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We consider a �2� 1�-dimensional SU�N� lattice gauge theory in an axial gauge with the link field U1

set equal to one. The term in the Hamiltonian containing the square of the electric field in the 1-direction is
nonlocal. Despite this nonlocality, we show that weak-coupling perturbation theory in this term gives a
finite vacuum-energy density to second order, and suggest that this property holds to all orders. Heavy
quarks are confined, the spectrum is gapped, and the spacelike Wilson loop has area decay.
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I. INTRODUCTION

The central problem of QCD is confinement. It is not
enough to prove that lattice gauge theories have a confining
phase—which is evident from strong-coupling expan-
sions. It is necessary to see that the color is confined at
arbitrarily weak lattice coupling.

We find here that �2� 1�-dimensional lattice gauge
theories confine for any dimensionless bare coupling.
The technique used is a weak-coupling expansion in an
anisotropic lattice gauge theory in an axial gauge. This is
not the standard expansion utilizing Feynman diagrams.
Though the coupling constant of a �2� 1�-dimensional
gauge theory is not infinitely renormalized in �2� 1�
dimensions, the dimensionless bare coupling on the lattice
must vanish in the continuum limit. This is why a weak-
coupling analysis is useful, even for this case. The depen-
dence we find of the string tension and the mass gap on the
coupling constant does not agree with conventional wis-
dom—our results for these physical quantities do not
behave as anticipated, as the lattice spacing is taken to
zero—but they are not zero.

The first analytic demonstration of confinement of heavy
sources in �2� 1�-dimensional gauge theories was given
by Polyakov for lattice compact QED [1], and later for the
Georgi-Glashow model [2]. The latter model is interesting
in that color charges disappear completely from the spec-
trum. This is, however, different from the sort of confine-
ment we expect for QCD, in that matter fields play an
important role. Feynman argued that �2� 1�-dimensional
QCD is confining [3]. Unfortunately, the orbit-space dis-
tance estimates in Feynman’s paper are incorrect.
Nonetheless, his basic claim, that the diameter of gauge-
orbit space of �2� 1�-dimensional SU�N� Yang-Mills the-
ory for small magnetic energy is finite, appears to be
correct [4]. New nonperturbative methods which do not
require a lattice have been derived by Karabali, Kim and
address: orland@gursey.baruch.cuny.edu
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Nair [5] (one of their formulations of the Hamiltonian has
been obtained a different way in Ref. [6]).

There is one special set of assumptions we use to derive
our results; the �1� 1�-dimensional non-Abelian nonlinear
sigma models (without topological terms) have a mass gap,
exponentially decaying correlation functions, and their
vacuum expectation values of local operators exhibit clus-
tering [7–9]. Though no rigorous proof of these properties
exists, we think that the evidence in their favor is
overwhelming.

Our basic strategy is to write the lattice version of the
Hamiltonian as the sum of two terms, namely

H0 �
Z

d2x
�
e2

2
TrE22 �

1

2e2
TrB2

�
;

and

e2

2
V �

e2

2

Z
d2xTrE21;

where Ej are the components of the electric-field conjugate
to the gauge field Aj, �Ej�x�; Ak�y�� � i�jk�2�x � y� and
B � i�@1 � iA1; @2 � iA2� is the single space component
of the magnetic field. We then pick the gauge A1 � 0.
When this is done on the lattice, H0 is a set of decoupled
chiral SU�N� � SU�N� nonlinear sigma models for which
the S matrix and the spectrum are known. The quantity V is
nonlocal, but we show that perturbation theory in this term
is sensible to second order. The vacuum state in this
perturbation series confines fundamental color charges.
Our splitting of the Hamiltonian is not explicitly rotation-
ally invariant, but if the method works to all orders of
perturbation theory, rotational invariance should be
restored.

