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Scaling tests with dynamical overlap and rooted staggered fermions
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We present a scaling analysis in the 1-flavor Schwinger model with the full overlap and the rooted
staggered determinant. In the latter case the chiral and continuum limit of the scalar condensate do not
commute, while for overlap fermions they do. For the topological susceptibility a universal continuum
limit is suggested, as is for the partition function and the Leutwyler-Smilga sum rule. In the heavy-quark
force no difference is visible even at finite coupling. Finally, a direct comparison between the complete
overlap and the rooted staggered determinant yields evidence that their ratio is constant up to O�a2�
effects.
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I. INTRODUCTION

An issue which is of both phenomenological and con-
ceptual relevance is whether it is a valid approach to use the
staggered action to study QCD withNf � 2 orNf � 2 � 1
dynamical quarks. This is because the staggered Dirac
operatorDst leads to 4 degenerate flavors in the continuum,
and the simulations are thus performed by taking the
square root of the staggered determinant (plus a quartic
root for the dynamical strange quark). While the results of
such studies look very promising from the phenomenologi-
cal viewpoint [1,2], a field-theoretic justification of the
rooting procedure might be hard to find. The origin of
the problem is that no one has constructed, so far, a local
operator which, when raised to the fourth power, reprodu-
ces Dst.

It has been shown that the most naive choice results in a
nonlocal operator [3,4], but of course a more elaborate
construction might settle the issue.

The evidence in favor of the rooting procedure that
comes from NLO staggered chiral perturbation theory [5]
needs to be backed by numerical checks of the associated
predictions (some are established [2]), and the analytical
thoughts in [6] involve a number of simplifications. It has
been shown—both in 2D and in 4D—that staggered ei-
genvalues on smooth enough backgrounds form near-
degenerate pairs/quadruples which (apart from a rescaling
factor) mimic the (nondegenerate) overlap eigenvalues on
the same configuration [7,8]. And the consequence that
rooted staggered fermions satisfy an approximate index
theorem and are in the right random-matrix universality
class has been explicitly verified [9,10]. However, all these
pieces are inconclusive, as they do not say how the rooting
procedure should be matched in the valence sector.
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In the absence of a strict analytic argument, only a
careful scaling study has some conceptual power, albeit
an asymmetric one. If a continuum limit is found with
rooted staggered fermions which agrees with another ap-
proach which is considered conceptually proof, nothing
firm can be said (albeit a failure of the staggered frame-
work seems less likely then). On the other hand, if the
continuum limits disagree, the staggered answer would be
in conflict with universality. In this note we attempt such a
scaling study. The safe approach against which we shall
compare is the overlap formulation [11], which, however,
is far more demanding in terms of CPU time. The theory in
which we will work is the massive Nf � 1 Schwinger
model, i.e., just QED in 2D.

We define the massless overlap operator as [11]

Dov ���1��5sign��5D
W
������

0@1�
DW

����������������������
DWy

��DW
��

q
1A; (1)

with DW
�� the Wilson operator at negative mass ��, and

construct the massive overlap via

Dov
m �

�
1 �

m
2�

�
Dov �m: (2)

The massless operator (1) satisfies the Ginsparg-Wilson
relation [12]

D�̂5 � �5D � 0; �̂5 � �5

�
1 �

1

�
D
�
; (3)

which substitutes the continuum chiral symmetry by the
lattice chiral symmetry group [13]

� � �̂5 ; � �  �5 (4)

which, in turn, excludes additive mass renormalization and
prevents operators in different chiral multiplets from mix-
ing. On the lattices considered below, the full Dirac matrix
may be kept in memory, and one can use standard linear
-1  2005 The American Physical Society



TABLE I. Survey of matched zero temperature lattices, with
statistics for both types of fermions.

Geometry 8 � 8 12 � 12 16 � 16 20 � 20 24 � 24 28 � 28
� 0:8 1:8 3:2 5:0 7:2 9:8
Statistics 10 000 10 000 10 000 10 000 10 000 10 000
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algebra routines to perform a singular value decomposition
of the shifted Wilson Dirac operator DW

�� � USVy, where
U;V are unitary matrices and S > 0 is diagonal. The
massless overlap operator is then simply given by

Dov � ��1 �UVy� (5)

and it is straightforward to plug in a mass, see (2), and call
further library routines to determine the complete eigen-
value spectrum. In practice, one may prefer to determine
the eigensystem ofDWy

��DW
�� or of �5D

W
��, but this does not

bring any change in principle. We use � � 1, which we
checked, following Ref. [14], is an almost optimal choice
with respect to locality for � 	 4.

The massless staggered operator reads

Dst �
1

2

X
�

���x��U��x��x��̂;y�Uy
��x��̂��x��̂;y�; (6)

with ���x� � ��1�
P

�<�
x� , and the massive operator is

simply Dst
m � Dst �m. What remains of the continuum

SU�4�A chiral symmetry group in the case of (6) is the
Abelian

��x� ! exp�i�A��1�

P
�

x�
���x�;

���x� ! ���x� exp��i�A��1�

P
�

x�
�;

(7)

which, however, still protects the fermions against additive
mass renormalization. The parallel transporterU��x� in (6)
may be replaced by a weighted sum of gauge-covariant
paths from x to x� �̂ [15]. As a result, the most unphys-
ical effects in the staggered formulation, the ‘‘taste-
changing’’ interactions due to highly virtual gluon ex-
changes [16], can be considerably reduced. The reason is
a separation of the relevant low-energy modes from the
regularization dependent (and wildly fluctuating) high-
energy modes and this is why we will speak of ‘‘UV-
improved’’ or ‘‘UV-filtered’’ staggered quarks. For com-
parison the same modification will be considered in the
overlap case [7,8,17], too, but there the effect will be much
smaller.

We will be interested in the Schwinger model (SM) with
one active flavor, since only there the rooting issue exists
(in 2D the staggered formulation generates 2 flavors in the
continuum), but for completeness let us mention the rela-
tionship to QCD both for Nf � 1 and Nf 	 2.

In the zero temperature SM with Nf � 1 the scalar
condensate �sca � h  i at zero quark mass follows from
the global axial anomaly and is given by [18]

�sca�m � 0�

e
�

exp���

2�3=2
� 0:1599 . . . ; (8)

where � � 0:5772 . . . is the Euler constant. Finite tempera-
ture effects will reduce �sca [19], but no temperature will
be large enough to really make it vanish. In other words, for
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Nf � 1 there is no chiral phase transition, and thus the
situation in the SM is analogous to QCD with Nf � 1.

