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We compare the lattice results on QCD phase diagram for two and three flavors with the hadron
resonance gas model (HRGM) calculations. Lines of constant energy density � have been determined at
different baryo-chemical potentials �B. For the strangeness chemical potentials �S, we use two models.
In one model, we explicitly set �S � 0 for all temperatures and baryo-chemical potentials. This
assignment is used in lattice calculations. In the other model, �S is calculated in dependence on T and
�B according to the condition of vanishing strangeness. We also derive an analytical expression for the
dependence of Tc on �B=T by applying Taylor expansion of �. In both cases, we compare HRGM results
on Tc ��B diagram with the lattice calculations. The agreement is excellent, especially when the
trigonometric function of � is truncated up to the same order as done in lattice simulations. For studying
the efficiency of the truncated Taylor expansion, we calculate the radius of convergence. For zero- and
second-order radii, the agreement with lattice is convincing. Furthermore, we make predictions for QCD
phase diagram for nontruncated expressions and physical masses. These predictions are to be confirmed
by heavy-ion experiments and future lattice calculations with very small lattice spacing and physical
quark masses.
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I. INTRODUCTION

The QCD phase diagram at finite temperatures and
densities attracted increasing attention [1], especially as
it became possible to perform lattice QCD simulations at
finite baryo-chemical potential �B [2–5]. The numerical
studies for the equation of state at finite �B provides a
valuable framework for understanding the experimental
signatures for the phase transition from confined hadrons
to quark-gluon plasma (QGP). The heavy-ion experiments
are aiming to explore the QCD phase diagram. Therefore,
it is of great interest to show the interrelation between
strangeness and baryo-chemical potentials and Tc in had-
ron resonance gas model (HRGM) compared with the
available lattice QCD simulations.

It is known that QCD phase diagram has a very rich
structure. From numerical simulations, we know that the
location of the phase transition line depends on the quark
masses and flavors and the way of including the strange
quark chemical potential �s at different values of �B and
T. The isospin chemical potential can play an additional
role. But relative to �B and �s, the isospin chemical
potential is very small, so that we can assume an entire
symmetry in light quark potentials and therefore ignore the
isospin chemical potential.

The first point in QCD phase diagram, namely, the point
at Tc and � � 0, has been a subject of different lattice
simulations [2–8]. We know so far that for two quark
flavors (nf � 2) the transition is second order or rapid
crossover and the critical temperature is Tc � 173 �
8 MeV. For nf � 3, we have a first-order phase transition
and Tc � 154 � 8 MeV. For nf � 2 � 1, i.e., two degen-
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erate light quarks and one heavy strange quark, the tran-
sition is crossover and Tc � 173 � 8 MeV. For the pure
gauge theory, Tc � 271 � 2 MeV and the deconfinement
phase transition is first order.

The lattice QCD simulations at �B � 0 is still lacking
an effective exact algorithm and suffer from the sign
problem. The fermion determinant gets complex and there-
fore the conventional Monte Carlo techniques are no lon-
ger applicable, since the lattice configurations can no
longer be generated with the probability of the
Boltzmann weight. However, during the last few years
considerable progress has been made to overcome these
problems [2–5].

The significant numerical results on positioning the
QCD phase diagram we have so far is that the transition
line can be described by a parabola. This simple relation
can be viewed as a reflection of the truncations done in the
Taylor expansions of different thermodynamic quantities
calculated on lattice. In addition, we know from effective
models such as bootstrap and Nambu-Jona-Lasinio models
that the structure of the phase diagram is complex. The
freeze-out curve takes a much different behavior at large
chemical potential [9,10]. Nevertheless, one might think
that for small chemical potential (�q � Tc) the curvature
of Tc-dependence upon �q can be fitted as a parabola,
where �q is the quark baryo-chemical potential. The situ-
ation at very large chemical potentials is not clear. One
might need to take into account other effects, such as
quantum effects at low temperatures [11–16], which might
be able to describe the change in the correlations from
confined hadrons to coupled quark pairs.

In present work, we take advantage of our previous work
[17–19] on analysis the critical temperatures Tc for differ-
ent quark masses and on reproducing the lattice thermo-
-1  2005 The American Physical Society
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dynamics at zero and finite �B by HRGM. We assumed
that the deconfinement is driven by a constant energy
density. We have shown [17,18] that the degrees of free-
dom rapidly increase at �c�Tc;�B � 0�. Here, we assume
that �c remains constant along the whole phase transition
line [19,20], �c�Tc; 0� � �c�Tc;�B�. Concretely, we pro-
pose that the existence of different transitions does not
affect the assumption that �c is constant for all
�B-values. We have to emphasize here that it is not pos-
sible in the framework of this model to make any statement
about the transition at very large �B and low T. As T !
Tc, HRGM is no longer applicable. The nature of the
degrees of freedom in this region is very different from
that of the nearly noninteracting QGP at high T and low
�B. The message we have in this paper is that the condition
driving the QCD phase transition at finite T and �B [17–
19] is the energy density. Its value is not affected by the
conjecture of existing of different transitions along the
whole �B-axis.

The model will be presented in Sec. II. In Sec. III, we
introduce expressions for the lines of constant Tc. The lines
of constant energy density are given in Sec. IV. The results
are discussed in Sec. V. Section VI is devoted to the radius
of convergence. In Sec. VII, we summarize the
conclusions.