Let us review axial gauges in the continuum. If the
SU�N�-Lie-algebra-valued gauge field A1 is set to zero,
then Gauss’s law may be integrated to obtain
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E1�x� � �
Z x1

dy1
Xd�1
j�2

�@j

� iAj�y
1; x2; . . . xd�1�; Ej�y

1; x2; . . . ; xd�1��

� �
Z x1

dy1D?�y1; x?� 
 E?�y1; x?�; (1.1)

where the dimension of space is d � 1, x? �
�x2; . . . ; xd�1�, and D? are the last d � 2 components of
the covariant derivative in the adjoint representation
�D2; . . . ; Dd�1�. The term in the Hamiltonian

e2

2
V �

Z
dd�1x

e2

2
TrE21 (1.2)

must have a vacuum expectation value proportional to the
volume of �d � 1�-dimensional space, if the theory is to be
sensible. As discussed by Mandelstam [10] this means that
the quantity

K�y1; z1; x?� � h0jTrD?�y
1; x?� 
 E?�y

1; x?�D?�z
1; x?�


 E?�z
1; x?�j0i

must have the property that
R

dy1dz1K�y1; z1; x?� does not
diverge with the spatial volume. One might think that if
K�y1; z1; x?� falls off sufficiently fast with jy1 � z1j, the
problem can be ameliorated. Rapid falloff of K, however, is
not enough. Even if the falloff is exponential, the result
may diverge as �L1�2 where L1 is the range of x1.
Mandelstam recognized that the residual gauge invariance,
remaining after solving for E1 in (1.1), namelyZ

dx1D? 
 E?	 � 0; (1.3)

must also be satisfied by the vacuum. Without both (1.3)
and sufficiently rapid decay of K�x1; y1; x?�, any conjec-
ture for the vacuum may have an unacceptable infrared-
divergent energy, coming from (1.2). Fortunately, we find
that in our perturbation scheme, both the unperturbed
vacuum energy and the first two corrections in our weak-
coupling expansion obey the lattice versions of both the
rapid-decay criterion and (1.3).
II. THE LATTICE GAUGE HAMILTONIAN

The purpose of this section is to establish our definitions
and conventions. It is not an introduction to the
Hamiltonian SU�N� gauge theory. Such introductions can
be found in the review article by Kogut and in the book by
Creutz [11].

Consider a lattice of sites x of size L1 � L2, with sites x
whose coordinates are x1 and x2. We require that x1=a and
x2=a are integers, where a is the lattice spacing. There are
two space directions, labeled j � 1; 2. Each link is a pair x,
j, and joins the site x to x � ĵa, where ĵ is a unit vector in
the jth direction.
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We introduce basis vectors or generators t�, � �
1; . . . ; N2 � 1, of the Lie algebra of SU�N�. Sometimes
we use Roman letters for the index, e.g., we may write tb
rather than t� [the purpose of using different alphabets is to
distinguish between coordinate indices on the SU�N�
manifold and tangent-space vectors]. The generators are
defined to be orthonormal, so that Trt�t� � ���. The
structure coefficients of the Lie algebra, f�

��, �; �; � �

1; . . . ; N2 � 1, are, as usual, the complex numbers defined
by �t�; t�� � if�

��t�. The identity matrix will be denoted
by 1.

The Hamiltonian lattice gauge theory is usually formu-
lated in temporal gauge A0 � 0. The basic degrees of
freedom, before any further gauge fixing, are elements of
the group SU�N� in the fundamental �N � N�-dimensional
matrix representation Uj�x� 2 SU�N� at each link x, j. In
addition, there are the N2 � 1 electric-field operators at
each link lj�x�b, b � 1; . . . ; N2 � 1. The electric-field op-
erators are self-adjoint by construction. The commutation
relations on the lattice are

�lj�x�b; lk�y�c� � i�xy�jkfd
bclj�x�d;

�lj�x�b; Uk�y�� � ��xy�jktbUj�x�;
(2.1)

all others zero. In the Schrödinger representation, with the
components of Uj�x� taken to be c numbers, the latter of
(2.1) becomes

lj�x�bUk�y� � ��xy�jktbUj�x�:

The lattice Hamiltonian is

H �
X

x

X2
j�1

XN2�1

b�1

g20
2a

�lj�x�b�
2 �

X
x

1

4g20a
�TrU12�x�

� TrU21�x��; (2.2)

where

Ujk�x� � Uj�x�Uk�x � ĵa�Uj�x � k̂a�yUk�x�
y;

and the bare coupling constant g0 is dimensionless. Note
that the coefficient of the kinetic term can be written in
terms of the continuum coupling constant e, namely
g20=�2a� � e2=2. It is for this reason that hadron masses
and the string tension evaluated in lattice strong-coupling
expansions all scale sensibly with e, in �2� 1� dimensions.

We denote the adjoint representation of the SU�N� gauge
field by R:

XN2�1

c�1

Rb
ctc � UtbUy:

The matrix R lies in the group SU�N�=ZN . This is a special
orthogonal matrix RTR � 1, detR � 1, and SU�N�=ZN
is a subgroup of SO�N2 � 1�.

Schrödinger wave functions are complex-valued func-
tions of all the link degrees of freedom Uj�x�. Physical
-2
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wave functions 	�fUg� satisfy Gauss’s law

�D 
 l��x�b	�fUg� �
X2
j�1

�Djlj�x��b	�fUg� � 0; (2.3)

where

�Djlj�x��b � lj�x�b �
XN2�1

c�1

Rj�x � k̂a�b
clj�x � k̂a�c:

(2.4)

Sometimes it is useful to introduce color charge opera-
tors at lattice sites, denoted by q�x�b, which satisfy

�q�x�b; q�y�c� � ifa
bc�xyq�x�a: (2.5)

In the presence of charges, Gauss’s law becomes

��D 
 l��x�b � q�x�b�	�fUg� � 0: (2.6)

Henceforth, we will drop the explicit summation symbol
for repeated group indices and adopt the Einstein summa-
tion convention. Sometimes we omit the lattice site or link
labels, provided no confusion should be caused by such
omissions.

There is a natural geometric interpretation of the
electric-field operator. The Maurer-Cartan vector ea

a, on
the manifold of SU�N� defined by

e�
ata � �iU�1@�U;

is given explicitly by

e�
a � �i

�
1 � eiA
T

A 
 T

�
�

a
;

in canonical coordinates A�, � � 1; . . .N2 � 1, defined
by U � e�iA
t, and @� � @=@A�. The coordinates A
are related to the continuum gauge field A by A � aA.
The matrix e is nonsingular (including at A� � 0). One
may view ea

a as the linear map from the group manifold to
the tangent space; this is a particular choice of the vielbein,
and in this case there is torsion. The electric-field operators
are given by

la � �i�e�1�a
�@�:
III. THE AXIAL GAUGE ON A CYLINDER

By fixing an axial gauge, we will find the gauge-
invariant degrees of freedom, up to coordinate singularities
of measure zero. Such gauge fixings have been discussed
many years ago, both in the continuum [12] and on a lattice
[13], in the path-integral approach to gauge theories. The
advantage of working with the Hamiltonian instead of the
path integral is that unphysical components of the gauge
fields may be more easily eliminated using Gauss’s law
[14] (this could also be done in a transfer matrix
formalism).
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We choose space to be a lattice cylinder of size L1 � L2,
with periodic boundary conditions in the 2-direction only.
This means that for any function f�x1; x2� of lattice sites
f�x1; x2 � L2� � f�x1; x2�. We take components of x to
have the values x1 � 0; a; 2a; . . . ; L1, and x2 �
0; a; 2a; . . . ; L2 � a. Gauss’s law is still given by (2.3),
provided (2.4) is modified to

D1l1�x� � �1� �x1L1�l1�x� � �1� �x10�

�R1�x1 � a; x2�l1�x1 � a; x2�;

