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Example of optimal field cut in lattice gauge perturbation theory
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We discuss the weak coupling expansion of a one-plaquette SU�2� lattice gauge theory. We show that
the conventional perturbative series for the partition function has a zero radius of convergence and is
asymptotic. The average plaquette is discontinuous at g2 � 0. However, the fact that SU�2� is compact
provides a perturbative sum that converges toward the correct answer for positive g2. This alternate
method amounts to introducing a specific coupling-dependent field cut, that turns the coefficients into
g-dependent quantities. Generalizing to an arbitrary field cut, we obtain a regular power series with a finite
radius of convergence. At any order in the modified perturbative procedure, and for a given coupling, it is
possible to find at least one (and sometimes two) values of the field cut that provide the exact answer. This
optimal field cut can be determined approximately using the strong coupling expansion. This allows us to
interpolate accurately between the weak and strong coupling regions. We discuss the extension of the
method to lattice gauge theory on a D-dimensional cubic lattice.
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FIG. 1. P versus � for SU�3� in 4 dimensions. The solid line
represents the numerical values; the dashed lines on the left,
INTRODUCTION

Lattice gauge theory incorporates essential features of
the strong interactions at short distance (asymptotic free-
dom) and large distance (confinement). Expansions in
1=� � g2=2N and � usually provide good approximations
for the average value of gauge invariant quantities in the
limit of small or large �. However, calculations in the
intermediate region often require a numerical approach.

There exists a general method for calculating Wilson’s
or Polyakov’s loops in powers of 1=� [1] in pure SU�N�
gauge theories (see Ref. [2] for a more complete set of
references on lattice perturbation theory).

Much effort has been devoted to calculating

P �

*
�1=Np�

X
p

�1� �1=N�ReTrUp�

+
(1)

where Up denotes the usual product of links along a 1� 1
plaquette and Np the number of plaquettes. P can be
obtained by taking the derivative with respect to � of the
free energy density. Exact calculations of the coefficients
of P up to order 3 in 1=� [3] and numerical calculations at
order 8 [4] and 10 [5] are available. The accuracy of the
weak and strong coupling expansions at successive orders
is shown in Fig. 1 for SU�3� in 4 dimensions. The figure
makes clear that in the region 5<�< 6, none of the
expansions (in powers of � or 1=�) is accurate.
Unfortunately, this region is precisely the ‘‘scaling win-
dow’’ where one can extract information relevant to the
continuum limit. In addition, the convergence of the weak
coupling expansion is not completely understood. The
analysis of the numerical series [6] may suggest the pos-
sibility of a finite radius of convergence (the center of the
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circle being g2 � 0). This possibility is not expected on
general grounds and is in contradiction with the disconti-
nuity of P when g2 changes sign [7,8]. We are not aware of
any independent argument in favor of a finite radius of
convergence, and the most likely outcome is that the
factorial growth of the series takes over at higher order.
In Ref. [6], this order is estimated to be approximately 25,
which is out of reach of numerical calculations.

In this article, we show that for a SU�2� lattice gauge
model on a single plaquette, the weak coupling expansion
is asymptotic (has zero radius of convergence), but that it is
possible to modify the perturbative procedure in order to
get a convergent sum, which is an ‘‘expansion’’ in powers
successive orders in the strong coupling expansion; the dot-dash
lines on the right, successive orders in the weak coupling
expansion.
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of 1=� but with �-dependent coefficients, that is accurate
even in the strong coupling region. This work is motivated
by recent results obtained in the case of scalar field theory
[9,10] where the answer for similar questions in the case of
nontrivial models can be guessed correctly by considering
a single site integral. This is briefly reviewed in Sec. II. The
main point is that the large order behavior of perturbation
theory is related to large field configurations and that by
cutting off these configurations appropriately, we can ob-
tain a series that converges to a value exponentially close to
the exact one (for instance, errors of order e���4

max for the
simple integral discussed in Ref. [10]). Hereafter, we fol-
low the same path for lattice gauge theories.