II. THE MODEL

Assuming an ideal quantum gas consisting of pointlike
hadron resonances, the canonical partition function for one
particle and its antiparticle reads

Z�V; T;�� � g
V

2�2

Z 1

0
dkk2fln�1 � e��"���=T�

� ln�1 � e��"���=T�g; (1)

where � stand for bosons and fermions, respectively. " �

�k2 �m2�1=2 is the single-particle energy and g is the spin-
isospin degeneracy factor. Under the given assumptions,
one can sum up the contributions from all resonances
pieces, so that

lnZ�id��V; T;�� �
X1
i

lnZi�V; T;�i�: (2)

In this expression, there are two important features in-
cluded; the kinetic energies and the summation over all
degrees of freedom and energies of resonances. On the
other hand, we know that the formation of resonances can
only be materialized through strong interactions [21];
Resonances (fireballs) are composed of further resonances
(fireballs), which in turn consist of resonances (fireballs),
and so on.

In spite of this, if one would like to take into considera-
tion all kinds of resonance interactions in HRGM, then, for
instance, by means of the S-matrix, we can rewrite Eq. (2)
as an expansion of the fugacity term.
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lnZ�int��V; T;�� � lnZ�id��V; T;��

�
X1
��2

a��T� exp���=T�: (3)

S-matrix describes the scattering processes in the thermo-
dynamical system [22]. a��T� are the so-called virial co-
efficients and the subscript � refers to the order of the
multiple-particle interactions.

a��T� �
gr

2�3

Z 1

M�

dwe�"r�w�=T
X
l

�2l� 1�
@
@w

�l�w�: (4)

The sum runs over the spatial waves. The phase shift �l�w�
of two-body inelastic interactions, for instance, depends on
the resonance half-width �r, spin and mass of produced
resonances,

lnZ�int��V; T;�� � lnZ�id��V; T;�� �
gr

2�3

�
Z 1

M�

dw
�re

�"r�w���r�=T

�Mr � w�2 � ��r2 �
2
: (5)

By inserting �� in place of � in Eq. (5), we take into
consideration the two-particle inelastic interactions, from
which the antiparticles will be produced. For narrow width
and/or at low T, the virial term reduces, so that we will get
the nonrelativistic ideal partition function of the hadron
resonances with effective masses M�. In other words, the
resonance contributions to the partition function are the
same as that of free particles with some effective mass. At
temperatures comparable to �r, the effective mass ap-
proaches the physical one. Thus, at high temperatures,
the strong interactions are taken into consideration via
including heavy resonances, Eq. (2). We therefore suggest
to use the canonical partition function Eq. (2) without any
corrections. Furthermore, we do not apply the excluded
volume corrections. We include all hadron resonances with
masses up to 2 GeV, such a way we avoid the singularities
expected at Hagedorn temperature [17,18].

In the two sections which follow, we discuss how to
include the strangeness chemical potential �S in HRGM
and lattice QCD.

A. �s in hadron resonance gas model

The hadron-based chemical potentials �B;�S are re-
lated to the quark-based ones, �q;�s

�B � 3�q; �S � �q ��s; (6)

Assuming that the isospin and charge chemical potentials
are vanishing, we use the following combination for the
hadron resonances

� � 3b�q � s�s; (7)

where b and s are the baryon and strange quantum num-
bers, respectively. Obviously, this expression is valid for
-2
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baryons as well as for mesons. The quantum numbers are
entirely conserved.

The initial conditions in heavy-ion collisions apparently
include zero net strangeness. This is expected to remain the
case during the whole interaction unless an asymmetry in
the production of strange particles happens during the
hadronization. As we are interested in the hadron thermo-
dynamics and location of QCD phase transition, we sup-
pose that the net strangeness is entirely vanishing. The
average strange particle number reads

hnsi �
1

N

XN
i

"�i�
s
@ lnZ�i��V; T;��

@"�i�
s

: (8)

lnZ is given in Eq. (3) and �S is given in Eq. (6). "s �
exp��S=T� is the fugacity factor of s quark. The procedure
used to calculate the quark-based �s is the following: For
given T and �q (or �B), we iteratively increase �s and in
each iteration, we calculate the difference <ns >�<
n �s > , Eq. (8). The value of �s which disposes zero net
strangeness is the one we read out and shall use in calcu-
lating the thermodynamic quantities. As in Eq. (6) the
relation between �s and �S is given by taking into con-
sideration the baryonic property of s quark. The resulting
�s for different �q (or �B) and T are depicted in Fig. 1.
From this numerical method, we fit �s as a function of T
and �B,

�s �
0:138#&3

1 � 2:4&2 � 2:7&3 ; (9)

where # � �q=T and & � T=Tc.
Let us note here that for these calculations we have

rescaled the resonance masses in order to be comparable
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FIG. 1 (color online). The strange quark chemical potential �s
vs T=Tc for �q=T � 1 and �q=T � 0:5 (straight lines). The
results are fitted according to Eq. (9). At T � 0, we find that
�q � �s � 0. As T ! Tc, the strangeness chemical potential
approaches the baryo-chemical potential, �s � �q. The units
used here are
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'

p
� 420 MeV.
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to the quark masses used in lattice QCD simulations. The
procedure of giving unphysically heavy masses to the
hadron resonances is introduced in [17,18]. In these calcu-
lations, the mass of lightest Goldstone meson becomes
m� � 770 MeV and consequently, the critical temperature
gets almost as large as 200 MeV at �B � 0.