D2l2�x� � l2�x� �R2�x1; x2 � a�l2�x1; x2 � a�;

(3.1)

to take into account points on the boundary.
We gauge fix the links in the 1-direction by U1�x1; x2� �

1 everywhere and use (2.3) and (3.1) to write

l1�x
1; x2� � �

Xx1
y1�0

�D2 
 l2��y
1; x2�: (3.2)

There is some non-Abelian gauge invariance remaining,
namely, that

��x2�	 �
XL1

x1�0

�D2 
 l2��x1; x2�	 � 0: (3.3)

We split the Hamiltonian into two terms H � H0 � $V,
where eventually we set $ � g20=2a

H0 �
XL2�a

x2�0

(XL1
x1�0

g20
2a

�l2�x1; x2��2 �
XL1�a

x1�0

1

2g20a

� �TrU2�x
1; x2�yU2�x

1 � a; x2� � c:c:�

)
; (3.4)

and

V �
XL2�a

x2�0

XL1
x1�0

"Xx1
y1�0

�D2 
 l2��y
1; x2�

#
2

: (3.5)

It will be important for the discussion in the next section
that the constraint (3.3) allows us to replace (3.5) by

V � �
XL2�a

x2�0

XL1�a

x1�0

"Xx1
y1�0

�D2 
 l2��y1; x2�

#
T

�

" XL1
z1�x1�a

�D2 
 l2��z
1; x2�

#
: (3.6)

We have assumed until now that no charges are present.
If a quark is placed at site u, then (2.6) may be solved to
give

l1�x
1; x2� � q�u1; u2��x1�u1�x2u2 �

Xx1
y1�0

�D2 
 l2��y
1; x2�:

(3.7)
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The remaining gauge invariance is"XL1
x1�0

�D2 
 l2��x1; x2� � q�u1; u2��x2u2

#
	 � 0: (3.8)
IV. CONFINEMENT AT LEADING ORDER

The splitting (3.4) and (3.5) is not 90� rotation invariant.
Nonetheless, if perturbation theory in V makes sense, this
rotation invariance should be restored at sufficiently high
orders. Notice that H0 is a set of decoupled �1�
1�-dimensional lattice chiral nonlinear sigma models,
with global symmetry SU�N�L � SU�N�R, plus an extra
term at the boundary x1 � 0 (this is a sum of unitary
matrix-model Hamiltonians). The on-shell properties of
these sigma models have been completely determined;
the Bethe Ansatz [8] and analytic S-matrix theory [9]
determine the spectrum in the renormalized continuum
limit.

Let us briefly describe the particles of the chiral
SU�N�L � SU�N�R model. There are fundamental particles
with mass m1 transforming as the fully antisymmetric
tensor representation of SU�N�L � SU�N�R. The particles
are labeled by a quantum number n � 1; . . .N � 1. The
particle with n > 1 is a bound state of n fundamental
particles. We may regard the bound state of n particles as
a bound state of N � n antiparticles. There is no singlet in
the one-particle spectrum (which would correspond to n �
N). The particles have masses

mn � m1

j sinn*
N j

sin*
N

; n � 1; . . . ; N � 1;

where the mass gap m1 is of the form

m1 �
C
a
�gK2
0 e��K1=g20� � 
 
 
�

�
C
a



�e2a�K2=2 exp�

K1

e2a
� 
 
 


�
; (4.1)

where C is a nonuniversal constant, K1 � �1 and K2 �
4* are determined from the one- and two-loop coefficients
of the chiral-model beta function [15], respectively, and the
corrections are nonuniversal.