The SU�2� model is introduced in Sec. III where we also
discuss its connection to Bessel functions. It is worth
noting that for compact groups, there are no large field
contributions and, consequently, the factorial growth of the
perturbative series comes from adding the tails of integra-
tion, as done in asymptotic analysis of integrals [11] and in
the conventional procedure used in lattice perturbation
theory [1]. This is explained in Sec. IV. In many quantum
problems, the lack of convergence can be traced to the
behavior of the model at negative coupling (see, however,
Ref. [12] for a proper definition). This question has been
discussed for lattice gauge models in 4 dimensions [7]. In
Sec. V, we argue that there should be an essential singu-
larity at zero coupling for the one-plaquette model. In
Sec. VI, we show that the regular perturbation series
(with the integration tails added) misses ‘‘instanton ef-
fects’’ of the form ��1e�2�.
-3 -2 -1 0 1

0

3

6

9

12

SC2

W7S2

W7SI
G

N
IF

. D
IG

IT
S

log
10
ββ

FIG. 2. Number of significant digits for the SU�2� one-
plaquette integral, at order 7 in the weak coupling (dotted line
W7), at order 2 in the strong coupling (empty circles SC2), and
at order 7 of the modified perturbative method proposed here
with an optimal field cut determined pointwise using the strong
coupling expansion at order 2 (solid line W7S2).
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In Sec. VII, we propose to modify the conventional
perturbative method by introducing a field cut. With this
modification, the series converges toward a value which, in
general, is different than the exact one. However, at a given
order in the weak coupling expansion, it is possible to pick
an optimal field cut such that for a given coupling the
answer is exact. For the integral studied in this article,
we found at least one solution at every order. This is not
necessarily the case, in general. For the integral studied in
Ref. [10], we were able to prove that no such solution exists
at odd order and that we could only minimize the error in
that case. In Sec. VIII, we use the strong coupling expan-
sion to determine approximately this optimal field cut. In
this approach, the field cut is given as a power series in �.
A numerical study indicates that this series has a finite
radius of convergence which increases with the order in
1=� considered. The method that we propose allows us to
interpolate between the weak and strong coupling region.
This is depicted in Fig. 2, which is the prototype of what we
expect to accomplish, in general. In the conclusions, we
consider the implementation of the method for
D-dimensional models and discuss three practical ways
to calculate the modified coefficients.
II. MOTIVATIONS

A common challenge for quantum field theorists con-
sists in finding accurate methods in regimes where existing
expansions break down. In the renormalization group lan-
guage, this amounts to finding acceptable interpolations for
the flows in intermediate regions between fixed points. A
discussion of this question for lattice gauge theories can be
found in Refs. [13,14]. In the case of scalar field theory, the
weak coupling expansion is unable to reproduce the ex-
ponential suppression of the large field configurations op-
erating at strong coupling. This problem can be cured [9]
by introducing a large field cutoff �max which eliminates
Dyson’s instability. One is then considering a slightly
different problem; however a judicious choice of �max

can be used to reduce or eliminate [10] the discrepancy
with the original problem (i.e., the problem with no field
cutoff). This optimization procedure can be approximately
performed using the strong coupling expansion and natu-
rally bridges the gap between the weak and strong coupling
expansions.

The study of the simple integral

Z �1

�1
d�e��1=2��2���4

�
X1
0

����l

l!

Z �1

�1
d�e��1=2��2

�4l

(2)

provides a good understanding about the role of large field
configurations in the perturbative series. It helps in identi-
fying general features of the effect of a field cut. In par-
ticular, the dependence of the accuracy of the modified
perturbative series on the coupling and the field cut is
-2
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FIG. 3. P versus � for SU�2� on one plaquette. The solid line
represents the numerical values; the dashed lines on the left,
successive orders in the strong coupling expansion; the dot-dash
lines on the right, successive order in the weak coupling expan-
sion.
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qualitatively very similar for the integral, the anharmonic
oscillator, and the hierarchical model in 3 dimensions (see
the similarity among the three parts of Fig. 2 in [9]).

