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Thermodynamics of two flavor QCD to sixth order in quark chemical potential
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We present results of a simulation of two flavor QCD on a 163 � 4 lattice using p4-improved staggered
fermions with bare quark mass m=T � 0:4. Derivatives of the thermodynamic grand canonical partition
function Z�V; T;�u;�d� with respect to chemical potentials �u;d for different quark flavors are calculated
up to sixth order, enabling estimates of the pressure and the quark number density as well as the chiral
condensate and various susceptibilities as functions of �q � ��u ��d�=2 via Taylor series expansion.
Furthermore, we analyze baryon as well as isospin fluctuations and discuss the relation between the radius
of convergence of the Taylor series and the chiral critical point in the QCD phase diagram. We argue that
bulk thermodynamic observables do not, at present, provide direct evidence for the existence of a chiral
critical point in the QCD phase diagram. Results are compared to high temperature perturbation theory as
well as a hadron resonance gas model.
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1The 2nd order critical point in the QCD phase diagram is
expected to belong to the universality class of the 3-dimensional
Ising model.
I. INTRODUCTION

The thermodynamics of strongly interacting matter
has been studied extensively in lattice calculations at
vanishing quark chemical potential, �q (or baryon �B �

3�q) [1]. Current lattice calculations strongly suggest
that the transition from the hadronic low temperature
phase to the high temperature phase is a continuous, non-
singular but rapid transition happening in a narrow tem-
perature interval around the transition temperature
T0 ’ 170 MeV. Recent advances in the development of
techniques for lattice calculations at nonzero quark chemi-
cal potential �q [2–6] have also enabled the first explor-
atory studies of the QCD phase diagram and bulk
thermodynamics in a regime of small �q, i.e., for �q=T &

1 and T * 0:8T0.
Guided by phenomenological models which suggest that

at low temperature and nonzero quark chemical potential
the low and high density regions will be separated by a 1st
order phase transition, it has been speculated [7] that a 2nd
order phase transition point, the chiral critical point, exists
in the interior of the QCD phase diagram, at which the line
of 1st order transitions ends. For smaller values of �q=T
the low and high temperature regime will then be only
separated by a crossover transition. The first exploratory
studies at nonzero quark chemical potential indeed gave
evidence for such a chiral critical point [2], although sub-
sequent investigations made clear that at present any quan-
titative statement about the location [8,9] and maybe even
about the existence of such a chiral critical point is pre-
mature. The first calculations of the baryonic contribution
to the pressure in strongly interacting matter [3,10–14]
also suggested that the transition and the thermodynamic
behavior in the high temperature phase resemble the pic-
ture found previously at zero net baryon density. In this
case (�q � 0) the transition occurs in a narrow tempera-
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ture interval. Beyond a region T 2 	T0; 1:5T0
 where there
are large deviations from ideal gas behavior, thermody-
namic observables rapidly approach the high temperature
ideal gas limit; for instance, the pressure agrees with the
Stefan-Boltzmann prediction to within �20%. In the low
temperature hadronic phase it has been found that a hadron
resonance gas model provides an astonishingly good de-
scription of basic features of the T and �q dependence of
thermodynamic observables [15].

Maybe one of the largest changes compared to the
thermodynamics at �q � 0 has been observed in the tem-
perature dependence of the quark number and isovector
susceptibilities [11]. For �q�0 these observables show a
similar temperature dependence. They have been found to
change rapidly at the transition temperature but continue to
increase monotonically at larger temperatures [16–20].
For �q>0, however, the quark number susceptibility de-
velops a pronounced peak at the transition temperature
while the isovector susceptibility continues to show a
temperature dependence similar to that found at �q � 0.
Such a behavior, indeed, is expected to occur in QCD in the
vicinity of a 2nd order phase transition point [21].
Susceptibilities thus may provide the most direct evidence
for the existence of a 2nd order phase transition in the QCD
phase diagram. Finding the characteristic volume and/or
quark mass dependent universal scaling behavior1 of sus-
ceptibilities would undoubtedly establish the existence of a
chiral critical point.

In this paper we want to extend our previous study of
thermodynamics at nonzero quark chemical potential
[3,11], which is based on a Taylor series expansion around
-1  2005 The American Physical Society
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�q � 0, to the 6th order.2 Going to higher orders in the
expansion is of particular importance for the analysis of
higher derivatives of the density of the grand potential
expressed in units of the temperature,3 ��V; T;�� �
�VT3��1 lnZ, i.e., for an analysis of generalized suscepti-
bilities. Accordingly our main emphasis will be to further
analyze the properties of quark number and isovector
susceptibilities, relate them to diagonal and nondiagonal
flavor susceptibilities, calculate the chiral susceptibility,
and discuss to what extent the pronounced peaks found
in some of these susceptibilities give evidence for the
existence of a chiral critical point in the QCD phase
diagram.

This paper is organized as follows. We start in the next
section by summarizing basic results on QCD thermody-
namics at nonzero quark chemical potential obtained in
high temperature perturbation theory [22,23] and expecta-
tions based on properties of the hadron resonance gas
model at low temperature [24,25]. In Sec. III we present
results on the calculation of various thermodynamic ob-
servables obtained from a Taylor expansion up to 6th order
in�q=T. In Sec. IV we analyze the convergence properties
of the Taylor series. Section V is devoted to a discussion of
the reweighting approach to QCD thermodynamics at
�q � 0 and its comparison to the Taylor expansion ap-
proach. In Sec. VI we give our conclusions. An Appendix
contains details on the Taylor expansion of various observ-
ables studied here.

II. THERMODYNAMICS AT LOW AND HIGH
TEMPERATURE

In this section we want to briefly discuss the density or
chemical potential dependence of thermodynamic observ-
ables in the asymptotic high temperature regime as well as
at low temperatures in the hadronic phase of QCD. On the
former we have information from high temperature pertur-
bation theory which recently has been extended to
O�g6 lng� [23] also for nonvanishing quark chemical po-
tentials �f, f � u; d; . . . , and as for �f � 0 [26] is thus
now known to all perturbatively calculable orders.
Although a comparison of the perturbative expansion
with lattice calculations at �f � 0 suggests that quantita-
tive agreement cannot be expected at temperatures close to
the transition temperature, T0, we can gain useful insight
into the structure of the Taylor expansion used in lattice
calculations to study thermodynamics at �f � 0.

In the low temperature hadronic phase a systematic
QCD based analysis is difficult and one generally has to
2Some results on the radius of convergence have been reported
recently in an 8th order Taylor expansion for two flavor QCD
[20].

3We will call this in the following the grand potential although
conventionally the extensive quantity VT4� is called the grand
potential.
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rely on calculations within the framework of effective low
energy theories or to phenomenological approaches. Here
we will focus on a discussion of the properties of a hadron
resonance gas model, which recently has been compared to
lattice results at nonzero quark chemical potential quite
successfully [15] and which also is known to describe
experimental results on the chemical freeze-out of particle
ratios observed in heavy ion collisions rather well [25].

A. High temperature perturbation theory

In the infinite temperature limit the grand potential of
QCD,4 ��T;�� � lnZ�V; T;��=VT3, which is equivalent
to the pressure in units of T4, approaches that of a free
quark-gluon gas [Stefan-Boltzmann (SB) gas],
pSB

T4 � ��0��T;��
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where the first term gives the contribution of the gluon
sector and the sum over the fermion sector extends over nf
different flavors. In Eq. (2.1) we only gave the result for
massless quarks and gluons. Also in the following we will
restrict our discussion of perturbative results to the case of
QCD with massless quarks. In this section we also use� to
denote the entire set of nf different chemical potentials
��u;�d; . . .�. We also introduce the shorthand notation
�2 �

P
f��f=T�

2.
The additive structure of contributions arising from

gluons and the different fermion flavor sectors persists at
O�g2�. Only starting at O�g3� is a coupling among the
different partonic sectors introduced. At this order it is
induced through the nonvanishing electric (Debye) mass
term mE [23],
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(2.3)
The electric mass term introduces a dependence of a given
quark flavor sector on changes in another sector, i.e., the
quark number density in a flavor sector ‘,
4We suppress here the volume dependence of �. Perturbative
calculations are performed in the thermodynamic limit. The
volume dependence, however, has to be analyzed more carefully
in lattice calculations.
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5It has also recently been pointed out in the context of a
large-Nc expansion that flavor nondiagonal contributions to the
free energy are suppressed by O�1=N2

c� [27].
6This definition of the isovector chemical potential differs

from that used in [11] by a factor of 2.
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n‘
T3 �

@��T;��
@�‘=T

; (2.4)

depends on the other quark chemical potentials only at
O�g3�. This is also reflected in the structure of diagonal
and nondiagonal susceptibilities [4,16–20].
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(2.5)

The diagonal susceptibilities are nonzero in the ideal gas
limit and, moreover, the leading order perturbative term
stays nonzero also in the limit of vanishing quark chemical
potential,
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�O�g2�: (2.6)

The nondiagonal susceptibilities, however, receive nonzero
contributions only at O�g3�. The leading perturbative con-
tribution is positive and inversely proportional to the elec-
tric screening mass. However, it vanishes in the limit of
vanishing chemical potentials. In this case the first nonzero
contribution arises at O�g6 ln1=g� [22],
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(2.7)
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144�6
g6 ln1=g: (2.8)

As we are going to discuss lattice calculations at nonzero
chemical potential which are based on a Taylor expansion
of the grand potential � in terms of �f=T it also is
instructive to consider a Taylor expansion of the perturba-
tive series for �. While perturbative terms up to O�g2�
only contribute to the series up to O��4� higher order terms
in the expansion start receiving nonvanishing contributions
at O�g3�. These again arise from the electric mass term,
i.e., from an expansion of mE=gT in powers of �2;
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Note that the expansion coefficients up to and including
O��4� are positive. Starting at O��6� they alternate in
sign. From the sign of the �6 term it follows via
Eq. (2.5) that the leading perturbative contribution to the
expansion coefficient of diagonal as well as nondiagonal
054508
susceptibilities at O��4� is negative, with the latter being
an order of magnitude smaller.5

Rather than discussing the thermodynamics of QCD at
nonvanishing quark chemical potential in terms of chemi-
cal potentials related to quark numbers in different flavor
channels, it is convenient to introduce chemical potentials
which are related to conserved quantum numbers consid-
ered at low energy, i.e., quark or baryon number and
isospin. In the case of two flavor QCD, which we are going
to analyze in our lattice calculations, we thus introduce
also the quark chemical potential �q � ��u ��d�=2 and
the isovector chemical potential6 �I � ��u ��d�=2. In
analogy to Eq. (2.5) we then can introduce quark number
and isovector susceptibilities,

�q
T2 �

@2�

@��q=T�
2 � 2��uu � �ud�;

�I
T2 �

@2�

@��I=T�
2 � 2��uu � �ud�;

(2.10)

where in the second equality we have assumed degenerate
�u; d�-quark masses.

B. Low temperature hadron resonance gas

The success in describing particle abundance ratios
observed in heavy ion experiments at varying beam ener-
gies in terms of equilibrium properties of a hadron reso-
nance gas model [25] begs a comparison of this model for
the low temperature hadronic phase with lattice QCD
calculations. Indeed this led to astonishingly good agree-
ment [15].

In the hadron resonance gas (HRG) model it is assumed
that for T < T0 the QCD partition function can be approxi-
mated by that of a noninteracting gas of hadron resonances,
either bosonic mesons or fermionic baryons. This, how-
ever, does not mean that interactions in dense hadronic
matter have been ignored; in the spirit of Hagedorn’s boot-
strap model [24] the inclusion of heavy resonances as
stable particles also takes care of the interaction among
the hadrons in the dense gas at low temperature.

The partition function of the hadron resonance gas may
be split into mesonic and baryonic contributions,

lnZHRG�T; V;�q;�I� �
X

i2mesons

lnZM
mi
�T; V;�q;�I�

�
X

i2baryons

lnZB
mi
�T; V;�q;�I�;

(2.11)

where
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lnZM=B
mi �T; V�q;�I� � 
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dkk2 ln�1
 zie�"i=T�;

(2.12)

with energies "2i � k2 �m2
i and fugacities

zi � exp	�3Bi�q � 2I3i�I�=T
: (2.13)

Here Bi is the baryon number and I3i denotes the third
component of the isospin of the species in question. The
upper sign in Eq. (2.12) refers to bosons, and the lower sign
to fermions. Note that with this convention antiparticles
must be counted separately in Eq. (2.11) with fugacity z�1

i ,
and self-conjugate species such as�0; "0 have z � 1. If the
logarithms are expanded in powers of fugacity, the integral
over momenta, k, can be performed. This yields
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where the upper factor in braces applies to bosons and the
lower to fermions, and K2 is a modified Bessel function.
For large argument, i.e., for mi � T the Bessel function
can be approximated by K2�x� �

������������
�=2x

p
e�x	1� 15=8x�

O�x�2�
. Terms with ‘ � 2 in the series given in Eq. (2.14)
thus are exponentially suppressed. For temperatures and
quark chemical potentials less than a typical scale of about
200 MeV it generally suffices to keep the first term in the
sum appearing in Eq. (2.14). The only species for which
this step would need further justification is the pion; clearly
for realistic pion masses more care must be taken when
evaluating the sum over ‘. This, however, does not influ-
ence the�q dependence of the hadron resonance gas; Bi �
0 for mesons and their contribution thus is independent of
�q. At �I � 0 one readily derives

p�T;�q�

T4
�

1

VT3 lnZHRG
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3�q

T

�
; (2.15)

with G�T� � �VT3��1P
i2mesons lnZ

M
mi

and F�T� given by
the Boltzmann approximation to the fermion partition
function of baryons,
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: (2.16)

Note that each term in the sum for F now counts both
baryon and antibaryon. As the meson sector of the partition
functions is independent of �q the mesonic component
does not contribute to �q,

�q
T2 � 9F�T� cosh

3�q

T
: (2.17)
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Similarly, at�I � 0 we find for the isovector susceptibility
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where again only in the baryon sector ‘ > 1 terms have
been neglected.

The resonance gas model in the (partial) Boltzmann
approximation given by Eqs. (2.15), (2.16), (2.17), (2.18),
and (2.19) leads to simple predictions for the dependence
of thermodynamic observables on the quark chemical po-
tential �q. In particular, it predicts that ratios of the density
dependent part of thermodynamic observables are insensi-
tive to details of the hadronic mass spectrum. Nor do they
depend explicitly on temperature, but instead only on the
ratio �q=T. For instance, one finds

p�T;�q� � p�T; 0�

�qT2 �
cosh�3�q=T� � 1

9 cosh�3�q=T�
;

nq
�q�q

�
T

3�q
tanh

�
3�q

T

�
:

(2.20)

Similarly ratios of Taylor expansion coefficients of ther-
modynamic quantities, X, are temperature and spectrum
independent. For an observable X, of generic form X �

GX � FX cosh�3�q=T�, the expansion in �q=T is given by

X �
X1
n�0

cXn �T���q=T�n; (2.21)

with

cX0 � GX � FX; cX2n �
9n

�2n�!
FX; (2.22)

and cX2n�1 � 0. Hence, ratios are given by

cX2n�2

cX2n
�

9

�2n� 2��2n� 1�
for n � 1: (2.23)

These ratios as well as ratios of physical observables
calculated within the resonance gas approximation will
be compared to corresponding lattice results in the
following.

III. TAYLOR EXPANSION FOR TWO FLAVOR QCD

The basic concepts of our Taylor expansion approach to
QCD thermodynamics at nonzero quark chemical potential
have been introduced in [11] where observables have been
analyzed up to O��4

q�. Here we extend the analysis up to
-4



TABLE I. Sample size at each * value.

* T=Tc #(2,4) #(2,4,6) * T=Tc #(2,4) #(2,4,6)

3.52 0.76 1000 3500 3.70 1.11 800 2000
3.55 0.81 1000 3500 3.72 1.16 500 2000
3.58 0.87 1000 3500 3.75 1.23 500 1000
3.60 0.90 1000 3800 3.80 1.36 500 1000
3.63 0.96 1000 3500 3.85 1.50 500 1000
3.65 1.00 1000 4000 3.90 1.65 500 1000
3.66 1.02 1000 4000 3.95 1.81 500 1000
3.68 1.07 800 3600 4.00 1.98 500 1000
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the sixth order in �q=T with significantly improved
statistics.

