy, ...v, Upo(=1+¢qy) |, . 1
(SO0, |A0) = — == Z:/§A = (! = 2B81) x [1 + i(w(sﬁ)(as) + Wt = 5,10)}
+UEOUMU"'U;L,,UAO(_1 +q1)(1 - 6;10)(_1 ')/E/la) _ﬁ (2}[3’4 + j‘[ﬁs + }[ﬁr)Cz
\/§f2 6 3 J

+ aﬁ,“){% I, + éj{uj,(D —3F)3D — F) — %HW-,(D — F)(D + 3F) — iH ,,D(D + F)
—iH , DD —F) — %[R”(D — F)(D + 3F) — 4R, (D* — 2DF + 3F?%) — 4R,,,F(—2D + 3F)]}
+ ,32,“){— % I+ %Huj,(D —3F)(D + F) + é:l—[sj,(D — F)(D + 3F) — 2iH,,D(D — F)

—2iH ,DF + %[R”(D — F)(D + 3F) — 4R (D* — 2DF + 3F?) — 4R,,,F(—2D + 3F)]}).

(C30)

054510-20



TWIST-TWO MATRIX ELEMENTS AT FINITE AND ...

(plOY .

yn

(A°|O
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Mo fen
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3. Isovector helicity matrix elements

|A0) = —

U, v, S, UL+ g)Aa? +2(1 + 241)AB] "

(»
c 1+ Wk

(6|3))
+ U U{Mo

SuaUp (5 Aoy
Sl (30 - AN 03, + 9036+ 1)

+ 3(1 + qZ)g{ujr]Cz + 89l\/§[j<uu(D + 3F)(_1 + QI) - j(ujr(3D —F - 2FQI)

PHYSICAL REVIEW D 71, 054510 (2005)

~ 1 ~ |
+3(1 + g2)(D = F)K,;,1CACLY + Aaff”{ ~ <5+ )Ly + (1 )Ty, + 5 3, [3D — 6DF

4i . X
+5F2 4+ (D> + F¥)q,] — gl.’}-[m,D(D —2F — Fq,) + %(1 + q)(D* +3F)H ,;,

+ éRW(D —3F)(5 + ql)} + ABE‘”{—%(I +2q) 1 + (1 + @)1y

9 4; .
+ ?lg-[ujrl:D2 + Fz(l + 26]1)] - ?lg-[uuD(D —2F — FQI) + l(l + q2)(D - F)zg-[ujr

+ %RW(D “3R2( 4+ 2q1)}>.

UAOU{ILO e U,un—lsﬂ«n}UAo(l +q;)

(a) (a) (A)
. (Aay” —2A8,7) X (1 + WSU(6|3))
— (a)
N UAOU{MO---UM}ZSM}UAU(I * Q1)( ; <A @ _ Ao )(3&[A + 3y,

i \[ [~ Ko(D = 3F) + 2K,,D + K,;p(D + F) +24(D — F)XK,;,]CAC”

+ Aagf){él[_]ujr + 2-Isjr + 2q~(jujr + js]r)] - ig{wr(7D - 9F)(D - 3F)

+ L.’]—[S,-,(D +3F)? + LHW(7D2 — 12DF + 9F?) + LSJ{M(SD — 3F)(D + 3F)

1
+ —q(SD2 — 6DF + 9F) wir ¥ Tg q(D + 3P sjr— %[R”(D + 3F)?

A

— 4R, (2D — 3F)(D + 3F) + 4R,,(2D — 3F)2]} + Aﬁﬁ,@{—%.fuj, +g1,;,

- éﬂ wir(1D? + 6DF — 9F2) + LJ{ o(D + 3F)? — 15'{ (ID? — 12DF + 9F?)

+ é}[ (13D% — 12DF + 9F?) + ig(D — F)* 3 = Lir.o+3pp

u]r

_4R,.(2D — 3F)(D + 3F) + 4R, (2D — 3F>2]}>.
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v, S, Us[(—4+ g)A? +2(1 + 2¢)ABY]
6

<E+|(~9(3)... IS+) = E”){,uo

Mo Mo

x (1+ W&

U(6|3))

L Us v, }fzu,, SuUst {;i (A W _ Aoy’ )(J{A + 1L, + 438,

—[HE, +2HE + HE g + (1 + qz)(g{uj, + 23{”-,) —2i(T,, — 2T,, + T,,)(1 — q,))C>

- %\E[J{W(D +3F +2Fqy) + 2XK,;(D — F) + 2K, F2 + q,) + K,,(D + F)2 + q;)

+ (14 @) (F = D)X, + 2K,;) = 2i(Sg,(D = F) + 28,,F = S,s(D + F))(2 + ¢1)]CAcY!