In order to guarantee vanishing net strange particle
numbers in HRGM as the case in heavy-ion collisions, it
is not enough to simply set �s � 0 and consequently,
�S � �q � �B=3 in Eq. (8). However, there are publica-
tions in which the authors have assigned �s to zero in
hadron matter and afterwards applied the Gibbs condition
for the first-order phase transition to QGP. The reason is
obvious. Aside the baryons, the strange mesons with differ-
ent contents of s quarks play determining roles at different
temperatures and therefore, affect the final results, Eq. (6).
Setting �s � 0, leads to violating the strange quantum
numbers. Nevertheless, we will show here calculations in
which we set �s � 0. We do this in order to extensively
compare with lattice results. We apply this assignment in
order to check the ability of HRGM in reproducing the
current lattice simulations [20]. After accomplishing this
successfully, we can go beyond the lattice constrains to
show the physical picture. We will make predictions for
QCD phase diagram for physical masses and nontruncated
Taylor series for thermodynamical expressions. These pre-
dictions are to be confirmed by heavy-ion experiments and
future lattice calculations with very small lattice spacing
and physical quark masses.

For completeness of the discussion, we recall the situ-
ation in the plasma regime (see also next section). For
conserving strangeness at T > Tc, we have to suppose
that �S � 0. �S consists of one baryonic part �B=3 and
another part coming from the strangeness quantum number
��s. From Eq. (6), we then get

�s � �q � �B=3: (10)

This result is numerically confirmed in Fig. 1. For �q � 0
(or �B � 0), we find that �s � 0 for all temperatures. �s
increases with increasing both �q and T. At Tc, we find
that �q � �s. Therefore, we can suggest to set �q � �s

for all temperatures above Tc.
We can so far summarize that �S in the hadron matter

has to be calculated in dependence on �B and T under the
assumption that the net strangeness is vanishing. In the
QGP phase, one might fulfill this assumption by setting
�s � �B=3. As we will see later, in lattice simulations,
one assigns �S � �s � 0. We deal with all these cases in
this work.

B. �s in lattice QCD

In the Euclidian path integral formulation, the partition
function of lattice QCD at finite T and � reads
-3
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FIG. 2. The energy density normalized to T4 given in depen-
dence on T=Tc for different quark masses mq and temporal
lattice dimensions N0. This figure is reported in Ref. [25].
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Z�T;�� � Tre��H��N�=T;

�
Z

D D � DAeSf�V;T;���Sg�V;T�; (11)

where � ; � � and A are the fermion and gauge fields,
respectively. The chemical potential � is given in
Eq. (7). By Legendre transformation of the Hamiltonian
H, we get the Euclidian action S �

R1=T
0 dt

R
V d

3xL. The
fermionic action is

Sf � a3
X
x

"
ma � x x �

1

2

X4
k�1

� � x,k x�k̂ � � x�k̂,k x�

��a � x,4 x

#
; (12)

where a is the lattice spacing. As given in Eq. (8), the
number density of the quarks with flavor number x is
obtained by derivation with respect to �x,

nx �
@
@�x

lnZ�T;�x�: (13)

For checking the dependence of �s on �q and conse-
quently on �B, it is enough to approximate the fermionic
part of lattice QCD Lagrangian for three quark flavors as

L � �q

 X
x2fu;dg

� x,4 x

!
��s

� s,4 s;

� �qnu ��qnd ��sns: (14)

To take into account the conservation of the baryon and
strange quantum numbers, the summation in last expres-
sion has to run over s quarks, too. By doing this, last term
turns to be ��q ��s�ns. Then we expect that the strange-
ness on lattice vanishes at �s � �q. But from Eq. (14),
which reflects the situation in current lattice simulations,
we find that ns � 0 for �s � 0.

As discussed in the previous section, the strangeness in
QGP is conserved at �s � �q � �B=3. In the hadron
regime, especially at large �B, �s (or �S) has to be
calculated as a function of T and �B (Fig. 1). In spite of
these considerations, the reliable lattice QCD simulations
are still limited to �B � 3Tc. As we will see in Sec. V, at
this small value, there is practically no big difference
between �s � 0 and �s � f�T;�B�.

III. LINES OF CONSTANT Tc

A. Tc��� in hadron resonance gas model

In Boltzmann limit, the energy density in an ideal quan-
tum system consisting of one particle and its antiparticle
can be expressed as

��T;�� �
g

�2 Tm
2

	
mK1



m
T

�
� 3TK2



m
T

��
cosh



�
T

�
:

(15)
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� is given in Eq. (7). We can divide this expression into
two sectors: one meson- m and one baryon sector b
[18,23],

"h�T;�� � "m�T� � "b�T� cosh��=T�: (16)

Applying truncations in the Taylor expansions of
cosh��=T� up to the second order of �=T—as done in
lattice calculations [24]—we can estimate the lines of
constant Tc in HRGM. In doing this, we assume that
"h�T;�� � "h�Tc; 0�. Furthermore, we assume that the
dependence of energy density on the quark mass is quite
small. We see this in Fig. 2 which is reported in Ref. [25].
At Tc and for the same temporal lattice dimensionN0, there
is very small change in "c for different quark masses. The
latter are related to the pion masses via m2