In order to generalize this procedure to gauge theory, we
will first consider the simplest possible gauge model,
namely, the one-plaquette integral

Z��;N� �
Z Y

l2p

dUle
���1��1=N�Re TrUp�; (3)

After fixing the gauge so that U � 1 on three sides of the
plaquette, Z becomes an integral over a single link

Z��;N� �
Z

dUe���1��1=N�Re TrU�: (4)

For an arbitrary gauge fixing prescription, TrU becomes
Tr�U�g�U� with g arbitrary and Z is g independent by
virtue of the invariance of the Haar measure dU. This
integral and its moments appear in the strong coupling
expansion [13,15–17] and in the mean field treatment
[18] of SU�N� gauge theories. In the one-plaquette model,

P � �
d
d�

lnZ: (5)

The accuracy of successive orders in the � and 1=�
described in the following sections is shown in Fig. 3 and
can be compared with Fig. 1.
III. THE MODEL CONSIDERED HERE

In the following, we specialize the discussion to the case
N � 2 for which the Haar measure is very simple. From
054509
now on, the reference to N will be dropped and we will use
the notation Z��� for Z��; 2�. The explicit form is

Z��� �
1

�

Z 2�

0
d!sin2�!=2�e���1�cos�!=2��: (6)

Setting u � cos�!=2�,

Z��� �
2

�

Z 1

�1
du

��������������
1� u2

p
e���1�u� (7)

and one recognizes from Eq. (8.431) of Ref. [19] that the
integral can be expressed in terms of the modified Bessel
function I1:

Z��� � 2e��I1���=�: (8)

Using the Taylor expansion equation (8.445) in Ref. [19],
we can write

2I1���=� �
X1
l�0

1

l!��l� 2�
��=2�2l: (9)

As in the case of the integral of Eq. (2), the presence of the
factorial at the denominator implies that the strong cou-
pling expansion (in powers of � � 4=g2) converges over
the entire complex plane.
IV. THE WEAK COUPLING EXPANSION

Assuming �> 0, we set t � ��1� u� in Eq. (7), which
yields

Z��� � �2=��3=2
1

�

Z 2�

0
dtt1=2e�t

�����������������������
1� �t=2��

q
: (10)

If we expand the square root in the integral and exchange
the sum and the integral (the validity of this procedure will
be discussed in Sec. VII), we obtain a converging sum:

Z��� � �����3=221=2
X1
l�0

Al�2���
�l; (11)

with

Al�x� � 2�l ��l� 1=2�
l!�1=2� l�

Z x

0
dte�ttl�1=2: (12)

The convergence of the sum in Eq. (11) can be estab-
lished from the bounds

e�2�

l� 3=2
�2��l�3=2 <

Z 2�

0
dte�ttl�1=2 <

1

l� 3=2
�2��l�3=2;

(13)

and the fact that ��l� 1=2�=l!< 1 for l 
 1. [This is true
for l � 1 and can be proved by induction multiplying the
inequality by �l� 1=2�=�l� 1�< 1]. Consequently, the
sum converges at the same rate as

P
l�2. Note that as in

the case of the ground state of the quantum mechanical
double well, the first term is positive but all the remaining
terms are negative.
-3
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Obviously, Eq. (11) is not a power series in ��1 since the
‘‘coefficients’’ Al�2�� are � dependent. We can now obtain
the conventional asymptotic expansion by two different
methods. The first one consists in adding the tails to the
integrals in Eq. (12), or in other words by replacing the
incomplete gamma function by the gamma function. This
is a standard procedure in asymptotic expansions of inte-
grals [11].

One then obtains the asymptotic expansion

Z��� � �����3=221=2
X1
l�0

�2���l ���l� 1=2��2�l� 1=2�
l!�1=2� l�

:

(14)

The terms of this sum now grow like l!=2l and the series is
asymptotic. As all the signs are negative for l 
 1, the
Borel transform has singularities on the positive real axis.