Our calculations have been performed for two flavor
QCD on a 163 � 4 lattice with bare quark mass ma �
0:1 using Symanzik-improved gauge and p4-improved
staggered fermion actions. These parameters are identical
to those used for our analysis of thermodynamic observ-
ables at nonzero chemical potential up to O��4

q� [3,11].
The simulation uses the hybrid R molecular dynamics
algorithm, and measurements were performed on equili-
brated configurations separated by five units of molecular
dynamics time ). The gauge couplings,* � 6=g2, used for
our calculations cover the interval [3.52,4.0], which corre-
sponds to a temperature range T=T0 2 	0:76; 1:98
, where
T0 is the pseudocritical temperature at� � 0 for which we
use7 *c � 3:65. This value is used to define the tempera-
ture scale T=T0. The number of configurations generated at
each * value is given in Table I. The third and seventh
columns give the sample sizes used in [11], where coef-
ficients up to n � 4 were calculated. The numbers of addi-
tional configurations generated for the present study of
expansion coefficients up to n � 6 are listed in the fourth
and eighth columns. It can be seen that we have increased
our statistics in the hadronic phase by a factor 4–5 and in
the plasma phase by a factor 3.

For the calculation of various operator traces we use the
method of noisy estimators. We generally found that ex-
pectation values involving odd derivatives of ln detM with
respect to � are noisier and require averages over more
random vectors than needed to estimate expectation values
involving only even derivatives. Odd derivatives have to
appear in even numbers in an expectation value in order for
this to be nonzero. Such expectation values behave very
much like susceptibilities and receive their largest contri-
butions in the vicinity of T0. Still their total contribution to
the expansion of, e.g., the pressure is found to be small up
to O��4�. It only becomes sizable at O��6�. For these
reasons we used 100 stochastic noise vectors to estimate
operator traces on each configuration for * 2 	3:60; 3:68
.
For other * values 50 noise vectors were found to suffice.

A. Pressure, quark number density, and susceptibilities

To start the discussion of lattice results on thermody-
namics of two flavor QCD for small values of the quark
chemical potential we will present results obtained from a
Taylor expansion of the grand potential ��T;�u;�d� �

��T;�q ��I;�q ��I� and some of its derivatives. We
will consider expansions in terms of�q=T at fixed, vanish-
ing �I. The pressure is then given by

p

T4 � ��T;�q;�q� �
X1
n�0

cn�T�
��q

T

�
n
: (3.1)
7In [3] we determined as critical coupling *c � 3:649�2�. Our
current analysis favors a slightly larger value, *c � 3:655�5�.
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CP symmetry implies that the series is even in �q, so the
coefficients cn are nonzero only for n even, and are defined
as

cn�T� �
1

n!
@n�

@��q=T�
n









�q�0
�

1

n!
N3
)

N3
-

@n lnZ
@��N)�

n









��0
;

(3.2)

where in the second equality we have explicitly specified
that the calculations have been performed on a N3

- � N)
lattice with dimensionless quark chemical potential � �

�qa. Z denotes the lattice regularized partition function
for two flavor QCD. Similarly we calculate the quark
number density

nq�T;�q�

T3
�
@��T;�q;�q�

@�q=T

� 2c2

��q

T

�
� 4c4

��q

T

�
3
� 6c6

��q

T

�
5
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(3.3)

as well as the quark and isovector susceptibilities using
Eq. (2.10),

�q�T;�q�

T2
� 2c2 � 12c4

��q

T

�
2
� 30c6

��q

T

�
4
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(3.4)

�I�T;�q�

T2
� 2cI2 � 12cI4

��q

T

�
2
� 30cI6

��q

T

�
4
� � � � ;

(3.5)

where

cIn �
1

n!

@n��T;�q ��I;�q ��I�

@��I=T�2@��q=T�n�2









�q�0;�I�0
: (3.6)

Explicit expressions for c2, c4, c6 and cI2, cI4, and cI6 are
given in the Appendix. Note that the expansion for the
quark number susceptibility �q given in Eq. (3.4) is a
derivative of the grand potential at �I � 0 and thus has
the same radius of convergence as that of the pressure and
-5



TABLE II. Taylor expansion coefficients cn�T� and cIn�T�.

T=Tc c2 c4 � 10 c6 � 102 cI2 cI4 � 10 cI6 � 102

0.76 0.0243(19) 0.238(61) �1:12�121� 0.0649(6) 0.098(5) 0.23(9)
0.81 0.0450(20) 0.377(64) 1.98(141) 0.0874(8) 0.140(6) 0.44(10)
0.87 0.0735(23) 0.506(68) 1.69(155) 0.1206(11) 0.216(8) 0.60(13)
0.90 0.1015(24) 0.765(72) 2.06(159) 0.1551(14) 0.302(12) 0.83(18)
0.96 0.2160(31) 1.491(135) 4.96(260) 0.2619(21) 0.564(23) 1.47(37)
1.00 0.3501(32) 2.133(121) �5:00�359� 0.3822(26) 0.839(28) 0.26(49)
1.02 0.4228(33) 2.258(118) �4:49�312� 0.4501(27) 0.909(28) 0.02(44)
1.07 0.5824(23) 1.417(62) �5:73�158� 0.5972(21) 0.741(17) �0:75�26�
1.11 0.6581(20) 0.951(39) �1:65�62� 0.6662(18) 0.618(11) �0:18�10�
1.16 0.7091(15) 0.763(24) �0:31�26� 0.7156(14) 0.564(6) �0:03�4�
1.23 0.7517(16) 0.667(23) �0:44�23� 0.7573(13) 0.527(5) �0:06�3�
1.36 0.7880(11) 0.572(12) �0:09�11� 0.7906(9) 0.495(3) �0:03�1�
1.50 0.8059(10) 0.539(10) �0:17�7� 0.8076(7) 0.477(2) �0:05�1�
1.65 0.8157(8) 0.499(7) �0:13�8� 0.8169(7) 0.461(2) �0:05�1�
1.81 0.8203(8) 0.497(7) �0:11�6� 0.8218(6) 0.452(1) �0:05�1�
1.98 0.8230(7) 0.473(6) 0.03(4) 0.8250(6) 0.441(1) �0:03�1�
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quark number density given by Eqs. (3.1) and (3.3). The
expansion coefficient cI2 also defines the first term in an
expansion of the pressure at nonzero isospin. This series
may have a different radius of convergence [28]; indeed,
since the lightest particle carrying nonzero isospin I3 in the
hadronic phase is the pion, we might expect the expansion
to break down in the chiral limit for arbitrarily small �I.

The coefficient c0�T� gives the pressure in units of T4 at
vanishing baryon density and can be calculated using the
integral method [29]. It is the only expansion coefficient
which also requires lattice calculations at zero temperature.
Higher order terms can be calculated directly from gauge
field configurations generated on finite temperature latti-
ces. They, however, require additional derivatives of
ln detM, where M is the quark matrix. They are evaluated
at fixed temperature, i.e., fixed gauge coupling *, by
calculating combinations of traces of products of
@mM=@�m and M�1 (see Appendix).

Results for the Taylor expansion coefficients are listed in
Table II. In Fig. 1 we plot cn and cIn for n � 2, 4, and 6 as
functions of T. A comparison with Figs. 3 and 8 of
Ref. [11] reveals the improvement in statistics of the
current study. The same features are apparent: namely c2
and cI2 both rise steeply across T0 with cI2 > c2 as is
obvious from the explicit expressions given for these co-
efficients in the Appendix; they reach a plateau at approxi-
mately 80% of the value nf=2 predicted in the SB limit, i.e.,
for free massless quarks; c4 rises steeply to peak at T ’ T0

before approaching its SB limit value nf=4�2 from above,
whereas the peak in cI4 is much less marked.8
8The difference is largely due to the dominance of the dis-
connected term h�@2 ln detM=@�2�2i � h@2 ln detM=@�2i2

which contributes to c4 with a coefficient 3 times that of its
contribution to cI4.
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As can be seen in Table II in the high temperature phase
the 6th order expansion coefficients generally are an order
of magnitude smaller than the 4th order coefficients. In the
low temperature phase they are still a factor 3–5 smaller.
As a consequence the 6th order contributions to the pres-
sure and quark number density are small for �q=T � 1.
This is seen in Fig. 2 which shows 'p=T4 � 	p�T;�q� �

p�T; 0�
=T4 and nq=T3 in the range 0 � �q=T � 1. Here
we also show as dashed lines results obtained from a Taylor
expansion which includes only terms up to 4th order in
0.8 1 1.2 1.4 1.6 1.8 2

T/T0

-0.1

FIG. 1 (color online). The Taylor expansion coefficients cn, cIn
for n � 2, 4, and 6 as functions of T=T0.
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FIG. 2 (color online). The �q-dependent contribution to the
pressure (left) and the quark number density (right) as functions
of T=T0 for various values of the quark chemical potential
calculated from a Taylor series in 6th order. Also shown as
dashed lines are results from a 4th-order expansion in �q=T.
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�q=T. This suggests that the expansion for the pressure
and quark number density is converging rapidly for
�q=T < 1. Even for �q=T � 1 the differences between
the 4th and 6th-order results are small and partly influenced
by statistics. We also note that in the high temperature
regime, T * 1:5T0, our results are compatible with the
continuum extrapolated (quenched) results obtained with
an unimproved staggered fermion action [13]. This sup-
ports the expectation that deviations from the continuum
limit are strongly suppressed with our improved action.