� / mq.
The starting point in expressing Tc��B� for constant

ratios �B=T is to expand Eq. (16) around the points T �
Tc and �B � 0. The second-order expansion gives

"h�T;�B� � "h�Tc; 0� �
	
@"h�Tc; 0�

@T
�T � Tc�

�
1

2
�2
B
@2"b�Tc; 0�

@�2
B

�
;

� "h�Tc; 0� �
	
@"h�Tc; 0�

@T
�T � Tc�

�
1

2
"b�Tc; 0�



�B

T

�
2
�
: (17)

Under the assumptions given above, this leads to the
following parabola:

Tc��B�

Tc��B � 0�
� 1 �

9

2

1

Tc��B � 0�

	
"b�Tc; 0�
@
@T "h�Tc; 0�

�
�q

T

�
2
;

(18)
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FIG. 3 (color online). T ��B phase diagram for two quark
flavors nf � 2. The vertical lines give the lattice results [4]. The
short lines show the results according to a constant �c. The long
ones are for constant Tc. The lattice simulations are performed
for large quark mass. The corresponding Goldstone pion gets a
mass of 770 MeV. The solid circles give our results for heavy
quark masses. The results for physical quark masses are given by
the open circles.
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where �q � �B=3. In order to map out the QCD phase
diagram by using this analytic expression, we merely need
to calculate the baryon energy density �b at Tc and �q � 0
and the derivative of the hadron energy density with re-
spect to T, @"h�Tc; 0�=@T. The results are given in Sec. V.
Evidently, it is possible to extend the above expression to
include further higher terms of �q=T.

Then to determine Tc at given �B, we apply, in addition
to the above analytical method, the condition of constant
critical energy density [19,20] (see Sec. IV). In this case,
Tc is defined as the temperature at which the energy density
in HRGM reaches a certain critical value. This value can be
taken from lattice QCD simulations at �B � 0.

B. Tc��� in lattice QCD

In lattice QCD simulations, the critical temperature
Tc��� is to be calculated from the pseudocritical coupling
1c��� by determining the susceptibility peak in either the
Polyakov loop or the chiral condensate in 1�� dimen-
sions. The lattice beta function 1�a� which can be obtained
from the string tension is needed in order to express the
results in physical units. From the first nontrivial Taylor
coefficients of Tc���, we get

d2

d�2
Tc��� � �

N�2
0

Tc�� � 0�

@21c���

@�2



a�1 @a

@1

�
; (19)

where N0 is the temporal lattice dimension.
In the lattice QCD simulations [4] with nf � 2 and

quark mass amq � 0:1, the dependence of Tc on �q has
been found to take the following (parabola) expression:

Tc��q�

Tc��q � 0�
� 1 � 0:070�35�


 �q

Tc��q � 0�

�
2
: (20)

In other lattice QCD simulations with the same flavor
number but quark masses 4 times heavier than the physical
masses [3],

Tc��q�

Tc��q � 0�
� 1 � 0:050�34�


 �q

Tc��q � 0�

�
2
: (21)

It has been concluded [4] that the last relation remains
almost unchanged for amq � 0:005. In this regard, we
have to remember that for small quark masses perturbative
beta function has been used. As we will see later, we
actually find an increase in the curvature with reducing
resonance masses from the values which very well simu-
late the current lattice calculations (m� � 770 MeV) to the
physical masses, at which the lightest Goldstone meson is
the physical pion (m� � 140 MeV).

The results from Eq. (20) are depicted in Fig. 3. In the
same figure, we plot Eq. (21). We also plot other lattice
results [4], namely, the short vertical lines which give Tc at
constant energy density.
nf � 3 lattice QCD results [26] for different quark

masses obtained so far can be summarized as
054502
Tc��q�

Tc��q � 0�
� 1 � 0:025�6�


 �q

Tc��q � 0�

�
2
; (22)

for amq � 0:1, and

Tc��q�

Tc��q � 0�
� 1 � 0:114�46�


 �q

Tc��q � 0�

�
2
; (23)

for amq � 0:005. Again, in these simulations the beta
function for the small quark masses has been calculated
perturbatively. The results from these two expressions are
depicted in Fig. 5 and 6 respectively. From other nf � 3
lattice QCD simulations [27],

Tc��q�

Tc��q � 0�
� 1 � 0:0610�90�


�q

T

�
2

� 0:00235�89�

�q

T

�
4
: (24)

The curvature from nf � 2 � 1 lattice simulations [28] has
been compared with the three flavor one [3] and concluded
that there is a complete agreement. As we will see in Fig. 6,
the most recent nf � 2 � 1 lattice simulations of [29]
result in a curvature smaller than those from other lattice
simulations. This can be understood according to the dif-
ferent fermionic actions used.