It is instructive to rederive the expansion of Eq. (14) by
following the steps of lattice perturbation theory [1]. We
first set ! � gA in Eq. (6) and expand the action and the
Haar measure in powers of g. This leaves us with the
integral of a power series in g over the range 0 to 2�=g
for A. The asymptotic series (14) is then recovered by
letting the range of integration go to infinity. As the two
methods amount to calculate the coefficients with different
variables of integration, we obtain the same series, as can
be checked explicitly up to high order. We emphasize that
in lattice gauge theory with compact groups, there are no
large field contributions. It is only for practical reasons that
the tails of integration are added. In the one-plaquette
example, calculating Al�2�� instead of Al�1� is a very
minor problem; however, this is a technical challenge in
the case on a D-dimensional lattice.
-1 0 1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

.

.

.

.

.

W4
W3

W2

W1

1 PLAQUETTE

SI
G

N
IF

. D
IG

IT
S

 

log
10
ββ

FIG. 4. Number of correct significant digits as a function of �
at successive orders of the regular perturbative series equation
(14) for Z���. As the order increases from 1 to 15, the curves
(W1; W2; . . . ) get lighter. The thick solid line is
log10��

�1e�2�=Z�.
V. BEHAVIOR AT NEGATIVE �

From the integral representation equation (7), the
change � ! �� can be made by changing u ! �u and
multiplying by e2�. This implies

Z���� � e2�Z���; (15)

and

P��� � P���� � 2: (16)

A similar equation [7] can be found for a SU�2� pure gauge
model on a cubic lattice. Since lim�!�1P��� � 0, the
limits g2 ! 0 differ by 2 and a converging series in g
about 0 is impossible.

The discontinuity in the values of P near g2 � 0 appears
in a simpler model where the integration over SU�2� is
replaced by a sum over the two elements of its center:

Zcenter �
X

U�1

e���1��1=2�Re TrU� � 1� e�2�: (17)

This implies
054509
Pcenter �
2

1� e2�
: (18)

The center model satisfies Eqs. (15) and (16). Note that
Eq. (17) makes clear that Zcenter has an essential singularity
at g � 0. The asymptotic behavior of Pcenter at large j�j in
the complex plane is 2�1� e2� � . . .� if Re�< 0, and
2e�2� � . . . if Re�> 0, with Stokes lines running along
the imaginary axis.

This simplified example makes clear that the usual
perturbation series is obtained by making modifications
of order e�2� (the effect of the tails of integration). We
now proceed to estimate the order e�2� corrections to the
integral over the whole SU�2�.

VI. ACCURACY OF REGULAR
PERTURBATION THEORY

In the study of scalar models [9], we have shown that if
we plot the accuracy of perturbative series at successive
orders, an envelope setting the boundary of the accuracy
that can be reached at any order using the usual perturba-
tion theory appears. In the case of the quantum mechanical
double well, this envelope coincides very precisely with
the instanton effect. We expect the limitation in accuracy to
be of the general form gAe�B=g2 . For the model considered
here, the limitation of accuracy has this generic form and
we will see that the effect is of order ��1e�2�.

For � not too small, the low orders of the asymptotic
series given in Eq. (14) overestimate Z. As we let the order
increase, the series crosses the true value and then starts to
grossly underestimate the true value. At each order, there is
a special value of � for which the truncated series coin-
-4
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cides with the exact answer. This explains the ‘‘spikes’’
seen in Fig. 4.

If we assume that for a particular value of �, the con-
verging sum, Eq. (11) with the integrals running from 0 to
2�, truncated at order K is a good approximation of Z���,
then the error �Z��;K� made by using the regular pertur-
bative series, Eq. (14) with the integrals running from 0 to
1, truncated at the same order, is in good approximation

�Z��;K� ’ �����3=221=2
XK
l�0

�2���l ��l� 1=2�
l!�1=2� l�

�
Z 1

2�
dte�ttl�1=2: (19)

Integrating by parts, dropping terms of order ��1 and
summing the resulting series, we obtain

�Z��;K� � AKe
�2���12��3=2; (20)

with

AK � �
XK
l�0

��l� 1=2�
l!