# 80l € (=51 + L1+ ) + 1+ @)Ly + 1) = H (D = PO +3F)
+2(D* + F?)q,) + %Hsjr(D - F)?+ %5{””(4192 + (D — F)(D + F)q,)

- %-5!{“(4(1)2 — DF + F2) + (D + 4DF — F%)q,) + é(l + q2)(D* + 2DF + 5F)H
L0+ @)D = FRIL, = C(Ro(D = FF = 4R, F(D = F) + 4R, F)(q) — 4)]

+ A,BS;”B(—IW £ 2T+ g + (1 + gy +27,)) + gﬂuj,((p — F)D + 3F)

— 4F%q)) + %5{”,(1) - F)? - %J{MM(DZ + F? 4+ 2F%q,) — %J{M(D2 — 2DF

= 242D~ F)Fq) + 5 (L + gD = PRI, + 29L,) = 1 (R(D = ) = 4R, F(D = F)

+ 4R, F2)(1 + 2q1)“. (C33)
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Us- v, v, S, Us-[(5+ 4g)Aal? = 2(=1 + ¢)ABY]

(E7105)..., 1) = - o : X (1+ Wig)
Uz-vy, ...v, S, Uzs- o Ac?
+ fito fz“" 12t} { - (A @ — )(:l—[é], + HAQ+ gq)) + HAU3 + 11g,)

+438,00 + q) = (1 + @)@FH,, + H ?jr) = 2i(Ty, = 2T, + T2 + 1) C?
n %\E[zxw,m —F)(1+ q)) + K (D + F + (D + 3F)gy) + 2K, F(1 + 24)
+ KD + F)(1+2g) + (1 + g)(D — 2K, + K,j,) = 2i(S,,(D — F) + 28 F
= 5D+ P+ 2)ICAG" + A [ 2Ly + 51500+ 0+ (1 + 2T,y + 51,
- %j{uﬂ(D - F?*1+gq))— éﬁh(m(l)2 — 2DF + 5F* — (D — F)(D + 3F)q,)
+ ésrnfﬂ(D2 — SF?2 —4F%q)) + %'3{”5,((30 — 5F)(D — F) + 4(D* — DF + F?)q,)
+ é(l +q)(D — FPH ,;, + é(l + q2)(D* + 2DF + 5F)H , — é(4R”F2 — 4R,,F(D — F)
# R0 = PRI + ) |+ A5 (20 + 1,01+ ) + (1 )@, + T,)

23, (D= FP(1 + ) = S 3, (D + FP + (D= DD +3F)q)
+ g}[m(Dz —F2 4+ (D? + F)q,) + §(1 +q)(D — FPQH ,; + H ;) + %5{”‘;(02 — ADF

+ P2+ (D? — 2DF — F?)q,) — %(4RSSF2 4R, F(D — F) + Ry, (D — F)(1 — ql):H. (C34)

(10, 10 = = P2 e S UL 0 3,00 2880 5 14 2 Wil + Wikl |
N Uzov{uo-"UM,HS;L,,}UA"(_I + q1)< 5i (A @ _ Aol >(25_[ TN TN
\/§f2 54 ujr
+ %\E{w(m(w +3F) — K, (D — 3F) + 2X,;,D + .’Kxjr(D +3F) — i[2S,,(2D — 3F)
+8,,(=5D + 3F) + S, (D + 3F)}CA\? + Aai,‘”{i wjr — 5'{ ujr(D = 3F)(3D — F)

+ 1—123{_;,,(0 — F)(D + 3F) + %_’]—[WD(D +F)+ g5'-[MD(D —F)+ E[R”(D — F)(D + 3F)
— 4R, (D? — 2DF + 3F?) — 4R, F(—2D + 3F)]} + A,B,({’){—%Iu ir— éj{ ujr(D = 3F)(D + F)
— é:l—[sj,(D — F)(D +3F) + %HWD(D —F)+ %.’I—[MDF — é[RSS(D — F)(D + 3F)

— 4R, (D* — 2DF + 3F?) — 4R, F(—2D + 3F)]}). (C35)
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4. Isoscalar unpolarized matrix elements

Uyvy,---v, Uy(1 = 8,)

<p|(9593-~-u,,|p> =Upvp,---v,U, (@) + BY) X [1+ (1 = nO)WSU(ﬁlz)] + f?