IV. LINES OF CONSTANT ENERGY DENSITY

In previous work [19], we have used HRGM in order to
determine Tc corresponding to a wide range of quark (pion)
masses at �B � 0. The masses range from the chiral to
pure gauge limits. We have seen that the condition of
-5
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constant energy density can excellently reproduce the
critical temperature Tc as a function of mq and nf. In
present work, we extend this condition to finite chemical
potentials �B. We use two models for including the
strangeness chemical potential �S. In the first model, we
calculate �S in dependence on �B and T according to the
condition of zero net strangeness. In the other one, we
explicitly set the quark-based �s � 0. The last case is
used in lattice QCD simulations. As given in Sec. II B,
the proper inclusion of �s in QGP and in lattice
Lagrangian is to assign to it the same value of �B=3.
Nevertheless, both choices can be accepted for the current
lattice QCD simulations, since the most reliable lattice
calculations are currently performed at small baryo-
chemical potentials (�q � Tc). Consequently, the strange-
ness chemical potential is expected to be much smaller or
at lest as small as the baryo-chemical potential.

As discussed above, in HRGM, the energy density at
finite chemical potential can be divided into two parts: one
from the meson sector and another one from the baryon
sector. For the first part, we can completely drop out the
fugacity term. For symmetric numbers of light quarks, the
baryo-chemical potential of mesons is vanishing. But for
strange mesons the strangeness chemical potential as-
signed to their s quarks should be taken into account. For
the baryon sector, the chemical potential is given by
Eq. (7).

The question we intent to answer is: which value has to
be assigned to the critical energy density at finite chemical
potentials? We recall the lattice QCD simulations. In
Fig. 2, we see that the energy density1 at Tc is not a singular
function but can rather be defined at different critical
values depending on nf and mq. This reflects the nature
of the phase transition, crossover. On the other hand, the
uncertainty in calculating the energy density on lattice is
very large, almost a factor of 2. The reason for this is the
uncertainty in estimating Tc, Eq. (20). As mentioned
above, Tc is determined according to maximum suscepti-
bility. The uncertainty in this quasi Tc is �10%. The
coefficients of T have additional �20%.

The critical energy density at which we define Tc��B� in
HRGM is taken from lattice QCD simulations at �B � 0
[8]. In lattice units, the dimensionless energy densities for
nf � 2 and 2 � 1 are "=T4jTc � 4:5 � 2 and � 6:5 � 2,
respectively. We take an average value and express it in
physical units. Thus, �c � 600 � 300 MeV= fm3.

As in [4], we assume that this value remains constant
along the phase transition line; �B-axis. The existence of
different phase transitions (crossover and first order) and
the critical endpoint, at which the transition is second
1Comparing full QCD with pure gauge results, we get a feeling
about the dependence of critical values on quark mass. �c=T4

seem to be different. On the other hand, taking into consideration
the different critical temperatures, we find that the �c are
comparable with each other.
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order, is assumed not to affect this assumption. As men-
tioned in Sec. III B, the phase transition line on lattice is to
be estimated according Eq. (19), i.e., up to ��=T�2.
Additional to this method, the line of constant energy
density has been calculated [4]. By comparing the two
lines, it has been found that they are almost coincident.
In other words, the constant �c can be used to estimate the
critical line at finite �B. We have to remember that the
lattice estimation of � has a very large uncertainty, � / T4.
Therefore, the transition line according to constant �c has a
larger uncertainty, because of the additional uncertainty in
the derivatives of �c with respect to �B and �2

B.
What are the consequences if the assumption of constant

�c��B� disregarding the uncertainty turned out to be in-
correct? To discuss such consequences, we first recall the
second law of thermodynamics.

@� � T@s� p��B@nB; (25)

where s, p and nB are the entropy, the pressure and the
baryon number density, respectively.

If �c were a decreasing function of �B, this means that
low incident energies are much more suitable to produce
the phase transition from confined hadrons to deconfined
QGP than the high incident energies. But the low limit
should be given by the freeze-out curve [10], i.e., the
hadronization phase diagram. We know from phenomeno-
logical observations that both freeze-out curve and phase
transition line are coincident at low �B (high incident
energy). For large �B the two lines are separated. The
freeze-out curve [10] is given by s=T3 � 7, entropy driven.
Then along the freeze-out curve it is expected that �
slightly increase with �B. This means the assumption
that �c decreases with increasing �B will give a phase
transition which has Tc much smaller than the freeze-out
temperature.

In the other case, that �c increases with increasing �B,
we expect the �c required for the phase transition gets
larger with decreasing the incident energy. According to
Eq. (25), the phase diagram is given by Tc � @�=@s at
constant nB and �B � @�=@nB at constant T. Then for
increasing �c��B�, the critical temperature is expected to
increase or at least remain constant. This result has the
consequences that the phase transition at large �B will be
difficult to materialize in heavy-ion collisions or impos-
sible. Also the phases of coupled quark pairs (color super-
conductivity) will be expected for very large �B or not
allowed at all.

Since we use constant �c down to low temperatures, one
might ask if there could be any relation between �c and the
experimental value of nuclear density. Obvioulsy at T � 0,
HRGM, Eq. (1), is no longer applicable. In this limit, we
suppose that the hadron gas is composed of degenerate
Fermi gas of nucleons. We can therefore calculate �B
corresponding to the normal nuclear density at T � 0
[10]. The value is 979 MeV. The energy density in this
-6
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limit reads

���B� �
3g

4�2m
4

"
�B

m

����������������
�2
B

m2 � 1

s 

�2
B

m2 �
1

2

�

�
ln��B

m �
��������������
�2
B

m2 � 1
q
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2

#
: (26)
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FIG. 4 (color online). The same as in Fig. 3. Here, we show the
results obtained from the condition of constant �c truncated up
the different Taylor orders. The truncation is obviously able to
describe the lattice QCD simulations for different quark masses
[4,27]. The solid lines give our predictions for nontruncated
trigonometric functions.
V. THE RESULTS