Next we turn to a discussion of quark number and
isovector susceptibilities which are shown in Fig. 3. They
have been obtained using Eqs. (3.4) and (3.5). Again we
show the corresponding 4th-order results as dashed lines in
these figures. These lines agree with our old results shown
as Fig. 9 of [11]. The effect of the new term proportional to
c6�T� is to shift the apparent maximum in �q�T�, arising
from the sharply peaked �4

q contribution proportional to
c4�T�, to lower temperature. This suggests that the transi-
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FIG. 3 (color online). The quark number susceptibility �q=T2

(left) and isovector susceptibility �I=T2 (right) as functions of
T=T0 for various �q=T ranging from �q=T � 0 (lowest curve)
rising in steps of 0.2 to �q=T � 1, calculated from a Taylor
series in 6th order. Also shown as dashed lines are results from a
4th-order expansion in �q=T.
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tion temperature at nonzero �q determined from the peak
position of susceptibilities indeed moves to temperatures
smaller than the transition temperature T0 determined at
�q � 0. The figure, however, also shows that at least for
T < T0 the 6th-order contribution can be sizable and still
suffers from statistical errors. Better statistics and the con-
tribution from higher orders in the Taylor expansion thus
will be needed to get good quantitative results for suscep-
tibilities in the hadronic phase.

There is also a pronounced dip in �q�T� for T=T0 ’ 1:05
which, together with the increased error bars makes the
presence of a peak in �q less convincing than it is without
the inclusion of the �6

q contribution. However, the error
bars also reflect the problem we have at present in deter-
mining this additional contribution with sufficient accu-
racy to include it in the calculation of higher order
derivatives of the partition function. On the other side,
Fig. 3 confirms that a significant peak is not present in
the isovector channel. In fact, if a critical endpoint exists in
the �T;�� plane of the QCD phase diagram, this is ex-
pected to belong to the Ising universality class, implying
that exactly one 3D scalar degree of freedom becomes
massless at this point. Since both (  and ( /0 are iso-
scalar and Galilean scalars, both are candidates to inter-
polate this massless field, and hence we can expect
divergent fluctuations in both quark number and chiral
susceptibilities at this point. The latter will be discussed
in Sec. III C.

The difference in the temperature dependence of �q and
�I also reflects the strong correlation between fluctuations
in different flavor components. This will become clear
from our discussion of flavor diagonal and nondiagonal
susceptibilities in the next section.

B. Flavor diagonal and nondiagonal susceptibilities

Using the relation between quark number and isovector
susceptibilities on the one hand and diagonal and non-
diagonal susceptibilities on the other hand [Eq. (2.10)]
we also can define expansions for the latter,

�uu�T;�q�

T2
� 2cuu2 � 12cuu4

��q

T

�
2
� 30cuu6

��q

T

�
4
� � � � ;

(3.7)

�ud�T;�q�

T2
� 2cud2 � 12cud4

��q

T

�
2
� 30cud6

��q

T

�
4
� � � � ;

(3.8)

with cuun � �cn � cIn�=4 and cudn � �cn � cIn�=4.
As discussed in the previous section the expansion co-

efficients cn and cIn become quite similar at high tempera-
ture. This was to be expected from the discussion of the
structure of the high temperature perturbative expansion
given in Sec. II A as cn and cIn differ only by contributions
coming from nondiagonal susceptibilities, which enter
-7



TABLE III. Taylor expansion coefficients cuun �T� and cudn �T�.

T=Tc cuu2 � 102 cuu4 � 102 cuu6 � 102 cud2 � 102 cud4 � 102 cud6 � 102

0.76 2.23(6) 0.84(16) �0:22�32� �1:015�42� 0.35(14) �0:34�29�
0.81 3.31(6) 1.29(17) 0.60(37) �1:060�45� 0.59(15) 0.38(33)
0.87 4.85(8) 1.81(18) 0.57(42) �1:177�46� 0.72(16) 0.27(36)
0.90 6.41(9) 2.67(20) 0.72(44) �1:339�45� 1.16(16) 0.31(36)
0.96 11.95(12) 5.14(39) 1.61(74) �1:148�45� 2.32(29) 0.87(57)
1.00 18.31(14) 7.43(37) �1:19�101� �0:802�32� 3.23(24) �1:31�78�
1.02 21.82(15) 7.92(36) �1:12�88� �0:681�27� 3.37(23) �1:13�69�
1.07 29.49(11) 5.39(20) �1:62�46� �0:369�17� 1.69(11) �1:25�33�
1.11 33.11(9) 3.92(12) �0:46�18� �0:205�20� 0.83(7) �0:37�13�
1.16 35.62(7) 3.32(7) �0:08�8� �0:162�17� 0.50(5) �0:07�6�
1.23 37.73(7) 2.98(7) �0:13�6� �0:140�22� 0.35(5) �0:09�5�
1.36 39.47(5) 2.67(4) �0:03�3� �0:063�18� 0.19(3) �0:01�2�
1.50 40.34(4) 2.54(3) �0:06�2� �0:043�16� 0.15(2) �0:03�2�
1.65 40.81(4) 2.40(2) �0:04�2� �0:029�14� 0.10(1) �0:02�2�
1.81 41.05(3) 2.37(2) �0:04�2� �0:040�14� 0.11(2) �0:01�1�
1.98 41.20(3) 2.29(2) �0:00�1� �0:051�13� 0.08(1) 0.02(1)
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with opposite sign in these two coefficients. It thus is
instructive to analyze directly the expansion coefficients
of �uu and �ud. These are listed in Table III and plotted in
Fig. 4. We note that the errors on these quantities have been
obtained from an independent jackknife analysis and thus
are not simply obtained by adding errors for cn and cIn.

Figure 4 clearly shows that for T > T0 the various
expansion coefficients rapidly approach the corresponding
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FIG. 4. The Taylor expansion coefficients cuun (upper row) of diagon
4, and 6 as functions of T=T0.
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ideal gas values, which is zero for all nondiagonal expan-
sion coefficients, cudn . In fact, as discussed in Sec. II A the
latter receive contributions only at O�g6 ln1=g2� for n � 2
and O�g3� for n > 2. Moreover, it is interesting to note that
despite the small magnitude of these contributions the
leading order perturbative results correctly predict the
sign of all expansion coefficients for T > T0, i.e. cud2;6 <
0, cud4 > 0, and cuu2;4 > 0, cuu6 < 0. Furthermore, the order of
.4 1.6 1.8 2

0

SB limit

SB (Nτ=4)
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magnitude for cud2 , i.e. jcud2 j ’ 5 � 10�4 at T ’ 2T0, agrees
with the perturbative estimate9 [22].

A striking feature of the expansion coefficients cuun
and cudn is that for n > 2 they become similar in
magnitude close to T0. In fact, cuu4 and cud4 both have
pronounced peaks at T0 with �cud4 =c

uu
4 �peak ’ 0:45 and the

expansion coefficients for n � 6 are identical within er-
rors. This suggests that any divergent piece in �uu, which
could occur when �q=T approaches the radius of conver-
gence of the Taylor expansion, will show up with identical
strength also in �ud. This, in turn, implies that the singular
behavior will add up constructively in the quark number
susceptibility whereas it can cancel in the isovector sus-
ceptibility giving rise to finite values for �I at such a
critical point. Even for smaller, noncritical values of
�q=T, however, the rapid rise of cud4 �T� for T ’ T0 is
important. It shows that nondiagonal susceptibilities will
become large at nonzero chemical potential in the transi-
tion region from the low to the high temperature phase, i.e.,
fluctuations in different flavor channels, which are uncor-
related at high temperature, become strongly correlated in
the transition region. This correlation is also reflected in
the errors of the various expansion coefficients, which are
of similar size for cuun and cudn but much reduced in the
difference, �I.
9A previous analysis [18] reported values for cud2 consistent
with zero for temperatures T=T0 � 1:25 within an error of 10�6.
This has been found subsequently to be incorrect. The corrected
values [20] are qualitatively consistent with our findings. (The
second panel of Fig. 10 in [20] should be compared to twice the
value of cud2 shown in our Fig. 4.) Similar agreement is found
with the results of [19].