With Nf 	 2 and a small mass term the zero tempera-
ture SM shows a vague similarity to QCD slightly above
the phase transition: The Polyakov loop does not vanish,
and the chiral condensate is almost zero; the system
‘‘tries’’ to break the axial flavor symmetry spontaneously,
the spectrum shows a gap between the ‘‘Schwinger parti-

cle’’ with mass e
������������
Nf=�

q
�O�m� (the analog of the �0) and

the N2
f � 1 light ‘‘quasi-Goldstones’’ with mass M� �

mNf=�Nf�1� [20]. The latter get sterile in the chiral limit
(as required by Coleman’s theorem [21]), but the important
point is that, as long as one stays away from the chiral
limit, these ‘‘pions’’ dominate the correlators between
external P- and A� sources at sufficiently long distance.

A peculiarity of any 2D gauge theory is that the funda-
mental coupling has the dimension of a mass. Furthermore,
the SM is super-renormalizable and the coupling e does not
run, hence the theory is not asymptotically free. We use
these features in taking the liberty to set the scale through
e. In the compact lattice formulation, the fundamental
charge is related to � via

� �
1

�ae�2
; (9)

(below we will set a � 1) and this means that the physical
scale in the full theory depends only on � and not on the
fermion massm. Of course, other choices would have been
possible. One might set the scale via the measured slope in
the short-distance potential (which is finite in 2D, since
limr!0V�r�=r � const in the continuum with a constant
independent of Nf). In fact, our choice is just this short-
distance option, up to cutoff effects.
II. EIGENVALUE SPECTRA

The plan is to produce a quenched ensemble, to compute
all eigenvalues of the massless Dov; Dst on each configu-
ration and to introduce the dynamical fermions through
reweighting [22]. We prepared a variety of lattices with
fixed physical volume, both at zero temperature (i.e., with a
time-extent T � L large compared to all correlation
lengths) and at a temperature given via T � L=4, see
Tables I and II for details. In 2D standard APE smearing
already involves the full hypercube, and we give the staple
and the original link weight 0.5 each. Technically, we thus
apply a smearing step and evaluate the fermion matrix on
-2



TABLE II. Survey of matched T � L=4 lattices, with statistics for overlap and staggered
fermions.

Geom. 8 � 2 16 � 4 24 � 6 32 � 8 40 � 10 48 � 12 56 � 14 64 � 16 72 � 18 80 � 20
� 0:8 3:2 7:2 12:8 20:0 28:8 39:2 51:2 64:8 80:0
Over. 10 000 10 000 10 000 10 000 10 000
Stag. 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000
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the resulting background, but we consider it a modification
of the fermion action. What is peculiar to the choice of
setting the scale through

����
�

p
is that our lattices are still

(exactly) matched after reweighting to Nf � 1; 2.
Figure 1 shows the low-energy spectrum ofDst and the $̂

ofDov [cf. Eq. (13)] on four selected configurations at � �
7:2. We define their topological charge as the overlap index
[13,23]

q�U� � ind�U� �
1

2�
tr��5D

ov�: (10)

The first three are typical for topological charge q �
0; 1; 4, respectively, while the last panel shows one of the
rare (at � � 7:2) cases where the overlap charge (10)
depends on the filtering level or, likewise, on the parameter
�. Without smearing there is a vague similarity between
the staggered and the overlap spectrum on the q � 0
configuration, but not on those with higher charge. This
holds for fairly smooth gauge fields; the plaquette is
0:927 722�54� at � � 7:2. However, after a single smear-
ing step, the situation improves dramatically. The stag-
gered eigenvalues form near-degenerate pairs which sit
close to an individual overlap eigenvalue. In particular
the right number of ‘‘would-be’’ zero modes separates
from the rest of the spectrum and clusters near the origin,
namely 0; 2; 8 for q � 0; 1; 4, respectively. This is a mani-
festation of the (approximate) index theorem for staggered
0 1 3
-0.5

0

0.5
|q|=0

0 1 3
# smearing steps

stagge
overlap

|q|=4

0 1 3

|q|=1

0 1 3

see text

FIG. 1 (color online). Low-energy spectrum of the unfiltered
and two filtered versions of the Dirac operators Dst and Dov

[after chiral rotation as in (13)] on three typical configurations at
� � 7:2 and on a selected one where the overlap charge depends
on the smearing-level (rightmost panel).
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fermions which holds both in 2D [7] and in 4D [8–10].
However, the similarity extends to the higher modes, and
one can take the ‘‘fingerprint’’ of a configuration likewise
with Dov or Dst, the two differ just by a trivial rescaling
factor and the twofold degeneracy in the latter case. This is
the basis of the rooting procedure for staggered fermions,
and it is thus interesting to perform, in a first step, a scaling
analysis for some observables which can be formed from
the eigenvalues only.
III. SCALAR CONDENSATE

For overlap fermions, the (bare) scalar condensate is
unambiguously defined as [24]

�sca

e
� �

����
�

p

L2

�
 
�
1

2
�
�5�̂5

2

�
 
�

� �

����
�

p

L2

�
 
�
1 �

1

2�
Dov

�
 
�
: (11)

Denoting the eigenvalues of the massless overlap Dirac
operator by $, and remembering that we work with � � 1,
the reweighted condensate is

�sca

e
�

����
�

p

L2

hdet�Dov
m �Nf

P 1�$=2
�1�m=2�$�mi

hdet�Dov
m �Nf i

;

det�Dov
m � �

Y��
1 �

m
2

�
$�m

� (12)

where the sum runs over the full spectrum. These eigen-
values occur either in complex conjugate pairs or as iso-
lated chiral (doubler) modes at $ � 0�2�. Finally, one can
rewrite (12) as

�sca

e
�

����
�

p

L2

hdet�Dov
m �Nf

P0 1
$̂�m

i

hdet�Dov
m �Nf i

;

$̂ � �$�1 � 2�1��1;

(13)

where $̂ is purely imaginary and the primed sum excludes
the doubler modes at $ � 2.