Since we want to compare HRGM with lattice results
[3,4], some details about the lattice simulations at �q � 0
are in order. Extensive details about HRGM are presented
in Refs. [17–19]. In order to avoid the sign problem in
lattice simulations [4], the derivatives of thermodynamic
quantities with respect to �B � 0 at the point Tc are first
computed and then their Taylor expansion coefficients in
terms of finite �q are calculated. The curvatures according
to Tc��B� and �c��B� are derived for different mq. For
instance for amq � 0:1, the corresponding pion mass in
lattice units for nf � 2 is am� � 0:958�2�, where a' �

0:271�10� [8]. This leads to m� � 773 MeV. Keeping
these features in mind, we performed our calculations for
physical and rescaled resonance masses. In Fig. 3, we find
that our results are coincide with the lattice ones. In
Ref. [3], the lattice simulations are performed with an
imaginary chemical potential for nf � 2 staggered quarks.
For � � i�I, the sign problem is obviously no longer
existing. Using analytic continuation of the truncated
Taylor series, one can then go to real �. The light quark
mass is 4 times the physical mass. The location of Tc at
�B � 0 has been extrapolated to the chiral limit. The
lattice results are represented by the short curves in
Figs. 3, 4, and 6.

A. Results for two flavors

From the canonical partition function Eq. (1), we can
derive the energy density at finite chemical potential � �

0 as

��T;�� � T
@T lnZ�T;��

@T
� T lnZ�T;��

��
@T lnZ�T;��

@�
;

�
g

2�2

Z 1

0
k2dk

"�k�

e"�k����=T � 1
: (27)

In Boltzmann limit and by taking into consideration only
one particle and its antiparticle, we get the expression
given in Eq. (15). It is obvious that the trigonometric
function included in last expression are not truncated. In
calculating this quantity in HRGM, we sum up over all
resonances we take into account.
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We first start with two flavors. It is not needed necessary
to care about the strangeness chemical potential. As dis-
cussed above, there are two lattice QCD simulations for
nf � 2. In the first one, reweighting methods, the physical
quantities which usually can be calculated at �B � 0
without any difficulties have responses at finite �B. The
responses are utilized to estimate the thermodynamic quan-
tities at finite �B. The other lattice simulations [3] use
imaginary �B and afterwards apply analytical continu-
ation. At given �B, Tc is determined as the temperature
at which the energy density � equals 600 MeV= fm3.

The results are plotted in Fig. 3. The solid circles repre-
sent the results for rescaled resonance masses. The open
circles represent the results for physical masses. The two
lines connecting the points are obtained by fits according to

Tc��q�

Tc��q � 0�
� 1 � c1


 �q

Tc��q � 0�

�
2
: (28)

The �q-values are restricted within the range 0 � �q �

Tc. �q is given in Eq. (6). For the rescaled heavy masses,
the fit parameters are c1 � 0:115�36� and Tc��B � 0� �
196:3 MeV. Plugging these parameters in Eq. (28), we get
the top line in Fig. 3. The comparison with the lattice
calculations Eq. (20) gives a satisfactory agreement, espe-
cially at low�B. Nevertheless, it is obvious that our results
at large �B lie below the lattice ones. The reason for this
discrepancy will be discussed later.

One might ask whether the pion gas with very heavy
masses would be able to describe the lattice results. To
answer this question, we refer to [17,18]. In order to
simulate the lattice QCD thermodynamics, for instance
the rapid increase in � near Tc, we need to include the
corresponding degrees of freedom in HRGM. A hadron gas
-7
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FIG. 5 (color online). The T ��B phase diagram for nf � 3.
The vertical short lines represent the lattice results [4]. The
above band corresponds to heavy quark masses. The bottom
one is for physical masses. The solid circles are our results for
heavy resonances and for �s � 0. The open circles are for �s �
f��B; T�. The squares give the results for the physical masses.
The curves are fitted according to Eq. (28).
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of pions can reproduce �15% of the lattice QCD thermo-
dynamics. Including heavier resonances gives the correct
QCD thermodynamics. Furthermore, for lattice calcula-
tions with very heavy quark masses (pure gauge) we
need to include the low-lying glueballs [18].

As given above, the coefficient in the front of ��q=T�2 in
Eq. (18) can be calculated in HRGM. For nonstrange
hadron resonances with rescaled masses, the coefficient
gets the value 0:0767. Comparing to Eq. (20), this value is
obviously much better than the value of c1 in describing the
lattice results. As we will see, this discrepancy is to be
related to the fact that c1 has been calculated from fitting Tc
at finite �B in the results which we have obtained from
nontruncated ��T;�B�. We should emphasize that all
Taylor terms that are higher than the second one are
explicitly excluded in deriving Eq. (18). This partially
explains the disagreement between HRGM and lattice
results shown so far. We also study the case for physical
resonance masses. The fit parameters are c1 � 0:195�21�
and Tc�� � 0� � 175 MeV. The coefficient in Eq. (18) is
found to be 0.1368.