054508
The above considerations also suggest that the electric
charge susceptibility,

�C �

�
2

3

@
@�u

�
1

3

@
@�d

��
2

3

@p
@�u

�
1

3

@p
@�d

�

�
1

9
�4�uu � �dd � 4�ud� �

1

4

�
�I �

1

9
�q

�
; (3.9)

will be singular whenever the diagonal and nondiagonal
susceptibilities are singular as the cancellation between the
corresponding singular parts will be incomplete. We show
the charge susceptibility in Fig. 5. As it is dominated by the
contribution from the isovector susceptibility any possible
singular contribution arising from �q will be weak. It thus
may not be too surprising that a peak does not yet show up
in �C.

C. Mass derivatives and chiral condensate

The transition between low and high temperature phases
of strongly interacting matter is expected to be closely
related to chiral symmetry restoration. It is therefore also
of interest to analyze the dependence of the chiral conden-
sate on the quark chemical potential. We will do so in the
framework of a Taylor expansion of the grand potential,

h (  i

T3
�

�
N)
N-

�
3 @ lnZ

@m=T
�

X1
n�0

c
(  
n �T�

��q

T

�
n
; (3.10)

with

c
(  
n �

1

n!
@nh (  i=T3

@��q=T�
n









�q��I�0

�
1

n!
@n�1�

@��q=T�
n@m=T









�q��I�0
: (3.11)

Here we expressed the bare lattice quark masses, ma, in
units of the temperature by usingm=T � maN). For n > 0
the expansion coefficients of the chiral condensate are
directly related to derivatives of the expansion coefficients
of the grand potential � with respect to the quark mass, i.e.

c
(  
n � @cn=@�m=T�. For n � 0 this holds true up to a

contribution arising from the normalization of the pressure

at �T � 0; �q � 0�. As such the coefficients c
(  
n also

provide information on the quark mass dependence of
other thermodynamic observables like pressure, number
density, or susceptibilities. For instance, the change of
the quark number susceptibility with quark mass is given
by

@�q=T
2

@m=T
� 2c

(  
2 � 12c

(  
4

��q

T

�
2
�O��4

q�: (3.12)

We have calculated the derivatives of cn with respect to the
quark mass for n � 0, 2, and 4. These derivatives are
shown in Fig. 6 together with the corresponding derivatives
for the expansion coefficients of the isovector susceptibil-
-9
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FIG. 7 (color online). The chiral condensate h (  i (left) and
chiral susceptibility � (  (right) as a function of T=T0 for
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ity, which have a similar temperature dependence,

@�I=T
2

@m=T
� 2cI;

(  
2 � 12cI;

(  
4

��q

T

�
2
�O��4

q�: (3.13)

We note that the expansion coefficients c
(  
n are negative

for n > 0 and T � 0:96T0. The chiral condensate thus will
drop at fixed temperature with increasing �q=T and the
chiral susceptibilities will increase in the hadronic phase
with decreasing quark mass. This, together with the change

of sign in c
(  
4 at T ’ T0, will shift the transition point at

nonzero�q=T to lower temperatures. In Fig. 7 we show the
chiral condensate and the related chiral susceptibility10

obtained from a Taylor expansion up to and including
O��4

q�,

� (  

T2 �
N)
N3
-

�
nf
4

�
2
	h�TrM�1�2i � hTrM�1i2


� c�0 � c�2

��q

T

�
2
� c�4

��q

T

�
4
�O	��q=T�6
:

(3.14)
Obviously � (  develops a much more pronounced peak for
10The chiral susceptibility introduced here is not the complete
derivative of the chiral condensate with respect to the quark
mass. As frequently done also at �q � 0 we define the chiral
susceptibility by ignoring a contribution from the connected part
which would arise in the derivative @h (  i=@m. Nonetheless � (  
seems to capture the leading singular behavior that should show
up at a 2nd order critical point [30].
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�q=T > 0 than at vanishing chemical potential which,
moreover, is shifted to smaller temperatures. However, as
will become clear from the discussion in the next section
the peaks found in � (  and also in other susceptibilities
have to be analyzed and interpreted carefully. They reflect
the abrupt transition from the hadronic regime to the high
temperature phase in which fluctuations of the chiral con-
densate are suppressed, but do not signal the presence of a
2nd order phase transition unambiguously. The rapid rise
of susceptibilities in the hadronic phase is strongly corre-
lated to the increase in the pressure and is also present in a
hadron gas which does not show any singular behavior at
the transition temperature.

Also the expansion of the chiral condensate and related
observables are compatible with the HRG model. In fact, a

comparison of the temperature dependence of c
(  
n shown

in Fig. 6 with that of the expansion coefficients cn of the
grand potential shown in Fig. 1 suggests a strong similarity

between �c
(  
n and cn�2. On the other hand, for T < T0 the

ratio c
(  
4 =c

(  
2 agrees within errors with the ratio c4=c2

shown in Fig. 8. All this is consistent with the HRG model
where the quark mass (or spectrum) dependence only
enters through the functions F�T� and G�T� and does not
modify the dependence on �q=T.
IV. RADIUS OF CONVERGENCE AND THE
HADRON RESONANCE GAS

So far we have not discussed the range of validity of the
Taylor expansion. In general, the Taylor series will only
converge for�q=T < 0 (or�q=T � 0) where the radius of
convergence, 0, is determined by the zero of Z�T;�q;�q�

closest to the origin of the complex �q plane. If this zero
happens to lie on the real axis the radius of convergence
coincides with a critical point of the QCD partition func-
tion. A sufficient condition for this is that all expansion
-10
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density, nq=�q (right), as a function of �q=T for various T=T0.
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coefficients are positive [31]. Apparently this is the case for
all coefficients cn�T� with T=T0 < 0:96 that have been
calculated so far by us.11 Above T0, however, we find
from the calculation of c6�T� that the expansion coeffi-
cients do not stay strictly positive. This is in accordance
with our expectation to find a chiral critical point at some
temperature T < T0.

The radius of convergence of the Taylor series for
��T;�q;�q� can be estimated by inspecting ratios of
subsequent expansion coefficients,

0 � lim
n!1

02n � lim
n!1

��������������������







 c2n
c2n�2










s

; (4.1)

where the square root arises because the Taylor expansion
of the grand potential � is an even series in �q=T. The
ratios c2n�2=c2n are shown in Fig. 8 together with ratios of
the expansion coefficients cIn of the isovector susceptibility

and c
(  
n of the chiral condensate. It is obvious that these

ratios rapidly change across T0 and approach the value of
corresponding ratios obtained in the high temperature ideal
gas limit. Another remarkable feature, however, is that
below T0 the ratios involving expansion coefficients of
the �q-dependent parts of �, �I, and � (  are almost
temperature independent. In fact, these ratios are consistent
with the corresponding ratios deduced from the grand
potential of a hadron resonance gas [Eq. (2.23)], i.e.

c4=c2 � c
(  
4 =c

(  
2 � 3=4 and c6=c4 � cI6=c

I
4 � 3=10. In

ratios that contain the lowest order expansion coefficients,

i.e. c0, c
(  
0 , and cI2, the spectrum dependence does not

cancel because the lowest order expansion coefficients
also depend on the meson sector which is not the case
for higher order coefficients. These ratios thus show a
11In [20] it is reported that c8�T� is negative for T < 0:95T0;
however, the statistical significance of this result unfortunately is
not given.
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significant temperature dependence as can be seen for

cI4=c
I
2 and c

(  
2 =c

(  
0 shown in Fig. 8.

Similar information is contained in the ratios of
physical observables, e.g., the quark number density
or pressure over the quark number susceptibility, intro-
duced in Eq. (2.20). These ratios are shown in Fig. 9.
Here nq=T3 and �q=T2 have been calculated using
Eqs. (3.3) and (3.4) up to O��6

q�. The ratio, nq=�q�
�@p=@�q�=�@nq=@�q��@p=@nq, is related to the isother-
mal compressibility, 1T��q=n

2
q, which diverges at a 2nd

order phase transition point, i.e., at a point which
@p=@nq�0, the number of particles is unstable under
small changes in the pressure (mechanical instability)
and large density fluctuations occur. This instability leads
to a divergence in the quark number susceptibility [21]. A
2nd order phase transition is thus expected to be signalled
by a zero in both ratios shown in Fig. 9. On the other hand,
for �I � 0 these ratios are expected to be constant in an
Horizontal lines show the infinite temperature ideal gas values
and the HRG model prediction (T � T0) (solid lines) and
expanded to 6th order in �q=T (dashed lines). The difference
is visible only for 'p=�q at �q=T � 0:8.
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ideal quark-gluon plasma as well as in a hadron resonance
gas,

nSBq
�q�

SB
q

�
1� �1=�2���q=T�

2

1� �3=�2���q=T�
2 ;

nHRG
q

�q�HRG
q

�
T

3�q
tanh

�
3�q

T

�
:

(4.2)

The corresponding values are indicated in Fig. 9 by hori-
zontal lines.