)
X {i(«yﬁf) - ‘%")(25{ Ao HENC + (@) + B —idH ,;,(5D*> — 6DF + 9F?)

+ 4iH ,,D(D — 3F) — 3R,,,(D — 3F)2]}. (C36)

Uon/.L(] e UMn UAO(I - 6”0)

(MO 1, IN) = Tov . vy, Upo(al? + B3 X1+ (1= 8,0) W] + s

0
< (i (' =7 )(H + 33, + H8,)C + (! + B =5 9,007 — 12DF + 9F)
. . 5

- %Hsj,(D + 3F)? + gg{w(w — 12DF + 9F?) + é&'{m(SD2 — 6DF — 9F?)

- %[RSS(D + 3F)> — 4R,,(2D — 3F)(D + 3F) + 4R,,,(2D — 3F)2]}). (C37)

— s 5 U2+U WU UE*(I_(Sn)
(SHOR- - |5%) = Us-vy, ...vy, Use (@l + ) X [1+ (1= 8,0) W] + Ho ;},,2 0

sjr ujr

x (3 <y<‘> )[HA +SHA +2HA + HA —2i(T,, — 2T, + T,,)]C?
+ (ay) + B —2i3H ,;,(D* + 3F?) = 3i3 ;,(D — F)* + 2iH (D> — 3F?)

+2iH ,(D?* — 6DF + 3F2) — 3[R, (D — F)* — 4R, ,F(D — F) + 4RWF2]}). (C38)

— f—r — = UE ..U UE—(1—50)
(B1O0-w|B) =Tz v, ...v, Uz () + BY) X [1+ (1 = 8,0) Wigigz)] + Ko ;},,2 n

X

(%(V;s) o )[25{3}, S, + I+ SH — 2T, — 2T, + T,,)1C?
+ (@) + BON=3iH ,;(D — F)* = 2i3 ;,(D* + 3F?) + 2iHH ,(D* — 3F?)
+ 2iH ,,(D*> — 6DF + 3F?) — 3[4R,,F> — 4R, ,F(D — F) + R,,,(D — F)2]}>. (C39)

(30100...,, |A% = 0. (C40)
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5. Isoscalar helicity matrix elements

— s 5 VoV SuyU
(PlOY., 1Py =Tpviny - v S, Up(Aal) + ABY) X (1 + wg;;(6|3)) + YnPino e ta) 1
{5’ (A o _ Ay )(25!{A + HL)C + (Al + A,Bff))[ H,;,(5D> — 6DF + 9F?)
- gj-[WD(D —-3F)+ R, (D — 3F)2“. (C41)
UA”U{MO Vi, S Uno

(AO1OY) ., A% = Tpovg,, - v, S, UMl + ABY) X (1 + WL

SU(6|3)) f2

i Ay

X (%(A')’Sf) i >(5!-[A + Hy, + HY)C + (A + A,B(Y)){ H ,;(7D> — 12DF + 9F?)
. .

+ éﬂ-[sj,(D +3F)? — gg{uu(Dz — 12DF + 9F?) — 3’5-[”(51)2 — 6DF — 9F?)

+ é[RSS(D +3F)? — 4R,,(2D — 3F)(D + 3F) + 4R,,(2D — 3F)2]}). (C42)

U2+U{M0 Uy

)+ SuUs+
SU(63) f2

<2+|@§?3...M”|2+> = U2+v{/’vo U M }U2+(Aa + Aﬂ(v)) X (1+ W(

X (; (A'y(,f) A‘ST" ) X[, +5SH + 235 + HB, = 2(T,, — 2T, + T,,)1C?