: (21)

The coefficient AK slowly decreases when K increases. For
instance, A5 � 0:872 . . . , A10 � 0:624 . . . . In the limit of
large K, AK becomes zero. This comes from the resumma-
tion

X1
l�1

��l� 1=2�
l!

�
Z 1

0
dtt�3=2�1� e�t� � 2�1=2; (22)

which is exactly the l � 0 term. In practice, when the order
is not too large, ��1e�2� is a good order of magnitude
estimate for the envelope discussed above as can be seen in
Fig. 4.
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FIG. 5. Number of correct significant digits as a function of �
for a fixed cut tmax � 8. As the order increases from 1 to 15
(W1; W2; . . . ), the curves become lighter.
VII. MODIFIED MODEL WITH AN ARBITRARY
FIELD CUT

In this section, we consider a modified partition function
Z��; tmax� where the integration range of Eq. (10) takes a
fixed, �-independent value tmax. When tmax < 2�, the
Taylor series for the square root converges absolutely and
uniformly over the whole range of integration. It is thus
justified to interchange the sum and the integral and we
have

Z��; tmax� � �����3=221=2
X1
l�0

Al�tmax���l: (23)

The original partition function as expressed in Eq. (11) is
obtained by taking the limit tmax ! 2�. Since the integral
with upper boundary tmax is obviously continuous in that
limit and since we can use the l�2 suppression to prove the
continuity of the sum, the validity of Eq. (23) extends
which justifies Eq. (11). If tmax > 2�, the sum diverges
and the integral is ill defined. The regular perturbation
054509
series is obtained by taking the limit tmax ! 1. In the
graphs, we use the notation ‘‘WK’’ for the truncation of
the regular perturbative series at order K. One should
however keep in mind that, for instance in W7, the last
term is of order �1=��7�3=2 due to the prefactor ��3=2 in
Eq. (23).

Equation (23) is now a regular series in �1=��. It has a
finite radius of convergence. In order to calculate this
radius, we notice that for large l,

Rtmax
0 dttl gets most of

its contribution from the region between tmax�1� 1=l� and
tmax. Consequently, one can replace e�tt1=2 by e�tmaxt1=2max

without affecting the asymptotic behavior of the coeffi-
cients of the series. If we perform this change directly in
the integral equation (10), the integral can be calculated
explicitly. One can then conclude that Z��; tmax� has a
nonanalytical part proportional to �1� �tmax=2���3=2.
The series defined by Eq. (23) converges if �1=�� �
�2=tmax�. Numerical studies of the series with conventional
estimators confirm this argument. Note that the finite ra-
dius of convergence of the series equation (23) is not in
disagreement with the discontinuity of the original model
at 1=� � 0, because this series coincides with the original
model only when �1=�� � �2=tmax�.

Can a truncation of the series of Eq. (23) at order K be a
good approximation of the original integral equation (6)?
The answer depends on K, tmax, and �. It is clear that if K is
large enough and � slightly above 2=tmax, then one should
get a reasonable approximation. This statement is con-
firmed by Fig. 5 where the accuracy of Eq. (23) with tmax �
8 truncated at orders 1 to 15 is displayed as a function of �.
In this particular case, the values of � 
 4 are within the
radius of convergence. As the order increases, the spikes in
this region (the right half of Fig. 5) move toward 4. In
-5
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addition, there is another set of spikes, outside the radius of
convergence (on the left half of Fig. 5) and moving in the
opposite direction when the order increases.

A more global information regarding the location of the
spikes is displayed in Fig. 6. It shows that the ‘‘second
solution,’’ outside the radius of convergence, disappears
beyond some critical value of �. As the order in the weak
coupling increases, both solutions get closer to the tmax �
2� line.
VIII. OPTIMIZATION

In this section, we discuss an approximate method to
find the optimal value of tmax corresponding to a given
order K and a given value of �. In a general situation, we
do not know accurately the value of the quantity that we are
calculating (the equivalent of Z here). Consequently, we
need to find an approximation that allows us to consistently
estimate this quantity and the way its order K approxima-
tion changes with the field cutoff in order to impose an
approximate matching condition. For this purpose, we will
use the strong coupling expansion (power series in �)
which provides information complementary to the weak
coupling. Now, the crucial point is that the field cut allows
us to control the �1=�� in the integral equation (10),
because (except in the exponential) all the factor �1=��
appear together with a factor t. In other words, except for
the exponential, it is a function of t=�.