Suppose that there are no charges present. The remain-
ing gauge invariance (3.3) means that we impose on the
states 	 of the chiral model at x2 the constraints

XL1
x1�0

R2�x
1; x2 � a�l2�x

1; x2 � a�	 �
XL1

x1�0

l2�x
1; x2�	:

(4.2)

The meaning of (4.2) is that if the state of the chiral model
at some particular x2 transforms as a vector with some set
of weights under SU�N�L, then the state of the chiral model
at x2 � a transforms the same way under SU�N�R.
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For the ground state 	�0�
0 , which is a product of chiral-

model ground states, each side of (4.2) is automatically
zero; for the Hohenberg-Mermin-Wagner theorem guaran-
tees that it is a singlet under both the left global SU�N�L
and under the right global SU�N�R invariances.

The leading-order Hamiltonian describes a theory which
confines fundamental charges separated in the 2-direction.
We will show that this is true by two different lines of
reasoning. The first proof is more in line with the way
people usually think about phenomena in gauge theories.
The second proof is a direct utilization of the concepts we
have used in the previous section and this one.

Here is the first proof: suppose that a quark is placed at
u1; u2 and an antiquark at u1; y2 � u2. Gauge-invariant
states are of the form

jCi � A�u1; y2�y
Y

link2C

U�link�B�u1; u2�yj0i; (4.3)

for some path C of links join the quark to the antiquark,
whose creation operators are Ay and By, respectively. The
lowest-energy state in the presence of the sources is a
superposition of such states. The Hohenberg-Mermin-
Wagner theorem states that for a Hamiltonian with a global
continuous symmetry, there is no spontaneous symmetry
breaking. In the unperturbed vacuum, therefore,
h0jU2j0i � 0. This means that the action of U2 on the
chiral-sigma-model ground state produces a superposition
of excited states only. Thus the expectation value of H0 in
any state (4.3) must be bounded below by the gap times the
separation of the fundamental charges, i.e.

hCjH0jCi �
m1

a
jy2 � u2j; (4.4)

which means that there is confinement of fundamental
charges, with string tension m1=a. We call this phenome-
non ‘‘vertical confinement,’’ because confinement occurs
in the 2-direction.

Now for the second proof: the constraint (3.8) has the
form

XL1
x1�0

R2�x1; x2 � a�l2�x1; x2 � a�	� q�u1; u2��u2x2	

� q�u1; u2��u2y2	

�
XL1

x1�0

l2�x1; x2�	: (4.5)

This tells us that if the chiral model at u2 � a is in an
SU�N�L singlet state (such as the vacuum), then the chiral
model at u2 cannot be in an SU�N�R singlet. Thus the chiral
model at u2 is in an excited state. By continuing to use (4.5)
we conclude that all the chiral models for x2 satisfying
u2 � x2 � y2 are excited. In this way, we obtain the same
result for the vertical string tension as that given above.
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A rectangular Wilson loop of size S1 � S2 is

A�S1 � S2� � TrW�x1; x2; S2�
yW�x1 � S1; x2; S2�; (4.6)

in our gauge, where

W�x1; x2; S2� � U2�x1; x2 � S2� 
 
 
U2�x1; x1�:

Correlation functions of U2 decay exponentially. We ex-
pect that for large S1

h0j�U2�x
1; x2�y�a

bU2�x
1 � S1; x2�c

dj0i

’ Dbd
ac exp��m1S1�:

The Wilson loop expectation value is a product of S2=a
such correlation functions, and therefore

h0jA�S1 � S2�j0i ’ exp
�
�

m1

a
S1S2

�
: (4.7)

This is an area law, with the same string tension m1=a
found above.

There is no ‘‘horizontal confinement’’—that is, there is
no confinement in the 1-direction—yet. Horizontal con-
finement will only appear if the perturbation $V �
g20V=�2a� is taken into account. This is because the con-
straint consistent with the presence of a quark at x1; x2 and
an antiquark at y1; x2 with y1 � x1 is (3.3), which is
satisfied by the unperturbed vacuum. Thus, if V is ne-
glected, there is no force between a quark-antiquark in
the 1-direction. The appearance of horizontal confinement
in perturbation theory will be demonstrated in Sec. VI.