+(Aal) + AV E 3, (D + 3FY) + i3, (D — F)? — 23, (D? — 3FY)
3 ] J 3

_ %:ﬁ(w(m — 6DF + 3F?) + [R,,(D — F)> —4R,,F(D — F) + 4RWF2]}). (C43)

Uz-v ..U S, Us-
WUz- (ACY(S) + A,Bgzs)) X (1+ W(SB)(6|3)) {uo - letn—l utVE

Uiy VU, S,

Agy
< 27<A D - ST X A, + Y, + HA 4 SH - AT, - 2+ T

+ (Aa? + Aﬁiﬁ){ij—[ uir(D — F)? + %5—[ ojr(D? + 3F?) — %5—[ (D? —3F?)

9
- éﬁ"[us(Dz — 6DF + 3F?) + [4R, ,F? — 4R, ,F(D — F) + R,,,(D — F)Z]}). (C44)

(3010, 1A% =o. (C45)
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6. Transversity matrix elements

- U, vy - 0 1 SqU, (5 + y))8a, +2(1 + 2y,)88,]
<p|@/7;'0'”/"'na|p> e a2 6 1 : X (1+ W(SII)J)(GB))
U,viy . Vi SaU, ( 5i 380
4 IpVluy - Vim,}Oa] p( Sv. —229n\3 A 1+ FA V5 + v)C2
f2 81 ’y}'l 5 ( uu ujr)( Y1)

8i 2
+ é\/;[j(uu(D + 3F)(_1 + yl) - Kujr(3D —F - 2Fy1)]C8Cn
1 .
+ 5an{— 5+ )Ly = 200,) + 5 H,, [3D> = 6DF + 5F + (D + F)y,]
4i 1 1
- ?lg-[uuD(D —2F — Fyl) + gRuu(D - 3F)2(5 + )’1)} + 8Bn{_§(1 + 2y1)(Iujr - 2iQuu)

2 I, [0+ B+ 23)] = L H,D(D = 2F = Fy)) + 1Ry (D = 3FP(1 + zm}). (C46)

~ Upoviy ..., 1S ,1Uro(1 +
T _ YAy, [nPalY A V1
(AOI(OMO...MQIA% = 0 4

U po Sa1Upo(1 + ] 0
4 A U[M}}z 1l yl)(:—fl(ﬁvn -2 50”>><[25-[3u(1 +3) + HA( + 45)

V(1 + 2960, +288,]% (1 + Wi

+ HL

A (1+29)]C2 + ‘Z\E{[—KMS(D —3F) + 25, D)1 — 25) — Koy (D — 3F + 4DP}Coc,
+ 3an{—%(1uj, +21,5 —2iQ,, — 40, + %3{ «jr[13D* — 18DF + 9F?

+ 4(5D* — 12DF + 9F?)y] + %3{5#(1) +3F)? + %3{““[02 + 12DF — 9F?

—6(D—3F)(D — F)y] — l—igj{ wL(D —3F)(5D + 3F) + 2(5D* — 9F?)j] + 31—6[RSS(D + 3F)?

1 .
7(Iujr - 21Quu)

— 4R, (2D — 3F)(D + 3F) + 4R,,,(2D — 3F)*](1 + 2y)} + 5,6’”{— 5

+ éjf Wil(D = 3F) + 8D?5] + é.’]—[ (D + 3F)? — 55{ W[3(D = 3F)(D — F) — 4D%]
+ éﬂ{ wD* + 9F? — 12D(D — F)y] + %[RSS(D + 3F)? — 4R,,(2D — 3F)(D + 3F)

+ 4R, (2D — 3F)2]}). (C47)
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- Us+ S qUs+[(5 + yy)da, + 2(1 + 2y,)8,
SHOT sty = U Pl Vi) SaUs [( . y2)éa ( y2)88 ]X(1 +W(s%)<6|3>)

Ho™* Mo

n Us+vy,, ...flz)[#"}Sa]U2+ (2(8771 B 3650':1

¥ )[3{ 3,2+ yo) + HE(13 +2y,) + 433,

8i 2
+ .7{3],(1 + }’2) - 2i(Tss — 2T, + Tuu)(2 + yZ)]C2 - é\/;{xujr(l) +F - 2Fy2)
+ 2K, (D = F) + 2K, F + K, (D + F)I1 = y,) = 2i[S; (D — F) + 28,,F
1
- Sus(D + F)](l - yZ)}Cécn + 5an{_6(51ujr = 10iQ,, + [Isjr - 2les]y2)
+ éﬂfw-,[z)z — 2DF + SF% + 2(D? + F?)y,] + %J{W(D - F)? - %HW[DQ — 5F?

j 1
+ (D — F)(D + F)y,] — %j{us[3D2 — 8DF + 5F*> — (D> + 4DF — F?)y,] + E[RSS(D — F)?