As far as the determination of a possible 2nd order
critical point at nonvanishing quark chemical potential
(chiral critical point) is concerned Fig. 8 and 9 contain
identical information. For T � 0:96T0 bulk thermody-
namic observables agree with predictions based on a
HRG model, which in itself does not show any critical
behavior as a function of �q=T at fixed T. In particular,
there is no hint for a dip in 'p=�q or nq=�q which could
signal the presence of a 2nd order transition point. The
same observation, albeit with larger statistical errors, holds
for ratios involving the chiral susceptibility � (  .
Nonetheless, all these quantities change rapidly in the
transition from the low temperature to the high temperature
regime and, moreover, at T � T0 the 6th order expansion
coefficients clearly cannot be described within the HRG
model. Because of the good agreement with the HRG
model and its Taylor expansion at lower temperature we
cannot, however, present an upper limit for the radius of
convergence below T0; the ratios shown in Fig. 8 suggest
that a lower limit is given by ��q=T�c * 1. Also from the
analysis of the temperature dependence of bulk thermody-
namic observables we get, at present, no unambiguous
evidence for the existence of a phase transition. At present,
therefore, we cannot rule out that in the temperature range
covered by our analysis (T * 0:8T0) the transition to the
high temperature phase is a rapid crossover transition
rather than a phase transition. This situation then would
be similar to that at �q � 0. In order to exclude this
possibility we would need, in the future: to consider even
higher orders in the Taylor series; to scan in more detail the
small temperature interval 	0:95T0; T0
; and to explore
systematically the quark mass and volume dependence of
our results. These issues are partially addressed already in
the next section where we discuss the use of reweighting
techniques to calculate some thermodynamic observables
and compare results obtained within this approach with
results from the Taylor expansion.

The good agreement found here for different ratios of
Taylor expansion coefficients calculated on the lattice and
within the HRG model suggests that we may use this
12For these observables a good functional agreement between
lattice data and the leading �q dependent term in the HRG
model has also been noted in [14] within the imaginary chemical
potential approach.
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information for a more detailed analysis of the composition
of hadronic matter at temperatures below T0. In Ref. [15]
also the temperature dependence of thermodynamic ob-
servables like the pressure or the quark number suscepti-
bility have been compared to the HRG model.12 In order to
do so the hadron spectrum has been adjusted to the con-
ditions realized in the lattice calculations, i.e., all masses
have been shifted to larger values as the lattice calculations
have been performed with unphysically large quark
masses. This approach can also be turned around. The
HRG model for T < T0 can be used as an ansatz to deter-
mine the contributions of the mesonic and baryonic parts of
the spectrum without making assumptions on the distortion
of the spectrum due to the unphysical quark mass values.

As outlined in Sec. II, within the Boltzmann approxi-
mation the HRG model yields a simple dependence of the
pressure on the quark chemical potential. The relation
given in Eq. (2.15) can easily be extended to also include
a nonvanishing isovector chemical potential. Neglecting
the mass difference among isospin partners the pressure
can be written as

p�T;�q;�I�

T4 ’G�1��T��G�3��T�
1

3

�
2cosh

�
2�I

T

�
�1

�

�F�2��T�cosh
�
3�q

T

�
cosh

�
�I

T

�
�F�4��T�

1

2

�cosh
�
3�q

T

��
cosh

�
�I

T

�
�cosh

�
3�I

T

��
;

(4.3)

where G�1�, G�3�, F�2�, and F�4� are the contributions to the
pressure at �q � �I � 0 arising from isosinglet mesons
("; . . . ; 	Bi � 0; I3i � 0
), isotriplet mesons (�; . . . ; 	Bi �
0; I3i � f0;�1g
), isodoublet baryons (n; p; . . . ; 	Bi �
�1; I3i � f�1=2g
), and isoquartet baryons ('; . . . ; 	Bi �
�1; I3i � f�1=2;�3=2g
), respectively. These functions
contain all the information on the hadron spectrum in
different quantum number channels. Performing the
Taylor expansion of the pressure as well as quark number
and isovector susceptibilities allows one to relate these
functions to combinations of the various Taylor expansion
coefficients. This way one finds

G�3��T� �
3

4
cI2 � cI4; F�2��T� �

5

18
c2 �

2

3
cI4;

F�4��T� � �
1

18
c2 �

2

3
cI4:

(4.4)

The various contributions to the pressure are shown in
Fig. 10(a) for �q � 0. With increasing quark chemical
potential the relative weight of hadrons in different quan-
tum number channels changes. As expected the baryonic
component becomes more important with increasing �q

[Fig. 10(b) and 10(c)]. We find that for �q=T * 0:6 the
baryonic sector gives the dominant contribution.
-12
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FIG. 11 (color online). Contour plot of the variance of the
phase of the quark determinant, -�3� calculated for 3�3� in the
�T=T0; �q=T� plane. Contour lines for -�3�3�� are given in steps
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FIG. 10 (color online). Contribution of different hadronic channels to the total pressure p=T4 obtained by using the HRG ansatz.
Shown are results for (a) �q=T � 0, (b) �q=T � 0:4, and (c) �q=T � 0:8.
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V. REWEIGHTING APPROACH

An alternative to a strict Taylor expansion of thermody-
namic observables in terms of �q=T is the reweighting
approach. Here the dependence of the grand potential on
the quark chemical potential is included in the calculation
of observables, X, by shifting the �q-dependent piece of
the QCD action into the calculation of expectation values
rather than taking it into account in the statistical weights
used for the generation of gauge field configurations. This
reweighting approach has been used to analyze the ther-
modynamics of QCD at nonzero chemical potential
[10,12]. Within this approach thermodynamic observables
X�*;�� are estimated via the expression

hXi�*;�� �
hXe�nf=4�' ln detMe�'Sgi�*0;0�

he�nf=4�' ln detMe�'Sgi�*0;0�

; (5.1)

where ' ln detM � ln detM��� � ln detM�0� and 'Sg �
Sg�*� � Sg�*0� is the difference of the gluonic part of the
QCD action. The expectation values on the RHS of
Eq. (5.1) are obtained in simulations at �*0; 0�. In [3] we
implemented a version of Eq. (5.1) in which the reweight-
ing factor ' ln detM as well as the operator X itself have
been replaced by a Taylor series about � � 0. The advan-
tage over an exact evaluation of detM [2] clearly is that the
required expressions are calculable with relatively little
computational effort even on large lattices. In our initial
study we performed the expansion consistently up to and
including O��2�. Here we extend this analysis by expand-
ing ln detM up to and including terms of O��6�. Unlike
the direct evaluation of thermodynamic observables in
terms of a Taylor expansion up to a certain order the
reweighting approach with a Taylor expanded weight fac-
tor also includes effects of higher orders in�q=T which are
partially resummed in the exponentiated observables
expf�nf=4�' ln detMg.

The effectiveness of any reweighting approach strongly
depends on the overlap between the ensemble simulated at
054508
�*0; �0 � 0� and that corresponding to the true equilib-
rium state at �*;�� which one wants to analyze. This can
be judged by inspecting the average phase factor of the
complex valued quark determinant, hei3i�*0;0�, where the
quark determinant is written as detM � j detMjei3.
Reweighting loses its reliability once hei3i � 1 as both
expectation values appearing in the numerator and denomi-
nator of Eq. (5.1) then become difficult to control [32]. In
our approach we estimate the phase factor via the variance

of the phase 3, -�3� �
�����������������������
h32i � h3i2

p
, where we approxi-

mate the phase by its Taylor expansion up to O��2n�1�,

3�n� �
nf
4

Im
Xn
j�1

�2j�1

�2j� 1�!