V. WEAK-COUPLING PERTURBATION THEORY
AND INFRARED FINITENESS

If L1 and L2 are kept finite, the spectrum of the
Hamiltonian H0 � $V is purely discrete. Let us consider
this spectrum to second order in Rayleigh-Schrödinger
perturbation theory:

En � E�0�
n � $E�1�

n � $2E�2�
n � 
 
 
 ;

where

E�1�
n � h	�0�

n jVj	�0�
n i;

E�2�
n � �

X
m�n

jh	�0�
n jVj	�0�

m ij2

E�0�
m � E�0�

n

; . . . ;
(5.1)
054503
and j	�0�
n i are the eigenvectors of H0 with eigenvalues E�0�

n .
The purpose of this section is to show that the corrections
to the vacuum energy E�1�

0 and E�2�
0 are proportional to L1 �

L2. This happens for two reasons: (1) the ground state of
the chiral model is ‘‘disordered,’’ i.e., two-point functions
fall off exponentially, and (2) the unperturbed vacuum is a
singlet, simplifies the form of V acting on this vacuum to
(3.6). Our philosophy is close to that of Mandelstam [10] in
this regard.

The first correction to the vacuum energy is

E�1�
0 � �h	�0�

0 jL2
XL1

x1�0

Xx1
y1�0

XL1
z1�x1�a

�D2l2�y
1; x2��T

�D2l2�y
1; x2�j	�0�

0 i:

Correlation functions of l2 and R2l2 must decay exponen-
tially with the distance, and therefore this quantity will
have the form

E�1�
0 ’ �L2

XL1�a

x1�0

Xx1
y1�0

XL1
z1�x1�a

e�m1jy1�z1j: (5.2)

The dominant contribution to this expression comes from
y1 � z1. Since y1 � x1 < z1, E�1�

0 is proportional to the
volume L1L2.

Next we sketch the proof that the second-order correc-
tion to the vacuum energy also scales linearly with the
volume. Notice that the coefficient of each energy denomi-
nator in the second correction (5.1) is nonpositive. Thus

jE�2�
0 j <

1

m1

X
m�0

jh	�0�
0 jVj	�0�

m ij2

�
1

m1
�h	�0�

0 jV2j	�0�
0 i � �h	�0�

0 jVj	�0�
0 i�2�: (5.3)

The connected vacuum expectation value on the right-hand
side of (5.3) has the following form:

jE�2�
0 j <

L2

m1

XL1
x1�0

XL1
w1�0

C�x1; w1; x2�;

where
C�x1; w1; x2� �
X
r

Xx1
y1�0

XL1
z1�x1�a

Xz1
u1�0

XL1
v1�w1�a

�h	�0�
0 jD2l2�y

1; x2�TD2l2�z
1; x2�D2l2�u

1; x2 � ra�TD2l2�v
1; x2 � ra�j	�0�

0 i

� h	�0�
0 jD2l2�y

1; x2�TD2l2�z
1; x2�j	�0�

0 ih	�0�
0 jD2l2�u

1; x2 � ra�TD2l2�v
1; x2 � ra�j	�0�

0 i�; (5.4)
and where r � 0;�1. The chiral model is a massive local quantum field theory, so that vacuum correlation functions must
cluster for the dominant part of the summations in (5.4). Therefore this expression is approximated well by
-5
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C�x1; w1; x2� �
X
r

Xx1
y1�0

XL1
z1�x1�a

Xz1
u1�0

XL1
v1�w1�a

�h	�0�
0 jD2l2�y

1; x2�TD2l2�u
1; x2 � ra�j	�0�

0 ih	�0�
0 jD2l2�z

1; x2�T

�D2l2�v
1; x2 � ra�j	�0�

0 i � h	�0�
0 jD2l2�y

1; x2�TD2l2�v
1; x2 � ra�j	�0�

0 ih	�0�
0 jD2l2�z

1; x2�T

�D2l2�u1; x2 � ra�j	�0�
0 i�: (5.5)
By using (3.3) we can write each term of (5.5) as something
which vanishes exponentially away from x1 � w2. For
example, consider the first factor of the first term:

First Factor �
Xx1

y1�0

Xz1
u1�0

h	�0�
0 jD2l2�y

1; x2�T

�D2l2�u
1; x2 � ra�j	�0�

0 i: (5.6)

If x1 � z1, we may write this as

F:F: � �
Xx1

y1�0

XL1
u1�z1�a

h	�0�
0 jD2l2�y

1; x2�T

�D2l2�u1; x2 � ra�j	�0�
0 i; (5.7)

and we see that this expression is finite as L1 ! 1. On the
other hand, if x1 � z1, we rewrite (5.6) as

F:F: � �
XL1

y1�x1�a

Xz1
u1�0

h	�0�
0 jD2l2�y

1; x2�T

�D2l2�u1; x2 � ra�j	�0�
0 i; (5.8)

and reach the same conclusion. Since each factor of each
term behaves this way, we can conclude that the second-
order correction to the vacuum energy can increase at most
linearly with L1.

Infrared finiteness of the vacuum energy to first and
second order in perturbation theory inspires confidence
that it should hold to all orders. The main complication
beyond the second order is the lack of nonpositivity or non-
negativity of products of matrix elements. We believe that
careful application of the linked-cluster expansion, assum-
ing clustering in the chiral-sigma model, can provide a
proof to all orders.
VI. HORIZONTAL CONFINEMENT

In Sec. IV we showed that quarks are confined vertically,
in the 2-direction, but not horizontally, in the 1-direction, at
the zeroth order of the weak-coupling expansion. To see
what happens beyond this order, it is necessary to examine
the quark-antiquark potential in perturbation theory. This is
very straightforward to do.

If a quark is located at u1; u2, and an antiquark is located
at v1; u2 with v1 > u1, the electric-field operator in the
1-direction is given by
054503
l1�x
1; x2� � q�u1; u2��x1�u1�x2u2 � q�v1; u2��x1�v1�x2u2

�
Xx1

y1�0

�D2 
 l2��y
1; x2�: (6.1)

The constraint (3.3) is unmodified. Thus, the unperturbed
states and energies are unaffected by these two charges, as
we claimed in Sec. IV. However, to first order in perturba-
tion theory, there is a new contribution to E�1�

0 equal to

�E�1�
0 � $CNjv

1 � u1j; (6.2)

where CN is the smallest eigenvalue of the Casimir of
SU�N�, q2 � CN1, by (2.5). Thus, to first order in pertur-
bation theory, the horizontal string tension is $

a CN. What is
especially remarkable about this result is that we can see
clearly an electric string forming along the shortest path
connecting the two quarks.

What is happening physically is that the vacuum remains
undisturbed by the charges and prevents the penetration of
electric flux. To this low order of perturbation theory, we
have a cost of at least m1 to excite the chiral model at x2

and x2 � a. Thus there is a string tension equal to the �1�
1�-dimensional string tension through an electric Meissner
effect. We do not have to appeal to the condensation of
some kind of magnetic charge to make this interpretation.
At higher orders of perturbation theory, the string of elec-
tric flux can presumably fluctuate; these corrections are
needed to reliably set $ � g20=2a.

VII. CONCLUSIONS

In this paper, we have shown that lattice gauge theories
in two space and one time dimension confine charges,
through an anisotropic weak-coupling expansion. Though
we cannot exactly evaluate the terms in this expansion, by
just using some general knowledge of the chiral nonlinear
sigma models, we can make precise statements about these
terms.