1 . .
_(Iujr - ZlQuu + 2[‘[&]7 - ZZQSS]yZ)

- 4RusF(D - F) + 4RuuF2](5 + yZ)} + aﬁn{_ 3

. Y Y

+ %5{ (D + F)? + 4F%y,] — glg{ w(D? — F2 — 2F%y,) — glﬂ [D* — 4DF
j 1

+ F2 —2F(D — F)y,] + %5—[ oD — F)> + g[R”(D — F)? — 4R, ,F(D — F)

4R, F2)0 + 2y2)}). (C48)

. UE_ Ul + - - v[,u,,,}Sa]UE_[(yl + 5y2)6an + (4y1 + 2y2)8Bn] X (1 + w(E) )

—— 1 AT —_——N\
(E710O |E7) = 6 Su(613)

Mot

Uz-viy ... v 1SeU=s- (50 30,
+ 5o fz[”“"} ] {§<57n— s >(5{$;r(y1+yz)+4}[ﬁ,-ryz+5'[?s(y1+2yz)

9
- ‘7<s1r(2Fy1 - (D + F)yZ) - -7<us(D + F)(yl - y2) - 2j<ssF(y1 - y2) + Zl(Suu(D - F)

. 8i 2
+ Hﬁv(zyl + 13y2) - ZZ(TSX - 2Tus + Tuu)(yl + 2y2))]C2 - \/;[ZKu]r(D - F)yZ

+ 28 F = S4s(D + F))(y; — y2)IC8c,, + San[—%([lujr = 2iQ,,Iy1 + 5[ 15 — 2iQ]y,)
+ %}[ ujr(D = F)*y, + é}[ 5jr(2(D* + F?)y, + (D* — 2DF + 5F?%)y,)

- éﬂfm((l) — F)(D + F)y, + (D*> — 5F%)y,) + éj!fm((p2 + 4DF — F?)y, — (3D — 5F)
X (D — F)y,) + é(4R”F2 —4RWF(D — F) + Ryy(D — FY)(y, + 5y2)i|

#88,] ~5 (UL, 200D + 1y, = 20015 + §H,yD — PPy,

. N y
+3H G @Fy 4 (D + PPyy) + S H L QFy) = (D = F)y) + T H ,QF(D ~ Py,

— (D?> — 4DF + F?)y,) + %(4R”F2 — 4R, F(D — F) + R,,(D — F)*)(2y, + yz)}}. (C49)
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. UEUU{MO .. U[,u,n}Sa]UA"(_l + )

(010}, ol A®) =

Mo Men

4+/3

" UEOU{,U«O e U[,u,,}Sa]UA(’(_l +y)

(da, — 28pB,) X [1 + %(W(A’

S0

V3f?

PHYSICAL REVIEW D 71, 054510 (2005)

(2)
SU(6|3) + WSU(6I3))}

5 ujr

§<5)’n - 380’")(23{%4 + Hﬁs + }[A )C2

+ 431\/2{2%,”(2D +3F) = KD = 3F) + 2K, D + K (D + 3F) — i[25,,2D — 3F)

1
+8,.(=5D + 3F) + S,.(D + 3F)])Cs¢, + 5%{1(1” —2i0,,) —

i
EHW*(D —3F)3D — F)

+ 1_"25{”.,(1) — F)(D + 3F) + %'g{ wD(D + F) + %H uD(D — F) + 1—12[Rss(D — F)(D +3F)

—4R,.(D® — 2DF + 3F%) — 4R, F(—2D + 3F)]} + 5ﬁn{—%(1uj, —2i0,.)

- éj{uj,(D —3F)(D+ F) — éj—[sj,(D — F)(D +3F) + %HWD(D —F)+ %HMDF

- é[RSS(D — F)(D + 3F) — 4R, (D* — 2DF + 3F?) — 4R,,F(—2D + 3F)]}).