In the staggered case we follow [25] and implement the
(bare) 1-flavor condensate through

�sca

e
� �

����
�

p

2L2 h ���i; (14)

where the purpose of the factor 1=2 is to compensate the
twofold degeneracy of the staggered formulation in 2D.
Denoting the eigenvalues of the massless staggered Dirac
-3
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operator by $ (they show up in complex conjugate pairs
with zero real part), the reweighted condensate is

�sca

e
�

����
�

p

2L2

hdet�Dst
m�
Nf=2

P 1
�$�m�i

hdet�Dst
m�
Nf=2i

;

det�Dst
m� �

Y
�$�m�;

(15)

with the sum and product running over the entire spectrum.
Finally, there is no renormalization factor to be taken

into account in a 2D theory with cutoff effects of order
O�a2�, if one insists on a massless renormalization scheme.
This follows from the general expansion Z � 1 �O�e2�
which, due to the dimensionful coupling, reads Z � 1 �
O�a2e2� and thus tells us that there is no way to separate a
Z factor from intrinsic O�a2� effects.

An example of the condensates (13) and (15) with Nf �
1 in one of our zero temperature geometries is shown in
Fig. 2. The overlap yields a smooth curve which, for m!
0, is consistent with the Schwinger value (8), marked by an
asterisk. This holds both with a standard Wilson kernel and
with the filtered version. By contrast, the staggered con-
densate (at any filtering level and any �) tends to zero, if
the chiral limit is performed at fixed lattice spacing, and
taking, in a second step, the continuum limit will not
change this, thus

lim
a!0

lim
m!0

�st
sca�m; a�
e

� 0: (16)

Given the dramatic difference between the two staggered
curves in Fig. 2, one wonders whether the staggered answer
could be useful, if one uses only the data above some mmin
0 0.05 0.1 0.15 0.2 0.25 0.3
m/e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

χ sc
a/e

overlap, no smearing
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FIG. 2 (color online). Bare overlap and rooted staggered Nf �
1 condensate �sca=e at � � 7:2, plotted versus the quark mass.
Here and in subsequent figures, three lines indicate a 1,-error-
band. The overlap result changes little, if a UV-filtered Wilson
operator is used instead of an unfiltered kernel. By contrast, in
the staggered case this makes a big difference—only the filtered
variety shows a clear separation into a regime (here: m=e >
0:02) where the staggered answer is meaningful, and a regime
(m=e < 0:02) where lattice artefacts overwhelm.
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to extrapolate to the chiral limit. Obviously, there is no
canonical definition of such a mmin, but the staggered
results in Fig. 2 suggest that it might be less ambiguous
for the filtered operator. The question can be formalized by
asking whether it is possible to reproduce the Schwinger
result (8) with rooted staggered fermions, if one considers
the reverse order of limits, i.e., whether

lim
m!0

lim
a!0

�st
sca�m; a�
e

�
exp���

2�3=2
: (17)

The goal is to show that (only) the second order of limits
works with staggered fermions, while the overlap discreti-
zation is correct with either order.

It turns out that Eq. (17) together with our definitions for
�ov=st

sca does not make sense, neither for staggered nor for
overlap fermions. This is because the definitions (11) and
(14) when evaluated with a positive quark mass, lead to a
logarithmic divergence in the cutoff.

The logarithmic divergence shows up only in the con-
densate at finite m, with a coefficient that vanishes as the
quark mass tends to zero. That such a ‘‘soft breaking’’
through m log�!2� terms must happen is obvious from the
free case, where elementary manipulations yield

h  i �
Z
d2p

1

6p�m
�

Z
d2p

m

p2 �m2

�
Z 2�

0
d’

Z 1

0
d$

$m

$2 �m2

� 2� lim
!!1

Z !

0
d$

$m

$2 �m2

� lim
!!1

�m log
�
!2 �m2

m2

�
: (18)

Figure 3 collects our Nf � 1 overlap data at zero and
finite temperature, evaluated at m � 0. There is no sign of
a logarithmic divergence, and we get an acceptable fit if we
use

�sca�m � 0; 1=�; n�
e

� A� Bn=� (19)

with a common A and slope parameters Bn which account
for the O�a2� effects at filtering level n. At zero tempera-
ture our continuum result A � 0:162 9�47� is compatible
with the Schwinger value (8). The result A � 0:070 0�16�
from our thermal geometries indicates that at this tempera-
ture the massless continuum condensate is considerably
reduced. The main lesson is that with overlap fermions one
can indeed take the chiral limit first, letting a! 0 in a
second step, and gets the correct answer.

Figure 4 shows theNf � 1 zero temperature overlap and
staggered condensates, evaluated at m=e � 0:1. Now, the
divergence in the cutoff is clearly visible. Indeed, we get an
acceptable result from a correlated fit to all data (in one
formulation) at fixed m=e with the ansatz
-4
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FIG. 3 (color online). Bare overlap condensate �ov
sca=ewithm � 0 at zero temperature (left) or finite temperature (right) versus �ae�2.

The three filtering levels have a universal continuum limit, and the extrapolation (19) works well. The zero temperature result is
consistent with (8).
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�sca�m=e; 1=�; n�
e

� A� Bn=�� C log�1=��

� ��n;0D
�3=2�
0 � �n;1D

�3=2�
1 �=�3=2

� �n;0D
�2�
0 =�

2 (20)

where all coefficients depend on m=e, and A;C are com-
mon to all filtering levels, while Bn, D�3=2;2�

n depend on the
level n. Thus, besides the leading O�a2� cutoff effects for
each filtering level, we include O�a3� terms in levels 1; 0,
and O�a4� terms with no smearing. With rooted staggered
quarks everything is analogous, i.e., the ansatz (20) works
again. The fine dotted lines beneath the data indicate what
remains if one subtracts the so-determined logs plus higher
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FIG. 4 (color online). Bare Nf � 1 condensate �sca=ewith overlap
m=e � 0:1 versus �ae�2. The three filtering levels have a common l
may be subtracted for either discretization, but the so-defined contin
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order terms and stays with the constant plus linear part. For
each m=e > 0 there is a well-defined continuum limit with
such a procedure, but there is no reason to expect it to be
universal.