The astute reader may wonder if the methods developed
here can work for the oldest known example of nontrivial
confinement: lattice compact �QED�2�1 [1]. The answer is
that they do not. In this Abelian gauge theory, we would
expand about the states of the U�1� nonlinear sigma model.
This model has a massless phase at weak coupling, so we
would not obtain vertical confinement and area-law behav-
ior of the spacelike Wilson loop. In fact, our perturbation
method makes no sense at all for lattice �QED�2�1. The
reason is that correlations of the operator l�x1; x2� �
l�x1; x2 � a� (the adjoint-representation covariant deriva-
-6
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tive is simply the ordinary lattice derivative) do not fall off
sufficiently fast to make

P
l21 directly proportional to the

volume. The infrared divergence in the vacuum energy,
which concerned us so much, really happens in the Abelian
theory. This divergence is not real, but is an artifact of our
methods. Our weak-coupling expansion seems peculiarly
suited to non-Abelian theories in this regard.

We have assumed that a mass gap exists in the �1�
1�-dimensional SU�N� chiral model. At strong coupling,
this can be proved rigorously with a cluster expansion, in
the Euclidean lattice formulation. Perhaps a fully rigorous
proof can be made of confinement with g0 large, but $
small.

Of the questions raised by our analysis we think that six
stand out as important. We suspect, however, that only the
first, second and possibly the third can be answered in the
near future.

The first and probably easiest important question is
whether the infrared finiteness of our perturbation series
exists beyond the second order. We hope to be able to settle
this issue soon. If settled affirmatively, the series probably
does not converge, but may be Borel summable.

The second question is whether adjoint matter is con-
fined for finite N. This is certainly happening at first order
in the horizontal direction. We believe that this property
will disappear at higher orders.

The third question is raised by the fact that our mass
scales are set by (4.1), with one exception (the horizontal
string tension). All these quantities are nonzero for any
positive value of a. We believe, however, that we should
still have a mass gap and gap confinement as a ! 0,
provided the continuum coupling constant g0=�

���
a

p
� is

kept fixed. Our vertical string tension, found in Sec. IV is
too small, and our horizontal string tension found in
Sec. VI is known only for small $. These numbers should
both be proportional to g20=a, the square of the continuum
coupling constant. Perhaps this difficulty can be removed
by resummation of the perturbation series or by a
renormalization-group argument.

The fourth question is whether we can do a better job of
calculating energies and states. Perhaps we could accom-
plish this, if Bethe’s Ansatz for the chiral model could be
carried out in a formalism where both the left- and right-
handed SU�N� symmetries are manifest in the
Hamiltonian. In the work of Polyakov and Wiegmann [8]
only one of these is manifest; the other appears in the S
054503
matrix, but its interpretation is obscure. If a version of
Bethe’s Ansatz with both symmetries manifest can be
found, there is the possibility of a better understanding of
the �2� 1�-dimensional gauge theory. One could use what-
ever regularization is most expedient for diagonalizing the
Hamiltonian, instead of the lattice. It may be a long time
before this question can be seriously addressed (perhaps
never). We believe a more likely path to success is to
expand some version of the axial-gauge Hamiltonian about
a system of �1� 1�-dimensional field theories other than
chiral-sigma models. It would be a stroke of good luck, to
have an expansion about exactly solvable field theories
where the symmetries are easy to understand.

The fifth question is whether our results can be under-
stood in the context of condensation of magnetic charge. If
a picture of condensing composite operators could work in
the �1� 1�-dimensional chiral models (no one has suc-
ceeded in showing this), then operators defined on sets of
points of one dimension higher should be important for
confinement in �2� 1� dimensions.

The last and most important question is whether
�QCD�3�1 could be studied by our methods. This is, we
hope to no one’s surprise, a much harder problem. A lattice
gauge theory in �2� 1� dimensions is particularly amena-
ble to the methods discussed here, because if the square of
electric field in the 1-direction is dropped from the
Hamiltonian, it easily breaks apart into �1�
1�-dimensional Hamiltonians we know a lot about. This
does not happen in �3� 1� dimensions. The Hamiltonian
breaks into �2� 1�-dimensional Hamiltonians with both
gauge fields and matter in the adjoint representation. These
models are probably not even renormalizable, but seem
worthy of investigation.
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