@2j�1 ln detM

@�2j�1 : (5.2)

As discussed and shown in Fig. 6 of [32], the value of
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FIG. 12 (color online). Susceptibilities �q=T2 (left) and �I=T2

(right) for various �q=T ranging from �q=T � 0 (lowest curve)
rising in steps of 0.2 to �q=T � 1. Results are obtained by a
combination of reweighting (solid lines and data points) and
from a 6th-order Taylor expansion (dashed lines).
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�q=T for which the standard deviation of 3�n� exceeds �=2
is a reasonable criterion for judging the applicability of
reweighting in our simulated systems. In Fig. 11 we show
contour lines for the variance of 3�3�. All contour lines drop
dramatically in the vicinity of T0; the contour correspond-
ing to -�3�3�� � �=2 yields �q=T � 1:5 at T ’ 1:2T0 and
reaches a minimum value of about 0.6 at T ’ 0:9T0.
Reweighting is thus much easier to control in the high
temperature phase than in the hadronic phase.

In Fig. 12 we plot quark number and isovector suscep-
tibilities for various �q=T calculated by using reweighting
where possible. The operators needed for the susceptibil-
ities are calculated with an error of O��6�, the reweighting
factor ' ln detM with error O��8�. Dashed lines show a
comparison with the results obtained from direct Taylor
expansion of the susceptibilities up to and including O��4

q�

(see Fig. 3).
As anticipated above, for T & T0 reweighting becomes

difficult to control for �q=T > 0:6. However, where re-
weighting appears to be statistically under control, it agrees
well with the direct Taylor expansion and even shows
similar features in the statistical errors; i.e., the signal is
much noisier in the vicinity of T0 for �q than for �I.

VI. CONCLUSIONS

We have extended our analysis of the thermodynamics
of two flavor QCD at nonzero quark chemical potential to
the 6th order in a Taylor expansion around �q=T � 0. We
find clear evidence for a rapid transition from a low tem-
perature hadronic phase to a high temperature quark-gluon
plasma phase which is signalled by large fluctuations in the
quark number density and the chiral condensate. The tran-
sition temperature shifts to smaller values with increasing
quark chemical potential. Above T0 the Taylor expansion
coefficients and bulk thermodynamic observables agree
with qualitative features of the perturbative high tempera-
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ture expansion and approach the ideal gas limit to within
�20% for T * 1:5T0. Thermodynamics in the low tem-
perature phase agrees well with predictions based on a
hadron resonance gas for temperatures T & 0:96T0 and
�q=T & 1.

From the analysis of bulk thermodynamic observables
alone we cannot provide strong evidence for the existence
of a 2nd order phase transition point in the QCD phase
diagram. At present we cannot rule out the transition being
a rapid crossover in the entire parameter space covered by
our analysis. In particular, we have shown that large fluc-
tuations in the quark number and the chiral condensate are
consistent with expectations based on a hadron resonance
gas. The current estimates on the radius of convergence of
the Taylor expansion favor a critical value of the quark
chemical potential close to �q � T0. The good agreement
of the expansion coefficients with those of a hadron gas,
however, prohibit any firm conclusion on the location and
even on the existence of the chiral critical point.

Likewise, we cannot rule out that a 2nd order transition
occurs at temperatures closer to T0 than the largest value in
the hadronic phase, T � 0:96T0 which we have analyzed
here. In order to improve on the current analysis it would
be important to perform calculations at smaller quark
masses in a narrower temperature interval around T0. An
improvement over the current statistical errors on the 6th
order coefficient as well as the analysis of higher order
expansion coefficients with high statistics is needed.
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APPENDIX: TAYLOR EXPANSION
COEFFICIENTS

In this appendix, we derive some equations which are
used in the calculation of the various thermodynamic
quantities and expansion coefficients of the Taylor series
presented in this study. The partition function is given by

Z �
Z

DU�detM�nf=4e�Sg ; (A1)

with U 2 SU�3�. The expectation value of a physical
quantity, hOi, is then obtained as

hOi �
1

Z

Z
DUO�detM�nf=4e�Sg ; (A2)
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and its derivatives with respect to quark chemical potential
and quark mass are given by

@hOi

@�
�

�
@O
@�



�
nf
4

��
O
@�ln detM�

@�



�hOi

�
@�ln detM�

@�


�
;
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�
nf
4
�hOTrM�1i�hOihTrM�1i�: (A4)

Here we use m as the dimensionless quark mass value
instead of ma, and also � � �qa for the dimensionless
quark chemical potential. The temperature is T � �N)a�

�1

and the volume is V � �N-a�
3. Moreover, we introduce for

simplification,

C n �
nf
4

@n TrM�1

@�n �
nf
4

@n�1 ln detM
@�n@m

;

Dn �
nf
4

@n ln detM
@�n :

(A5)
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All Taylor expansion coefficients used in this paper can be
expressed in terms of expectation values of certain combi-
nations of Cn and Dn. The required derivatives of ln detM
and TrM�1 are explicitly given in the following.

1. Derivatives of ln detM

@ ln detM
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� Tr
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�
; (A6)
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2. Derivatives of TrM�1
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� 24Tr
�
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�
: (A15)
Having defined the explicit representation of Cn and Dn
we now can proceed to define the expansion coefficients
for various thermodynamic quantities discussed in this
paper.

Pressure (p).—The pressure is obtained from the loga-
rithm of the QCD partition function. Its expansion is
defined in Eqs. (3.1) and (3.2). The leading expansion
coefficient c0 is given by the pressure calculated at �q �

0. All higher order expansion coefficients are given in
terms of derivatives of lnZ.

p

T4 � � �
1

VT3 lnZ �
X1
n�0

cn

��q

T

�
n
; (A16)

with

cn �
1

n!VT3

@n lnZ
@��q=T�n









��0
: (A17)

To generate the expansion we first consider derivatives of
lnZ for � � 0. For the first derivative we find

@ lnZ
@�

� A1 � hD1i: (A18)

Higher order derivatives are generated using the relation

@An

@�
� An�1 �AnA1; (A19)

where An is defined as
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A n �

�
expf�D0g

@n expfD0g

@�n



: (A20)

With this we can generate higher order derivatives of lnZ
iteratively using

@n�1 lnZ=@�n�1 � @nA1=@�n: (A21)

Explicitly we find from Eq. (A20)

A 2 � hD2i � hD2
1i; (A22)

A 3 � hD3i � 3hD2D1i � hD3
1i; (A23)

A 4 � hD4i � 4hD3D1i � 3hD2
2i � 6hD2D

2
1i � hD4

1i;

(A24)

A5 � hD5i � 5hD4D1i � 10hD3D2i � 10hD3D
2
1i

� 15hD2
2D1i � 10hD2D

3
1i � hD5

1i; (A25)

A6 � hD6i � 6hD5D1i � 15hD4D2i � 10hD2
3i

� 15hD4D
2
1i � 60hD3D2D1i � 15hD3

2i

� 20hD3D
3
1i � 45hD2

2D
2
1i � 15hD2D

4
1i � hD6

1i:
(A26)

From Eq. (A21) we then obtain through repeated applica-
tion of Eq. (A19),
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@ lnZ

@�
� A1; (A27)

@2 lnZ

@�2
� A2 �A2

1; (A28)

@3 lnZ

@�3
� A3 � 3A2A1 � 2A3

1; (A29)

@4 lnZ

@�4
� A4 � 4A3A1 � 3A2

2 � 12A2A
2
1 � 6A4

1;

(A30)

@5 lnZ

@�5
� A5 � 5A4A1 � 10A3A2 � 20A3A

2
1

� 30A2
2A1 � 60A2A

3
1 � 24A5

1; (A31)

@6 lnZ

@�6
� A6 � 6A5A1 � 15A4A2 � 10A2

3

� 30A4A
2
1 � 120A3A2A1 � 30A3

2

� 120A3A
3
1 � 270A2

2A
2
1 � 360A2A

4
1

� 120A6
1: (A32)

These relations simplify considerably for � � 0 as all odd
expectation values vanish, i.e. An � 0 for n odd. In fact,
@n�ln detM�=@�n is strictly real for n even and pure
imaginary for n odd. Using this property, the odd deriva-
tives of the pressure vanish and also the even derivatives
become rather simple. This defines the expansion coeffi-
cients cn introduced in Eqs. (3.1) and (3.2),

c2 �
1

2

@2�p=T4�

@��q=T�2









�q�0
�

1

2

N)
N3
-
A2;

c4 �
1

4!

@4�p=T4�

@��q=T�4









�q�0
�

1

4!

1

N3
-N)

�A4 � 3A2
2�;

c6 �
1

6!

@6�p=T4�

@��q=T�6









�q�0

�
1

6!

1

N3
-N3

)
�A6 � 15A4A2 � 30A3

2�: (A33)

Here all expectation values An are now meant to be
evaluated at � � 0.