The difference between the ‘‘minimally subtracted’’
overlap and staggered condensates that survives in the
continuum can be traced back to the difference between
the two free condensates. The latter difference has a finite
continuum limit, since each of the free condensates con-
tains the same logarithmic divergence. This point is illus-
trated in Fig. 5. On the left the free condensates �ov=st

free =e at
fixed physical quark mass are plotted versus 1=� (here, we
refer to Table I, i.e., � merely encodes for the geometry).
The curves have a common log term; they fit to the form
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(left) or rooted staggered (right) fermions at zero temperature and
ogarithmic divergence. Adopting the ansatz (20), the divergence
uum limit is nonuniversal.
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FIG. 5 (color online). Left: Free condensates versus 1=� (in our zero temperature geometries, extended towards larger �), at fixed
m=e � 0:1. The fit to Eq. (21) uses the data below 0.4, i.e., L 	 16. Right: Difference of the free staggered and overlap condensate
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STEPHAN DÜRR AND CHRISTIAN HOELBLING PHYSICAL REVIEW D 71, 054501 (2005)
�ov=st
free �m=e; 1=��

e
� Aov=st

free �m=e� � Bov=st
free �m=e�=�

� Cfree�m=e� log�1=�� (21)

where Afree; Bfree depend on the discretization, while Cfree

is universal. The same conclusion is reached via directly
plotting the difference, as shown on the right; the curvature
decreases towards the continuum, and there is no sign of a
remnant log.

The lesson is that one should define the massive contin-
uum condensate in 2D through

�subt�m=e� �
Z 1

0
d$

2m

$2 �m2 ���$� � �free�$�� (22)

in infinite volume and regard its computation with overlap
and staggered fermions a direct test of universality. Here,
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FIG. 6 (color online). The naive subtracted condensates (25) and (2
staggered (right) fermions. Note the powerlike IR divergence in �ov

su
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the underlying assumption is that asymptotically the ei-
genvalue density ��$� agrees with the free one [from a
glimpse at (18), one learns that �free�$� ! �$].

A legitimate strategy to implement (22) on the lattice is
to first subtract the free case in the same formulation and
geometry, followed by an extrapolation to infinite volume.
The first step may be done analytically, the corresponding
expressions read

�ov
free�m� �

1

L2

XL�1

k1;k2�0

Tr
�
Dov

free�m�
�1

�
1 �

1

2�
Dov

free�0�
��
;

Dov
free�m� �

�
��

m
2

��
1 �

DW
free����

jDW
free����j

�
�m;

DW
free�M� � 2 �M�

X
�

c� � i
X
�

s���;

(23)
0 0.1 0.2 0.3
m/e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

χ/
e

unsubtracted
subtracted
subtraction term

6) at � � 7:2, together with �sca and �free for overlap (left) and
=st
bt .
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FIG. 7 (color online). The primed subtracted condensates (29) and (30) at � � 7:2. No IR divergence is left.
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�st
free�m� �

1

L2

XL=2�1

k1;k2�0

2m

m2 � s21 � s22
; (24)

with c� � cos��2�=L�k�� and s� � sin��2�=L�k��. In the
(‘‘naive’’) subtracted condensates

�ov
subt�m=e; 1=�;V� � �ov

sca�m=e; 1=�; V� � �ov
free�m=e; V�;

(25)

�st
subt�m=e; 1=�;V� � �st

sca�m=e; 1=�; V� � �st
free�m=e; V�;

(26)

the limit V ! 1 must be taken before m! 0, since the
free case contains a massless mode, and this reflects itself
in the behavior �ov=st

subt =e! �2=�emV� for a small mass.
Looking at (23) and (24), the piece that makes the chiral

limit in a finite volume singular is easily identified, it is the
0 0.1 0.2 0.3
m/e

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

χ’
/e

L=12 β=1.8
L=16 β=3.2
L=20 β=5
L=24 β=7.2

FIG. 8 (color online). The primed subtracted condensates (29) an
smearing step. Note the small scaling violations at anym=e with over
the staggered case.
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term with k1 � k2 � 0. Hence, a better choice is to sub-
tract the free case in the same geometry without the non-
topological zero modes. With

�0ov
free�m��

1

L2

X
0
Tr
�
Dov

free�m�
�1

�
1�

1

2�
Dov

free�0�
��
; (27)

�0st
free�m� �

1

L2

X0 2m

m2 � s21 � s22
(28)

[the primed sum skips the �0; 0� contribution, otherwise the
summation is as in (23) and (24)], one may define the
‘‘primed’’ subtracted condensates

�0ov
subt�m=e; 1=�; V� � �ov

sca�m=e; 1=�;V� � �0ov
free�m=e; V�;

(29)
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d (30) for overlap (left) and staggered (right) fermions with 1
lap fermions, while they get progressively worse for small m=e in
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FIG. 9 (color online). Continuum limit, via (20) without the log (full lines), of �0
subt=e at fixed m=e � 0:1 with overlap (top) and

staggered (bottom) quarks for Nf � 0; 1; 2 (left, center, right). Comparing to the strictly linear extrapolation (dotted lines) gives a
measure for the systematic error.
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�0st
subt�m=e; 1=�;V� � �st

sca�m=e; 1=�;V� � �0st
free�m=e; V�

(30)

that avoid the IR singularity in (25) and (26). In other
words, (29) and (30) is the only lattice implementation of
(22) which is simultaneously UV and IR finite and thus
permits to skip the limit V ! 1, because finite-volume
corrections are (asymptotically) exponentially small. Note
that this procedure differs from a standard renormalization
in QCD. Since the theory is super-renormalizable, there is
no bare parameter to be adjusted and no counterterm to be
added to the Lagrangian, the only option is a pure vacuum
reordering.

The naive and primed condensates (25) and (26) and
(29) and (30) are shown for one coupling in Figs. 6 and 7,
both for overlap and staggered quarks. The former version
clearly exhibits the IR divergence �ov=st

subt �m=e! 0�=e!
�2=�emV�, due to the subtraction term in (25) and (26). In
the latter version, the leading finite-volume effects are tied
to the lightest particle in the interacting theory, the
Schwinger particle with mass e=

����
�

p
�O�m�, and thus

exponentially small.
Having defined the primed subtracted condensates, we

are in a position to let, for any fixed m=e > 0, the lattice
spacing tend to zero

�0ov
cont�m=e�
e

� lim
1=�!0

����
�

p
�0ov

subt�m=e; 1=��; (31)

�0st
cont�m=e�
e

� lim
1=�!0

����
�

p
�0st

subt�m=e; 1=�� (32)
054501
and Fig. 8 indicates that there is, at this stage, a practical
difference among the two formulations. In the overlap case
cutoff effects are mild, and this means that the continuum
limit can be taken, from the � values available, over the
full mass range shown. With rooted staggered quarks,
scaling violations get progressively worse for small m=e.