We would like to match the strong coupling expansion

Z��� � 1� �� �5=8��2 � . . . (24)

discussed in Sec. III with the truncated expansion of
Eq. (23) which can be rewritten as
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FIG. 6. Location of the exact matching between the series
equation (23) at order 6, 7, and 8, and Z��� in the �-tmax plane.
The dashed lines represent the solution within the radius of
convergence and the empty circles the other solution.
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��3=22
XK
l�0

��l� 1=2�
l!�1=2� l�

Z tmax=�

0
dse�s��s=2�l�1=2:

The control of s � t=� can be achieved by imposing that
tmax=� is approximately constant. We can then improve
order by order in � by setting

�tmax=�� � c0�K� � c1�K��� . . . : (25)

The only nontrivial part is to solve the zeroth order (in �)
equation

FK�c0�K�� � 1; (26)

with

FK�x� � �4����3=2
XK
l�0

��l� 1=2��x=2�l�3=2

l!�l� 3=2�
: (27)

We have checked that for K going from 1 to 40, Eq. (26)
has exactly two solutions on the positive real axis with one
solution on each side of 2. As K increases, the 2 roots get
closer. They should coalesce at 2 in the large K limit. This
follows from the fact that F1�2� � 1 and F0

1�2� � 0 [as
can be shown by using the same method as for Eq. (22)].
The higher order coefficients cl�K� corresponding to each
of the two solutions at order 0 can then be found by solving
linear equations. This procedure provides an approximate
value of the optimal tmax which apparently converges
toward the correct numerical value. This is illustrated in
Fig. 7. If we plug the two approximate values of tmax of
Eq. (25) in Eq. (23) truncated at order K, we obtain
approximate values of Z���. The accuracy of this proce-
dure is displayed in Fig. 8 in the case K � 6. It appears
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ββ
0

ββ
3 ββ
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t m
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FIG. 7. Approximate locations in the ��; tmax� plane of the
matching between the order 6 weak coupling expansion and
Z���. The two solid lines are the two numerical solutions at that
order (as in Fig. 6). The dashed lines (empty circles) represent
the first (second) approximate solutions at order 0; . . . ; 4 in �.
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clearly that the first solution (the one within the radius of
convergence with tmax < 2�) is significantly more accurate
than the other solution (with tmax > 2�). Similar features
were observed for K up to 20.

We can now compare the accuracy of the method pro-
posed here with the weak and strong coupling expansions.
The case K � 6 is displayed in Fig. 9. In the weak coupling
region (�> 10) the accuracy of our procedure merges with
the regular perturbation series. In the strong coupling
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FIG. 9. Significant digits obtained from Eq. (23) truncated at
order 6 using the first solution for tmax=� at order 0 to 3
compared to the weak coupling expansion at order 6 (dotted
line W6) and the strong coupling expansion at order 0 to 2
(empty circles SC).
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region (�< 0:1), our procedure is more accurate than the
regular expansion in powers of � by several significant
digits. As � ! 0, the accuracy of our procedure with
tmax=� determined at order m in � increases at the same
rate as the regular strong coupling expansion at order m in
� maintaining the difference in accuracy approximately
constant. In the intermediate region where none of the
conventional expansions work well (except at the pertur-
bative spike), our procedure maintains a very good accu-
racy interpolating smoothly between the two regimes.
IX. ASYMPTOTIC BEHAVIOR OF cl�K�

In this section, we study empirically the asymptotic
behavior of the coefficients cl�K� appearing in the expan-
sion of tmax=� Eq. (25). At fixed K large l, Fig. 10 suggests
that

cl�K� / �G�K��l: (28)

In addition, it appears that G�K� decreases with K approxi-
mately like 1=K. This behavior implies a finite radius
convergence G�K��1 for the � expansion in Eq. (25),
increasing linearly with K. This is good news for the
interpolation between the weak and strong coupling region
since as we increase the weak order K, we increase the
range of validity in �.