In the following, we confront the lattice results with
HRGM results which have been obtained from truncated
expressions. We show the results in Fig. 4. We start with
results from entire Taylor expansion for heavy resonance
masses (solid line). This is equivalent to use Eq. (15)
instead of Eq. (27). We note that this line shows almost
the same behavior as that of the solid circles in Fig. 3. In
deriving Eq. (15), the Boltzmann limit is assumed. The
results from different truncations are also plotted. We find
that the energy density truncated up to the second or fourth
order of�=T can describe the lattice results better than the
solid line. The agreement between the curvatures of these
two lines and that from the analytical expression Eq. (18) is
excellent. The ability of truncated expression to produce
results comparable to the lattice ones is to be explained by
the fact that the lattice results themselves have been ob-
tained from truncated thermodynamic expressions.

We plot in the same figure the HRGM results with
physical masses. The curves obtained from different trun-
cation terms in Eq. (15) represent our predictions when it
will be possible to perform lattice simulations for two
quark flavors with physical masses. These predictions has
to be checked by future lattice simulations. We note that
the solid line is comparable to the bottom points plotted in
Fig. 3. The quark masses used in Ref. [27] are relative
heavy. Nevertheless, we see that the second order (dashed
line) agrees very well with these lattice results [27] (solid
circles).

B. Results for three flavors

We have to include strangeness chemical potential �S
(Sec. II A). Assuming that the three quarks are degenerate,
we can use the same critical energy density as done in
previous section. The results are shown in Fig. 5. The solid
054502
circles show the results for rescaled heavy resonance
masses. As done in lattice calculations, we first set �s �
0. The resulting points (solid circles) are fitted within the
range 0 � �q � Tc according to Eq. (28). The fit parame-
ters are Tc � 190 MeV and c1 � 0:1016. The coefficient
in front of ��=T�2 in Eq. (18) is 0.0505. Comparing with
Eq. (22), this value can describe the lattice curvature much
better than c1. We also calculate �s in dependence on �B
and T assuming strangeness conservation. The open circles
show the Tc ��B diagram corresponding to this value of
�s. We note that the former case (�s � 0) is much closer
to the lattice results than the latter one. The reason is, as we
mentioned above, that �s in lattice calculations used to be
assigned to zero.

The results for physical masses are also shown in Fig. 5.
The solid squares represent the results at �s � 0. These
points are fitted according Eq. (28). The fit parameters are
Tc � 164 MeV and c1 � 0:17. The coefficient in Eq. (18)
takes the value 0.1122, which agrees very well with
Eq. (23). The open squares represent the results at �s
that depends on �B and T. The results with rescaled
resonance masses are given as circles. For �s � 0, we
get results closer to lattice results than for �s �
f�T;�B�. In this figure, the energy density is calculated
according to Eq. (27). In other words, the results plotted
here are deduced from expression like Eq. (15), i.e., with-
out any truncations.

We plot in Fig. 6 the results from different truncations, in
order to compare HRGM results with lattice simulations.
For heavy masses the results are given in the top panel. The
results for physical masses are given in the bottom panel. It
is clear that the truncation up to the second order gives
results in a good agreement with the lattice simulations [4].
-8
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FIG. 6 (color online). T ��B phase diagram as in Fig. 5.
Here, we check the effects of truncated trigonometric functions.
The top panel shows the results for heavy masses. Truncating
��T;�B� up to second order reproduces the lattice results [4]. In
the bottom panel we show the results with physical masses. the
lattice results [4] are very well reproduced by the condition of
constant truncated �. The results from nontruncated � at �s � 0
and �s � f�T;�B� are also plotted, the bottom curves, respec-
tively. The agreement with the lattice simulations [27,29] is also
convincing
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With higher truncations, we get curves with larger curva-
tures. We also plot two curves from nontruncated expres-
sions for the trigonometric functions. The solid curve is
obtained by computing �s in dependence on T and �B.
Obviously, it is identical to the solid symbols plotted in
Fig. 5. The dashed curve—next to the solid one—shows
the results in which �s is entirely vanishing. It gives the
same behavior as that of the open symbols in Fig. 5.

We can so far conclude that the lattice results [4] can be
reproduced by HRGM, if the trigonometric functions are
truncated in the same way. The lattice curvature within the
region 0 � �q � Tc can excellently be described by
HRGM.

In the bottom panel, we show other three flavor lattice
results. In Ref. [27], the numerical simulations have been
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performed with Wilson gauge action and three degenerate
flavors of staggered fermions. The quark masses are rang-
ing between 0:025 � amq � 0:04. It is clear that our re-
sults can reproduce the structure given by these data. We
see that the curvature can be described by second or fourth
order in HRGM. This is also valid for nf � 2 � 1 lattice
results [29]. In this case, the quark masses amu;d � 0:0092
and ams � 0:25. Chiral extrapolations are done by heavier
light quark masses. We also plot the latest calculations of
the location of the endpoint. The endpoint in [30] lies at
�B � 420 MeV. The corresponding temperature has not
yet been calculated. The endpoint in [29] has the coordi-
nates �B � 360 � 40 MeV and T � 162 � 2 MeV. As
discussed above, we assume that the existence of endpoint
does not affect our results.
VI. RADIUS OF CONVERGENCE