Figure 9 indicates that, once the fermion mass is large
enough to be in the staggered scaling regime, both formu-
lations agree in the continuum, and the agreement seems
not to be tied to a particular Nf. Comparing our (Nf � 1)
continuum result �0ov

cont�m=e � 0:1� � 0:142�4� to the val-
ues 0.1171 by Hosotani [26] and 0.1277 by Adam [27] we
find a disagreement at the 6:2, or 3:6, level, respectively.
This might indicate a finite-volume effect or a limited
precision of the latter calculations. Since our box length
is �5 times larger than the correlation length of the lightest
particle in the massless Nf � 1 theory, and in this regime
finite-volume effects are exponentially small [19], we con-
sider the first option with our data unlikely.

As a last step, one my now take the chiral limit. In the
staggered case we find that after the a! 0 limit has been
taken with the ansatz

�0
subt�m=e; 1=�; n�

e
� A� Bn=�� C log�1=��

�Dn=�
3=2 (33)

we have a continuum curve that covers the range 0:05 �
m=e � 0:15, outside the ansatz (33) yields an unacceptable
�2. Using this segment and a linear ansatz for the extrapo-
lation m! 0 we find that the massless staggered Nf � 1
-8



0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0 0.1 0.2 0.3 0.4 0.5 0.6

χ t
op

/e
2  q

ue
nc

he
d

1/β

nsmear=0
nsmear=1
nsmear=3
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steep slope— in spite of being in the scaling regime for � 	 3:2,
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extrapolated primed condensates (31) and (32). In the staggered
case the continuum limit can only be taken for m=e 	 0:05 from
our � values, and with overlap quarks the same cut is applied for
consistency. A linear extrapolation m! 0 agrees with the ana-
lytical result (8) for either discretization. The error band is only
statistical.
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condensate agrees with the analytical result (8). In the
overlap case the continuum curve would extend to m=e �
0, but as a consistency check we perform the same ex-
trapolation, getting again a result compatible with (8). Both
extrapolations are shown in Fig. 10. Thus, for overlap
fermions our data support the universal behavior

lim
a!0

lim
m!0

�0ov
subt�m=e; a

2�

e
� lim

m!0
lim
a!0

�0ov
subt�m=e; a

2�

e

�
exp���

2�3=2
: (34)

For staggered fermions, one the other hand, the suggested
noncommutativity phenomenon

lim
a!0

lim
m!0

�0st
subt�m=e; a

2�

e
� 0;

lim
m!0

lim
a!0

�0st
subt�m=e; a

2�

e
�

exp���

2�3=2

(35)

means that rooted staggered fermions can be used to re-
produce the Schwinger result (8), but only if the right order
of limits is chosen.
IV. TOPOLOGICAL SUSCEPTIBILITY

Another interesting observable to study the effects of
dynamical fermions is the topological susceptibility which,
in the context of this note, shall be defined (in the contin-
uum) through

�top � lim
V!1

hdet�D�m�Nfq2i

Vhdet�D�m�Nf i
: (36)

The main difference to the scalar condensate is that the
054501
topological susceptibility depends only on the sea quarks,
thus offering a potentially cleaner view at the effects of
square rooting the staggered determinant to get Nf � 1.

For staggered quarks, the definition (36), taken in fixed
volume, reduces to

�st
top

e2
�
�

L2

hdet�Dst
m�
Nf=2q2i

hdet�Dst
m�
Nf=2i

; (37)

while for overlap quarks, the implementation is

�ov
top

e2
�
�

L2

hdet�Dov
m �Nfq2i

hdet�Dov
m �Nf i

; (38)

where det�Dst
m� and det�Dov

m � are defined in (12) and (15).
The sum is over the full spectrum of the massless operator,
and we apply the overlap definition (10) of the charge q in
either case.

Let us begin with a check that a reasonable number of
our zero temperature � values is in the scaling regime
before reweighting. Figure 11 contains our quenched to-
pological susceptibility data, and � 	 3:2 seems sufficient
to be in the regime with only O�a2� effects.

The first test is whether overlap and rooted staggered
quarks yield the same result in the continuum, if the

topological susceptibility �
Nf�1
top �m=e�=e2 is taken at a

fixed nonvanishing quark mass. Figure 12 presents the
outcome for m=e � 0:1. In either case the three smearing
levels seem to have a common continuum limit and this is
why we adopt a correlated linear fit. The staggered con-
tinuum value 0.009 58(42) is consistent with 0.010 11(18)
from all overlap data. This is of course not a proof but good
numerical evidence that rooted staggered quarks yield the
-9
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correct continuum limit for the topological susceptibility at
finite quark mass.

The second test concerns the chiral limit, where
�ov

top�0� � 0 (as in the continuum [28]), while �st
top�0�> 0

is a pure discretization effect. Figure 13 shows the remnant
staggered susceptibility at m=e � 0 versus �ae�2, in a log-
log representation. With unfiltered staggered sea-quarks it
seems to disappear in proportion to a2, regardless of Nf.
For the filtered variety we find a slope �2 [i.e., dominating
O�a4� cutoff effects] over the range of accessible couplings
for Nf � 1 and even �4 [i.e., dominating O�a8� effects]
forNf � 2. Still, it is conceivable that this slope eventually
flattens out and the asymptotic cutoff effects might be
O�a2� with any level of filtering. This would mean that
smearing renders the coefficient in front of the O�a2� term
so small that the ‘‘subleading’’O�a4� orO�a8� terms would
numerically dominate over a substantial range of cou-
plings. In any case, the important news is that the non-
commutativity phenomenon in the chiral condensate is not
replicated here—for the topological susceptibility the
staggered answer is correct even if the chiral limit is taken
before the continuum limit.
V. PARTITION FUNCTION AND LEUTWYLER-
SMILGA SUM RULES

In the 1-regime of QCD [28] (m&V � 1, but still with a
large box-size, i.e., L� 1=�2F�� ’ 1 fm, c.f. the discus-
sion in [29]) the log of the partition function is known
analytically [28]