The large-K behavior of cl�K� has also been studied
numerically. The results for l up to 5 are shown in Fig. 11.
At fixed l large K, the linear fits used in Fig. 11 suggest that

c0�K� ’ 2�O�1=K�; (29)

and

cl�K� / K�l�1�%�l�; (30)

for l > 0, with %�l� small. This behavior is expected, since
as the order increases, we are getting close to the exact
expansion equation (11) with tmax � 2� (c0 � 2; cl � 0
for l > 0). The values of %�l� decrease when we reduce the
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FIG. 10. lnjcl�K�j versus l for K � 2; 6; 10.
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set of points fitted to larger values of K. If we use K � 35
to 45 for the fit, we have approximately %�l� ’ l=10.

X. CONCLUSIONS

We have shown that for the one-plaquette model, the
introduction of a properly chosen field cut can provide a
high accuracy in regions where the usual perturbative
method is not accurate. The strong coupling expansion
provides an efficient way to determine the optimal cut
and interpolate between the small and the large � regions.
Apparently, the accuracy of the calculations improves
whenever we increase the order in either the weak or the
strong coupling expansion. Given these positive results, we
are compelled to implement the method in the case of
lattice gauge theory on a D-dimensional cubic lattice.
Two steps are necessary. First, we need to define the theory
with a field cut [the analog of Eq. (10) with 2� replaced by
tmax]. Second, we need to expand relevant quantities such
as P for the modified theory in powers of 1=� [the analog
of Eq. (23)]. Note that in the calculation of P using a
perturbative series, the complex zeroes of Z will play an
important role. This question remains to be examined in
detail.

The implementation of the first step is straightforward.
One can insert 1 in the partition function in the following
way:

1 �
Y
p

Z tmax

0
dtp��1� �1=N�ReTr�Up� � tp�: (31)

If we could perform the integration over the Ulink, we
054509
would get an effective theory for the new variables tP.
Note that the procedure is gauge invariant since TrUp is.
The ‘‘size’’ of a configuration can be defined in several
ways. For instance, we could use the value of maxpftpg or
�1=Np�

P
ptp to decide if we have a large or a small field

configuration. We can then order the configurations ac-
cording to the chosen indicator. Given a (sufficiently large)
set of Monte Carlo configurations, one can define the
expectation values with a cut by averaging only over
configurations for which the chosen indicator is below a
certain value. The correlations between the two size in-
dicators mentioned above are now being studied for SU�3�
in 4 dimensions.

The implementation of the second step requires tech-
nologies that are now being developed in the scalar case.
As it seems only possible to make analytical calculations
for small or large field cuts, numerical methods seem
unavoidable. For the purpose of independent verification,
it is important to consider different methods. We are pres-
ently working on three different approaches:
(1) T
-8
he conventional approach [1] but with the Aa
'

having a finite range of integration. This type of
approach works well in the scalar case [20].
(2) T
he stochastic approach [4] where Aa
' is expanded

as power series in 1=�. For the lowest order field,
the implementation of a cut is obvious but not for
higher order fields. This problem is being consid-
ered with simple examples.
(3) F
its from numerical data at large �. This method
[21] allowed to extract at least 2 coefficients of
conventional perturbation. As we mentioned above,
it is easy to implement the field cut with
Monte Carlo methods. The advantage of this method
is that it does not require the use of the Campbell-
Baker-Hausdorff (for a short review see Ref. [22])
formula.
We expect that the use of theses three methods will allow
us to construct perturbative series with a finite radius of
convergence as above. We hope that this radius of con-
vergence will be sufficiently large to reach the scaling
window. Ultimately, we expect to be able to replace the
numerical calculation of the coefficients by approximate
analytical formulas, as it seems possible to do in the case of
the anharmonic oscillator [23].
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