Isovector susceptibility ��I�.—While the Taylor expan-
sion of the quark number susceptibility is easily obtained
054508
from that of the pressure we need to introduce the expan-
sion of the isovector susceptibility. This has been done in
Eq. (3.5). More explicitly the isovector susceptibility is
given by

�I
T2 �

N)
N3
-

�
@2 lnZ

@ (�2
u

�
@2 lnZ
@ (�u@ (�d

�
@2 lnZ
@ (�u@ (�d

�
@2 lnZ

@ (�2
d

�

�
N)
N3
-

� X
f�u;d

�
1

4

@2�ln detMf�

@ (�2
f



�

��
1

4

@�ln detMu�

@ (�u

�
1

4

@�ln detMd�

@ (�d

�
2


�

�
1

4

@�ln detMu�

@ (�u

�
1

4

@�ln detMd�

@ (�d



2
�
: (A34)

Throughout this paper we have considered the case of
(�u � (�d � �qa � �. The isovector chemical potential
�I has been set equal to zero after appropriate derivatives
have been taken. In the Taylor expansion of �I, which is
performed at � � 0 in terms of �q=T, the derivatives with
respect to �u and �d then become identical, i.e.
	@n�ln detMu�d��=@ (�n

u�d�
� (�u�d�� � 	@n�ln detM�=@�n
�

���.
The calculation of the isovector susceptibility thus re-

duces to the calculation of

�I
T2 �

N)
2N3

-

�
@2�ln detM�

@�2



: (A35)

To define the expansion of the isovector susceptibility, �I
at fixed �I � 0 around �q � 0, we set up an iterative
scheme similar to that introduced for the pressure. We
introduce the additional kernel D2 in Eq. (A20) to generate
Bn for arbitrary �q � 0,

B n�2 �

�
expf�D0g

@nD2 expfD0g

@�n



: (A36)

This yields

B 2 � hD2i; (A37)

B 3 � hD3i � hD2D1i; (A38)

B 4 � hD4i � 2hD3D1i � hD2
2i � hD2D

2
1i; (A39)

B5 � hD5i � 3hD4D1i � 4hD3D2i � 3hD3D
2
1i

� 3hD2
2D1i � hD2D

3
1i; (A40)

B 6 � hD6i � 4hD5D1i � 7hD4D2i � 4hD2
3i

� 6hD4D
2
1i � 16hD3D2D1i � 3hD3

2i

� 4hD3D
3
1i � 6hD2

2D
2
1i � hD2D

4
1i: (A41)

The derivative of Bn with respect to the chemical potential
satisfies
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@Bn

@�
� Bn�1 �BnA1: (A42)

Starting with �N)=N
3
-�B2 � �I=T

2, we obtain the equa-
tions for @n��I=T2�=@��q=T�n iteratively, and then use
again the CP symmetry for � � 0, i.e. An and Bn are
zero for n odd. Therefore the odd derivatives in the expan-
sion of �I=T2 at � � 0 are zero and the even derivatives
define the expansion coefficients cIn used in Eq. (3.5),

cI2 �
1

2

�I
T2









�q�0
�

1

2

N)
N3
-
B2;

cI4 �
1

4!

@2��I=T
2�

@��q=T�
2









�q�0
�

1

4!

1

N3
-N)

�B4 �B2A2�;

cI6 �
1

6!

@4��I=T
2�

@��q=T�4









�q�0

�
1

6!

1

N3
-N3

)
�B6 � 6B4A2 �B2A4 � 6B2A

2
2�:

(A43)

Chiral condensate �h (  i� and disconnected chiral sus-
ceptibility �� (  �.—We also discuss the Taylor expansion
of the chiral condensate and the related chiral susceptibil-
ity,

h (  i

T3
�
N2
)

N3
-

@ lnZ

@m
�
N2
)

N3
-

nf
4

�
@ lndetM
@m




�
N2
)

N3
-

nf
4
hTrM�1i; (A44)

� (  

T2 �
N)
N3
-

�
nf
4

�
2
	h�TrM�1�2i � hTrM�1i2
: (A45)

The iterative scheme is similar to that introduced for the
isovector susceptibility but with the generating kernel D2

in Eq. (A36) replaced by C0. This yields

F 0 � hC0i; (A46)

F 1 � hC1i � hC0D1i; (A47)

F 2 � hC2i � 2hC1D1i � hC0D2i � hC0D
2
1i; (A48)

F 3 � hC3i � 3hC2D1i � 3hC1D2i � hC0D3i

� 3hC1D
2
1i � 3hC0D2D1i � hC0D

3
1i; (A49)

F 4 � hC4i � 4hC3D1i � 6hC2D2i � 4hC1D3i

� hC0D4i � 6hC2D
2
1i � 12hC1D2D1i

� 4hC0D3D1i � 3hC0D
2
2i � 4hC1D

3
1i

� 6hC0D2D
2
1i � hC0D

4
1i: (A50)
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These expectation values again satisfy

@F n

@�
� F n�1 �F nA1: (A51)

This gives the expansion coefficients c
(  
n for the chiral

condensate defined in Eqs. (3.10) and (3.11),

c
(  
0 �

h (  i

T3









�q�0
�
N2
)

N3
-
F 0; (A52)

c
(  
2 �

1

2

@2h (  i=T3

@��q=T�2









�q�0
�

1

2

1

N2
)

@2h (  i=T3

@�2









��0

�
1

2

1

N3
-
�F 2 �F 0A2�; (A53)

c
(  
4 �

1

4!

@4h (  i=T3

@��q=T�
4









�q�0
�

1

4!

1

N4
)

@4h (  i=T3

@�4









��0

�
1

4!

1

N3
-N

2
)
�F 4 � 6F 2A2 �F 0A4 � 6F 0A

2
2�;

(A54)

where we used again that An and F n are zero for n odd
and � � 0. Hence the odd derivatives in the expansion
vanish. Note that these expansion coefficients also control
the quark mass dependence of the quark number suscepti-
bility given in Eq. (3.12). The first derivative of the iso-
vector susceptibility with respect to the quark mass,

@��I=T
2�

@m=T
�

1

N3
-

��
nf
4

@3�ln detM�

@�2@m




�

��
nf
4

�
2 @2�ln detM�

@�2 TrM�1




�

�
nf
4

@2�ln detM�

@�2


�
nf
4

TrM�1


�
; (A55)

for which we have introduced the Taylor expansion in
Eq. (3.13) requires the calculation of further expectation
values In,

I 2 � hC2i � hC0D2i; (A56)

I 3 � hC3i � hC2D1i � hC1D2i � hC0D3i

� hC0D2D1i; (A57)

I 4 � hC4i � 2hC3D1i � 2hC1D3i � 2hC2D2i

� hC2D
2
1i � 2hC1D2D1i � hC0D4i

� 2hC0D3D1i � hC0D
2
2i � hC0D2D

2
1i: (A58)

With these and the coefficients Bn and F n one finds for the
expansion coefficients,
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cI;
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1
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N3
-N

2
)
�I4 � I2A2 �B4F 0 �B2F 2 � 2B2F 0A2�:

(A59)
Finally we present the expansion of � (  which is generated
in analogy to the isovector susceptibility by using C2

0 as a
kernel in Eq. (A20). We find

G 0 � hC2
0i; (A60)

G 1 � 2hC1C0i � hC2
0D1i; (A61)

G2 � 2hC2C0i � 2hC2
1i � 4hC1C0D1i

� hC2
0D2i � hC2

0D
2
1i; (A62)

G3 � 2hC3C0i � 6hC2C1i � 6hC2C0D1i � 6hC2
1D1i

� 6hC1C0D2i � hC2
0D3i � 6hC1C0D

2
1i

� 3hC2
0D2D1i � hC2

0D
3
1i; (A63)

G4�2hC4C0i�8hC3C1i�6hC2
2i�8hC3C0D1i

�24hC2C1D1i�12hC2C0D2i�12hC2
1D2i

�8hC1C0D3i�hC2
0D4i�12hC2C0D

2
1i

�12hC2
1D

2
1i�24hC1C0D2D1i�4hC2

0D3D1i

�3hC2
0D

2
2i�8hC1C0D

3
1i�6hC2

0D2D
2
1i�hC2

0D
4
1i:

(A64)
These expectation values satisfy
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@Gn

@�
� Gn�1 � GnA1: (A65)

The expansion of the disconnected chiral susceptibility
defined in Eq. (3.14) is then given by
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(A67)
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