Z��m� � em&V cos��� (39)

with subleading corrections of order �m&V�2. The partition
function in a sector of fixed topological charge q follows
by taking the Fourier transform [28]
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FIG. 14 (color online). The Nf � 1 partition function Zjqj
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behavior between overlap and rooted staggered fermions. The
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Zq�m� �
Z
d�eiq�Z��m� � Ijqj�m&V�; (40)

where Ijqj is the modified Bessel function.
By differentiating with respect to the quark mass and

setting the latter to zero, Leutwyler and Smilga obtained
the first sum rule for the inverse eigenvalues of the mass-
less Dirac operator�X0

n

1

�imag�$n�&V�2

�
0

q
�

1

2�jqj � Nf�
(41)

where the primes indicate that in a sector with topological
charge q � 0 the sum is over the full spectrum without the
jqj zero modes and the importance sampling is to be
carried out with the ‘‘primed determinant,’’ i.e., without
the zero modes. In 4D the lhs is quadratically divergent,
since the eigenmode distribution is asymptotically propor-
tional to $3. In 2D the divergence is logarithmic, since the
054501
eigenmode distribution is asymptotically linear in $ [cf.
(22)]. One way out is to subtract the free case in the same
volume. Another one is to consider the difference between
two topological sectors, since the UV behavior is indepen-
dent of the charge.

We start with the conjecture that Eq. (39) and thus (40),
(41) hold in the 1-flavor Schwinger model, too, albeit with
reinterpreting & as the analytically known 1-flavor con-
densate (8).

In Fig. 14 we show the Nf � 1 partition function on a
coarse and a fine lattice, without and with one APE step,
respectively. In the first case, one sees a significant differ-
ence between the overlap and the rooted staggered answer
for small quark masses. For larger � and with just one
smearing step this difference disappears and we did not
find any indication for a disagreement in the continuum
limit at any m=e. For x� 1 the continuum extrapolated
data agree well with �2 � �q;0�Ijqj�x�= exp�x� which, with
our choice for &, is a parameter-free prediction. We like to
point out that this figure is reminiscent of the situation in
QCD, see Fig. 3 of Ref. [30].
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STEPHAN DÜRR AND CHRISTIAN HOELBLING PHYSICAL REVIEW D 71, 054501 (2005)
To verify (41) we subtract the free case, i.e., we check
whether�X0

n

1

�imag�$n�&V�
2 �

X0

n

1

�imag�$free
n �&V�2

�
0

q

�
1

2�jqj � Nf�
(42)

with $n denoting the (purely imaginary) nth staggered or
chirally rotated overlap eigenvalue [i.e., the $̂ of (13)], and
in the staggered case an additional factor 1=2 on the left-
hand side (lhs) is needed (or 1=4 in 4D). The prime on the
sum indicates that on topologically nontrivial configura-
tions the jqj true overlap zero modes or the jqj would-be
zero modes on either side of the staggered spectrum are
excluded. Since also the free overlap and staggered Dirac
operators have 2 and 4 (nontopological) zero modes, re-
spectively, the $free

n denote the free eigenvalues without
these zeros. Thus the sum over n does not include the same
number of terms in the free and interacting case. The prime
above the expectation value indicates that in a q � 0 sector
the jqj zeros are removed from the determinant. Figure 15
contains our results for the sum rule (42), where our choice
for the interpretation of & leads again to a parameter-free
prediction. The deviation from the Leutwyler-Smilga value
is likely a finite-volume effect. In any case, there is no sign
of a difference between the rooted staggered and the over-
lap answer in the continuum.
0 5 10 15 20 25 30
0

0.1

FIG. 16 (color online). The quenched zero temperature HQ
potential is a sawtooth. After reweighting with staggered (top,
rooted for Nf � 1) or overlap (bottom) fermions (m=e � 0:1),
screening is seen. Throughout, the same smearing is applied in
the HQ line and in the fermion operator. Except near the end
points, the improved HQ action leads to a mere downwards shift
of the potential.
VI. HEAVY-QUARK POTENTIAL

The heavy-quark (HQ) potential is an interesting ob-
servable, since it is easy to measure in the Schwinger
model and the effect of dynamical fermions is clearly
visible. We define the HQ-potential V�r� in a finite-volume
L� T via the Polyakov loop correlator

e�V�r�T � hP�0�Py�r�i: (43)

In the quenched case, and with T ! 1, it has a simple
saw tooth shape, i.e., it starts at zero, raises linearly for 0 �
r � L=2, and then it decreases linearly, until it reaches 0 at
r � L again. This follows from the fact that the quenched
Wilson loop in infinite volume satisfies an exact area law
WNf�0�r; t� � �I1���=I0����

rt [in lattice units], thus the
force in physical units is

FNf�0;T�1�r�

e2
� �� log

�
I1���
I0���

�
: (44)

In the Nf � 1 case an exact solution on the torus is
known for m � 0 [19], but—as far as we know—not for
massive fermions. However, we expect the screening be-
havior found in the massless case to also apply, on a
qualitative level, for a small enough fermion mass.

In Fig. 16 we show an example of our HQ potentials
(� � 12:8, lattice units). In this regime the quenched
prediction (44) works very well, except that the finite
054501
temperature causes a flattening of the peak region. If the
Polyakov loops are built from smeared links instead of the
original ones (‘‘improved HQ action,’’ see [31,32]), the
potential is merely shifted downwards, except near r �
0; L where some curvature is introduced. In other words,
the force is unaffected by such a modification of the HQ
action, provided it is measured at a distance larger than the
number of smearing steps applied. Furthermore, the re-
duced HQ self-energy is supposed to lead to a smaller error
bar (originally [31], see [32] for details), but here it seems
unaffected—we will come back to this point. After re-
weighting to Nf � 1 or Nf � 2, screening is seen (as
expected), yet there is no visible difference between stag-
gered (top) or overlap (bottom) dynamical flavors. Here we
-12
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show only the ‘‘diagonal’’ data, where the same smearing-
level is applied in the HQ action as in the fermion opera-
tors, but the ‘‘off-diagonal’’ data are similar.