APPENDIX D: RESULTS IN SU(2|2)QxPT

In SU(2|2) quenched xPT, the Lagrangian Eq. (12)
receives additional contributions since the theory has no
axial anomaly and the singlet meson field remains light.
Thus,

L9 =i(Bv-DB)— i(T"v DT ,) + A(T"T,)
+2a(BS*BA,,) + 2B(BS*A,B)

+2H(T"s#A,T,) + \EC[(T”AVB)
+ (BA,T")] + 2y(BS*B)str(A,,)

+ 29/ (T"SKT )str(A), (D1)

with two additional couplings vy and 7y’. There is no rela-
tion between the other couplings in Eq. (D1) and those in
(PQ)XPT (though we wuse the same notation for

convenience).
Defining
73 = diag(l, =1, 4, —9), (D2)
7o = diag(1,1, 1, 1), (D3)
and

(C50)

7 = diag(l, §y, 92, 95), (D4)

the quenched yPT twist-two operators correspond (for the
most part) to those given in Egs. (18)—(20) with the re-
placement 7 — 7 everywhere. Again, the LECs (aff) etc.)
occurring in the quenched theory are different from those
in SU(4[2) but with this caution, we use the same notation.
For the transversity operators one needs additional opera-

tors proportional to str(#47):

[Saﬁlv{ﬂo NN v[#”}(fBSa]B)
+ 67;11}{”0 e U[M”}(TVSC,]TV)
(T,

+ Saluy,, .- StaT 1) Istr(367). (DS)

. vﬂn—z

n—1

With these definitions it is then easy to calculate the
quenched matrix elements in the isospin limit. The wave-
function renormalization is

Wsuep = ]%[(81 +g1)6y — g1 +280)H

+ 283y H i + (g1 + g mH
(D6)

The isovector, unpolarized matrix element is
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a a 1 T7
(NIOR)...0, INY = UNv vy, Uy@al® = B X [1+ (1= 8,0) W] + 372 Ui+ U, Un(1l = 8i0)

<4lgAN< (a) 3 )Hﬁu - l(za(a) (a)) X [6gA73{uu + (gl + ga) m() 17 uu]

+ ai“){ gilgr — 204y + gA)]G’{W} + B(“){ giler +202y - gA)]J”{uuD (D7)

and the isovector, helicity matrix element is

(NIOY)...,.,IN) = UN”{MO WV SuyUn@Aa? — ABY1 + Wyop) + 7 3f2 UnVipy -V, S Un
8i 2 20 Ag'®
X {?’l\/;(gl + 4gA)~7<uugANACn + ElgiN<A'y5la) 7 >:]-[Ieu + = (2A W — Bgla))
X [684YH  + (g1 + g)?m3H ] — S Al gi[g) — 24y + g)]H
i a
- EABE 'eilgr + 202y — gA)]}[W}- (D8)

The isoscalar, unpolarized matrix element is
— 5 UNU ) UN(l_lS())
(1O, IN) = Uxvi, - vy, Unla” + ) X [1+ (1= 830) Wiuiap] + ————"2 -

oV
x{(yfﬁ— T) ¢ [2igh, ]~ el + BN+ 67 — €1+ 2603

+ (gl + gA)mgg{n',uu]}‘ (Dg)

The isoscalar, helicity matrix element is

UNU{MO...‘U S Un

<N|O'(l?3 . |N> = UNU{/.LO e U Hon—1 'u }UN(ACY(S) + AB;S)) X (1 + Wsu(zlz)) + leunil Cadl
o _ Ady 10i Al i a o (@)
(A = 25) [ e o |+ 5@ + ABen + 0l — g1+ 280 o
+ (g1 + ga)miH nf,uu]}- (D10)

Finally, the transversity matrix elements are
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(N|O},

(1]
(2]
(31

(4]

(5]

UnViug -+ VinySaUn
6

UN‘U{M0 e U[M,,}Sa]UN
f2

0"',LL,,C¥|N> =

+

[((5+F)oa, + (2 +49,)6B, +6(1 + 3

PHYSICAL REVIEW D 71, 054510 (2005)

= 92— 93)8a,,](1 + WSU(2|2))

i R R R R R R
(ﬁﬂfﬁu[% + 29 — $3 — $)(58y, — 380,) + 6(1 +$; — $3 — $,)

4i 2 R A A A
(58y), — 380)1gay + 6\/;j<uu[4gA(l — 1) + g1(4 + 29, — 39, — 393)Igandc,
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