As we have seen, for a reliable comparison with the
current lattice simulations, we have to apply truncations in
the thermodynamic expressions in HRGM. Our objective
here is to check the efficiency of truncated series in locat-
ing the phase diagram. The radius of convergence reflects
the singularity near Tc. It approaches unity near Tc. The
energy density normalized to T4 can be expressed as a
trigonometric function depending on the ratio �=T [19]
(Sec. III). We use the property that the energy density is an
even function in �B=T and therefore write

��T;�B�

T4 � �m�T� � �b�T� cosh�
�B

T
�;

� �b�T�
	
c2


�q

T

�
2
� c4


�q

T

�
4
� � �

�
; (29)

where cn � �Tc=T�n3n=n! and n is an even positive inte-
ger. The radius of convergence of Taylor expansion of the
partition function, Eq. (15) is to be estimated by the ratios
of subsequent expansion coefficients,

4 � lim
n!1

�������� cn
cn�2

��������1=2
: (30)

Since the expansion is an even series of �B=T, the square
root is expected to arise. In order to calculate the zero order
radius, we recall the results at � � 0 [not included in
Eq. (29)].

4o �


c0

c2

�
1=2

�
T
Tc

	
2

9



�m�T�

�b�T;�q � 0�
� 1

��
1=2
: (31)

It is clear that 40, in constast to the other radii, is
T-dependent In Fig. 7, we find that close to Tc, 40 �
0:982, 42 � 1:18, 44 � 1:82 and 46 � 2:5. These values
are shown as short vertical lines. The results agree very
well with the available lattice results [30]; as 40 ! 1. The
radius of convergence approximately gives the lower
bound for the critical endpoint (�q � Tc). Obviously this
value is higher than the recent lattice results [24,29]. In
-9
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principle, one expects that due to the absence of critical
behavior in HRGM, the Taylor expansion, Eq. (29), has an
infinite convergence radius for all temperatures. At Tc and
for the convergence radius 4 � 1, one expects that the
hadron degrees of freedom are indistinguishable from the
degrees of freedom in QGP. On the other hand, the radii 4
from lattice simulations are bounded from above by the
location of phase transition. Therefore, it is expected that
the radii in Eq. (30) stay close to unity near Tc. In fact, this
is the case for our low-order coefficients. The agreement
between our results and the lattice ones is convincing.
There are no published lattice results on the 6th-order
radius of divergence. Nevertheless, according to our ex-
pansion coefficients, we expect that 4 are steadily
changing.

VII. CONCLUSIONS

We used HRGM to draw up Tc ��B diagram. The
transition temperature Tc from hadronic matter to QGP
has been determined according to a condition of constant
energy density. Its value is taken from lattice QCD simu-
lations at zero chemical potential and assumed to remain
constant along the entire �B-axis. We checked the influ-
ence of s quark chemical potential �s on Tc. For including
�s, we applied two models. In the first one, we explicitly
calculated �s in dependence on T and �B under the
condition that the net strangeness vanishes. In the second
one, we assigned, as the case in lattice QCD simulations,
zero to �s for all T and �B. The first case, �s � f�T;�B�,
is of great interest for heavy-ion collisions. Furthermore,
under this consideration, we expect that the strange quan-
tum number is entirely conserved. This is not the case in
the second model. Nevertheless, with the last assignment,
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the current lattice results are very well reproduced. On the
other hand, one can apply the second model for current and
future heavy-ion collisions. At BNL-RHIC and CERN-
LHC energies, for instance, �B (and consequently �s) is
very small. We have shown that the proper condition that
guarantees vanishing strangeness in QGP is to set �s �

�q. We did not check this explicitly. But it is obvious that
Tc��B;�s � 0� quantitatively is not very much different
from Tc�B;�s�T;�B�� at small �B.

We have taken into consideration all hadron resonances
given in particle data booklet with masses up to 2 GeV. For
a reliable comparison with lattice, we have rescaled the
resonance masses to be comparable to the quark masses
used in lattice simulations. With excluding the strange
resonances, we compared our results with nf � 2 lattice
results. With including all resonances, we reproduced nf �
2 � 1 lattice results. We note that increasing �B and �s
leads to monotonic decrease in Tc. The results from
HRGM match very well with the lattice simulations, espe-
cially within the �B-range in which the lattice calculations
are most reliable ��B=T� � 3Tc. The agreement turns to be
excellent, when we take into consideration the truncations
done in calculating the thermodynamical quantity �.

Besides this excellent agreement in the indirect calcu-
lation of Tc via constant energy density, we found that the
analytical expression of Tc��� up to the second order of
��=T� greatly reproduced the curvatures calculated on
lattice for different quark masses and flavor numbers.

Figure 8 summarizes our conclusions. The QCD phase
diagram is plotted for a system including light as well as
strange quarks. The Taylor expansion of energy density is
not truncated. The two curves represents our predictions,
-10
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when it will be possible to perform lattice simulations for
physical masses and without the need to truncate the Taylor
expansion. As T ! 0, we note that both curves will cross
the abscissa at almost one point. It is obvious that this point
is corresponding to the normal nuclear density. The latter is
related to �B � 0:979 GeV. The nature of the phase tran-
sition at very low temperatures does not lie within the
scope of this work. However, there are many indications
that the transition at T � 0 occurs according to modifica-
tion in the particle correlations. Changing the correlation
054502
leads to quantum phenomena, like quantum entropy [11–
16]. We also note that by switching on�s an increase in Tc
is expected. At small �B, the two curves are coincide.
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