For a detailed analysis we shall concentrate on the force
at a given (large enough) distance, and we choose to
present a scaling analysis for FNf�1�r � L=4�=e2. Before
doing so, it is worthwhile to check that our � values are
such that the quenched counterpart, FNf�0�r � L=4�=e2, is
in the scaling regime, and the top of Fig. 17 shows that this
is indeed the case—regardless of the HQ action (smearing-
level of the Polyakov loop links) used. When employing
overlap or rooted staggered fermions to have one active
flavor with m=e � 0:1, nothing fundamental changes, as
shown in the bottom of Fig. 17. In fact, at the 4 couplings
where we have data with either discretization, the results
are fully compatible already at finite �. Thus, in the case of
the HQ force a rooted staggered field seems to yield the
same continuum limit as a single overlap flavor.
054501
Let us finally discuss an interesting aside. It has been
argued (originally [31], see [32] for details) that the self-
energy �m of a quark in the static approximation is directly
related to the noise in an observable with such a quark. The
important point is that in 4D the self-energy in physical
units diverges linearly in the inverse lattice spacing [33]

�m � const=a �4D�: (45)

If changing the discretization amounts to a replacement
const0 ! const00, then smearing becomes more important
on fine lattices. What we wish to point out is that the
situation in 2D is just opposite. Here, the self-energy
vanishes in proportion to the lattice spacing

�m � !2
HQa �2D�: (46)

As a consequence, the usefulness of smearing decreases in
2D towards the continuum. This is clearly seen in the top of
Fig. 17. In the rightmost point (� � 3:2) the smeared HQ
action leads to a smaller error bar, while this effect quickly
disappears towards the left. This is matched by the behav-
ior of the shift of the HQ potential [in physical units],
brought by a single smearing step, as shown in Fig. 18.
Such a pattern is expected, if the first smearing step
amounts to a replacement !0

HQ ! !00
HQ, and it is reassuring

to see that this rule holds for any Nf.
VII. DETERMINANT RATIOS

The last topic that we wish to discuss is how well the
rooted staggered determinant manages to approximate the
(one-flavor) overlap determinant. It has been shown—both
in 2D [7] and in 4D [8]— that the low-energy eigenvalues
eventually coincide (apart from an overall rescaling factor
and the 2d=2-fold degeneracy), in the limit of fine lattice
-13
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spacings. However, in the UV region the two spectra are
very different, and, if the resolution is made finer in a fixed
physical volume, the total number of modes grows in
proportion to 1=ad. Therefore, it is not clear whether the
full one-flavor determinants would eventually coincide. In
fact, det�Dov� and the 2d=2-fold root of det�Dst� are never
equal (typically, they differ by many orders of magnitude),
but the right question to ask is whether the two formula-
tions give the same answer—modulo cutoff effects—for
the determinant ratio on two arbitrary configurations, i.e.,
whether

det�Dov�U��
det�Dov�U0��

�

�������������������������
det�Dst�U��
det�Dst�U0��

2d=2

s
�1 �O�a2��: (47)

We are in an excellent position to test (47), since we
have all eigenvalues with either discretization in a number
of lattices with fixed physical volume (see Table–I).
Introducing

Sov
m �U;U0� � � log

�
det�Dov

m �U��
det�Dov

m �U0��

�
; (48)

Sst
m�U;U0� � �

1

2d=2
log

�
det�Dst

m�U��
det�Dst

m�U
0��

�
(49)

the goal is to show that the unfiltered ratios differ by cutoff
effects only, relation (47) or

Sov
m �U;U0� � Sst

m�U;U
0� �O�a2�: (50)

For this it is sufficient to show that an analogous relation
holds among the filtered operators

Sov
m �U�1�; U0�1�� � Sst

m�U
�1�; U0�1�� �O�a2�; (51)

where the superscript �1� refers to the smearing-level 1,
since we already know that the left-hand sides and the
right-hand sides of (50) and (51) satisfy

Sov
m �U;U0� � Sov

m �U�1�; U0�1�� �O�a2�; (52)

Sst
m�U;U

0� � Sst
m�U

�1�; U0�1�� �O�a2�; (53)

respectively, because filtering amounts to an O�a2� redefi-
nition of the operator.

The leftmost column of Fig. 19 contains scatter plots of
the two sides of (50) in a fixed physical volume and at a
fixed quark mass m=e. Each dot represents a configuration
U, while U0 is an artificial background which realizes the
ensemble mean (over U) of (48) and (49). Obviously, the
correlation on an arbitrary background U gets tighter and
the pertinent slope moves closer to one as the lattice
spacing decreases. Note that this holds regardless of the
topological charge, since our ensembles contain a Gaussian
distribution of q at each �. The second column shows the
scatter plots of the two sides of (51), where the correlation
is much better than before. Finally, the third and fourth
columns contain the scatter plots for the known relations
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(52) and (53). Qualitatively, they look very similar to the
first two columns, and this gives some confidence that (47)
and (50) might actually hold true. In any case, the interest-
ing news is that the 1-filtered staggered action generates,
on a fine enough lattice, a distribution that is closer to the
the 1-filtered overlap one, than the latter is to the unfiltered
overlap distribution.

To make the discussion a bit more precise, we introduce
a quantity designed to measure the deviation of the corre-
lation from the identity. We use, e.g., for the first column

�2 �
1

#�U�

X
U

�
1

2
log0�det�Dst�� � log0�det�Dov��

�
2
; (54)

where

log 0�det� � log�det� �
1

#�U0�

X
U0

log�det�

and expect that it decreases, in a fixed physical volume, as
the lattice spacing gets smaller. Of course, this �2 is not a
physical observable, and one should not expect it to vanish
in proportion to 1=� � a2. Still, the data in Fig. 20 suggest
that it falls off—roughly—with a power law in a. We
tested otherm=ewhich are in the scaling regime with our�
values and found qualitatively the same behavior. The
important point is that there is no obvious difference
among the pattern of the four coefficients pertinent to the
four columns of Fig. 19. Only the prefactor is different,
telling us that the correlation among the two formulations
at smearing level 1 is better than the internal overlap
correlation between level 0 and 1, and the latter is better
than the internal staggered and the staggered-to-overlap
correlation without smearing. In other words, the scaling of
the coefficient (55) between the overlap and the rooted
staggered contribution to the effective action (normalized
-14
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per physical volume) behaves in the same way as the one
for the internal overlap or internal rooted staggered corre-
lation between two smearing levels. Since the latter are
known to deviate through O�a2� effects, we rate this as
strong evidence that also the overlap and rooted staggered
determinants differ by O�a2� terms cf. (47), (50), and (51).
VIII. SUMMARY AND DISCUSSION

We have attempted scaling tests for dynamical overlap
and rooted staggered fermions. The Schwinger model was
chosen, because it permits to reach high numerical accu-
racy while the conceptual issue of square-rooting the stag-
gered determinant remains for Nf � 1.

First, we have looked at the scalar condensate at fixed
physical quark mass. For m=e > 0 the bare staggered and
overlap condensates (11) and (14) diverge logarithmically
in 1=a. Subtracting the free case without its nontopological
zero modes defines a UV and IR safe observable at finite
quark mass, and Fig. 9 suggests that it has the same
continuum value for staggered and overlap fermions.
Hence the analytic value (8) for the condensate in the
massless 1-flavor theory can be reproduced with rooted
staggered fermions, if the limit m! 0 is taken after letting
a! 0. In the overlap formulation the two limits may be
interchanged, while in the staggered case the reverse order
of limits yields an exact (but incorrect) zero. We consider
the noncommutativity phenomenon (35) important, be-
cause the Schwinger value (8) reflects the axial anomaly,
and the second version indicates that rooted staggered
fermions do get the anomaly right, if the continuum limit
is taken at finite quark mass.

The second observable has been the topological suscep-
tibility. Both in the continuum and with overlap sea quarks
it vanishes at zero quark mass. Hence �st

top�m � 0� is a pure
054501
lattice artefact, and it seems to disappear like a2 for an
unfiltered (naive) staggered Dirac operator, while in a
filtered version O�a4 . . . a8� terms would numerically
dominate over a wide range of couplings. On the other
hand, with a finite quark mass, there is no obvious differ-
ence among the two formulations, and we have verified
that one sees pureO�a2� scaling, as expected. Furthermore,
the continuum limit of the topological susceptibility with
overlap or rooted staggered fermions at fixed physical
quark mass is consistent within errors.

Our third observable, the partition function, is a bit more
refined, but similar in spirit, to the topological susceptibil-
ity. Again we find, at fixed m=e, a continuum value, for
arbitrary charge q, that is consistent within errors. Also the
fourth test, a check of the Leutwyler-Smilga sum rule (42)
has not revealed any difference of the two formulations in
the continuum limit.

The finite temperature heavy-quark force at fixed physi-
cal distance has been our fifth test. It is interesting that in
the Schwinger model the effects of virtual quark loops are
so pronounced and so easy to measure. We find no devia-
tion between the two fermion discretizations, since at
filtering level one overlap and rooted staggered sea quarks
agree already at the � values considered. It is noteworthy
that the a dependence of the heavy-quark self-energy in 2D
is entirely different from the one in 4D. As a consequence,
a fuzzed heavy-quark action increases the signal-to-noise
ratio only on rough lattices in 2D, while this trick helps
only on fine lattices in 4D.

Finally, we have investigated the logarithmic determi-
nant ratio of overlap and rooted staggered fermions as a
function of the lattice spacing in a fixed physical volume.
We find strong evidence that, at a given filtering level, this
ratio is constant over the entire configuration space up to
O�a2� effects, since the pertinent �2 disappears in the same
way as for (52) and (53) which are established relations. Of
course, this is a numerical argument and not a proof.

In general, we find cutoff effects with dynamical overlap
fermions to be smaller than with staggered fermions. Close
to the chiral limit, the difference may be dramatic.

As mentioned in the introduction, the conceptual power
of a scaling study is one sided. We might have found an
observable where the staggered answer turns out wrong in
the continuum, and this would have been sufficient to
prove that the rooted staggered action does not represent
a legitimate fermion discretization. We have not found
such an observable, and the fact that even the condensate
in the 1-flavor theory is reproduced correctly (under the
right order of limits) lets one feel more sceptical whether
such an observable exists. Still, we emphasize that most of
our observables involve only sea quarks, and even the
finite-mass condensate does not probe the complicated
flavor/taste structure that staggered fermions have in the
valence sector. Hence, a scaling study focusing on� and�0

properties might be worthwhile.
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For current dynamical simulations with rooted staggered
quarks the implication is twofold. The good news is that,
for any finite sea-quark mass, we find a universal contin-
uum limit in a dynamical theory. This is just numerical
evidence and not a proof, but if overlap and staggered
quarks would not yield the same result in the continuum,
there is no reason why this difference would be particularly
small, but nonzero, in the massive Schwinger model. The
potentially worrisome observation is the noncommutativ-
ity phenomenon (35). This is critical, because in 4D physi-
cal results are extracted by fitting the data against
predictions from staggered chiral perturbation theory
(SXPT) [2], i.e., the limits a! 0 and m! 0 are taken
simultaneously. It is not clear to us whether SXPT would
accommodate such a noncommutativity (in the full1 the-
ory), but maybe standard physical observables in 4D QCD
withNf 	 2 are not afflicted with this problem in any case.

Finally, we feel that in future investigations the focus
should be on the locality issue mentioned in the introduc-
tion. Bunk et al. have shown that the fourth root (in 4D) of
Dst is not a local operator [3], but the question is, of course,
whether there is any local operator which, when raised to
the fourth power, reproduces Dst. Obviously, this problem
needs to be solved to lend a solid theoretical basis to
1Triggered by the current paper, Bernard has observed that
SXPT predicts similar noncommuativities in the quenched and
partially quenched theories [34].
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amixed action approach as it has been explored in
Ref. [35]. Recently, Neuberger has discussed how the
operation of taking the fourth root may be cast into a local
relativistic framework in six dimensions [36]. The question
that should be asked, in our opinion, is whether it is really
necessary to have a local operatorD that satisfiesD4 � Dst

exactly, or whether a version with corrections, say

D�4 � �Dst��1 �O�a2� (55)

for the Green’s functions, would suffice to guarantee that a
‘‘hybrid’’ formulation with a rooted Dst in the determinant
and D for the valence quarks yields the correct continuum
limit2. If so, our Fig. 19 suggest that such aDmight be built
via the overlap prescription.
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[7] S. Dürr and C. Hoelbling, Phys. Rev. D 69, 034503 (2004);
hep-lat/0408039.
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