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Center vortex model for the infrared sector of SU�3� Yang-Mills theory: Vortex free energy
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The vortex free energy is studied in the random vortex world-surface model of the infrared sector of
SU�3� Yang-Mills theory. The free energy of a center vortex extending into two spatial directions, which is
introduced into Yang-Mills configurations when acting with the ’t Hooft loop operator, is verified to
furnish an order parameter for the deconfinement phase transition. It is shown to exhibit a weak
discontinuity at the critical temperature, corresponding to the weak first-order character of the transition.
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I. INTRODUCTION

Yang-Mills theory in four space-time dimensions under-
goes a deconfinement phase transition at nonzero tempera-
tures. One order parameter used in practice to characterize
this transition is the Polyakov loop, which can be inter-
preted as representing a single static quark, immersed in a
thermal Yang-Mills background. Since the confining phase
is characterized by the free energy Fq of such a quark being
infinite, the Polyakov loop hPi � exp��Fq� is expected to
vanish below the critical temperature Tc , while it should be
nonzero in the deconfined (high temperature) phase. The
Polyakov loop is closely related to the so-called center
symmetry, which is broken at high temperatures T > Tc.
Physically, this critical behavior is counterintuitive; usu-
ally, e.g. in most spin models, the high temperature phase is
maximally symmetric and the symmetries are broken be-
low the critical temperature. Furthermore, when formu-
lated on a compact space with periodic boundary
conditions (such as used in lattice calculations), Yang-
Mills theory strictly speaking does not admit a single quark
as a physical excitation, regardless of whether confinement
is realized or not.

Not least due to these issues, it is instructive to consider
an alternative dual (dis-)order parameter to characterize the
deconfinement phase transition, namely, the free energy
associated with a center vortex world surface. Center vor-
tices are defined by the property that they contribute a
center phase to a Wilson loop when piercing an area
spanned by the latter. The center vortex free energy is
expected to behave in a manner which is dual to the
behavior of Wilson loops:
(i) T
he free energy of vortex world surfaces extending
into one space direction and the (Euclidean) time
direction is expected to exhibit no area-law depen-
dence on the vortex world-surface area at all tem-
peratures T, if the corresponding dual (spatial)
Wilson loops exhibit an area law for all T [this is
the case for pure SU�N� Yang-Mills theory].
(ii) T
he free energy of vortex world surfaces extending
into two spatial directions is expected to behave in a
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manner dual to the behavior of corresponding (tem-
poral) Wilson loops: No area-law dependence of the
free energy on the vortex world-surface area at
temperatures below the deconfinement transition
temperature Tc, but behavior according to an area
law above the critical temperature.
The latter observation permits the definition of a
(temperature-dependent) dual string tension ~
 through
the leading behavior of the excess free energy FP in the
presence of asymptotically large vortex world surfaces P,

FP � � ln�ZP=Z0� ���! ~
�T�area�P�; T > Tc (1)

which can serve as an order parameter for the deconfine-
ment phase transition. Here, Z0 denotes the conventional
Yang-Mills partition function, whereas ZP denotes the
partition function in the presence of the additional vortex
P.

Using the vortex free energy as a confinement order
parameter was first suggested by ‘t Hooft [1], who, initially
working in the Schrödinger picture (using the Weyl gauge),
defined a magnetic loop operator M�C� in the continuum
[1] via equal-time commutation relations with all spatial
Wilson loops W�C0�,

M �C�W�C0�M�C�y � z�C;C0�W�C0�: (2)

Here, z�C;C0� is an element of the center of the gauge
group related to the integral linking number ��C;C0� of the
two loops C and C0 in three space dimensions,

z�C;C0� � exp
�
i
2�
N

��C;C0�

�
�SU�N� gauge group�: (3)

The loop operator M of course is only defined implicitly by
the commutation relation Eq. (2). An explicit realization of
this formal construction was recently derived and dis-
cussed in detail in Ref. [2], cf. also [3]. Also in the dual
language, the change of behavior of the vortex free energy
across the deconfinement phase transition can be associ-
ated with a (magnetic) center symmetry [1,4], which is
broken in the low-temperature phase.

Subsequent to ‘t Hooft’s suggestion, realizations of the ‘t
Hooft loop operator within the framework of lattice gauge
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theory formulated in 3�1-dimensional (Euclidean) space-
time were discussed and schemes of measuring the free
energies of the vortices thus introduced into the gauge
configurations were devised [5–8]. On this basis, sufficient
conditions for confinement via vortex condensation were
established [5,9]. While the construction given in [5] ad-
mits the introduction of vortices of a large variety of shapes
into gauge configurations (by imposing suitable boundary
conditions on ‘‘vortex containers’’ within the lattice), in
practice a particularly clean way to investigate the center
vortex free energy is to consider specifically a vortex world
surface which occupies a complete two-dimensional plane
in space-time.1 On a compact space-time, such as used in
lattice Yang-Mills theory, such a world surface is closed by
virtue of the periodic boundary conditions; furthermore, its
introduction corresponds to adopting twisted boundary
conditions in the directions orthogonal to the vortex [10].
This is reflected in the fact that configurations with such a
vortex are not connected to the conventional vacuum by the
dynamics. The dynamics of Yang-Mills theory and also of
the random vortex world-surface model considered in this
work, cf. [11,12], can create at most pairs of vortices
occupying complete two-dimensional (parallel) planes in
space-time; a single such vortex is topologically stable.
Also, its free energy is not contaminated by ancillary
effects such as the ones which occur, e.g., when one con-
siders open vortex world surfaces; these are bounded by
center monopole world-lines, and their free energies thus
contain additional contributions stemming from monopole
self-energies and interactions, which need to be disen-
tangled from the vortex free energy itself.2
1Note that the covariant setting given by the lattice gauge
theory framework permits the definition of vortex world surfaces
extending in arbitrary directions in space-time; however, ones
extending purely in two spatial directions are of course the
relevant ones as far as defining an order parameter for the
deconfinement phase transition is concerned.

2A note is in order concerning the ‘‘center monopole’’ con-
cept. Center monopoles in the strict sense, i.e., sources and sinks
of magnetic flux of magnitude 2�=N, are unphysical objects,
since they violate the Bianchi identity (continuity of magnetic
flux modulo 2�). In lattice Yang-Mills theory, when separating
the gauge fields into center and coset components, one can
identify locations at which magnetic flux carried by the center
component spreads out and continues as part of the coset
component [7]. These locations are often called ‘‘center mono-
poles,’’ although strictly speaking they are not sources or sinks of
magnetic flux and do not violate the Bianchi identity. On the
other hand, in the vortex model discussed here, there is no
analogue of the coset; center vortices (albeit implicitly endowed
with a finite thickness) are the only degrees of freedom, and open
vortex world surfaces, bounded by center monopoles, are un-
physical. Nevertheless, further below, open vortex surface con-
figurations will be used as intermediate objects in setting up the
numerical calculation; these should not be viewed as any more
than auxiliary mathematical constructs. The dual string tension
measured will ultimately be derived from the free energy of a
closed vortex world surface.
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A number of measurements of vortex free energies have
been carried out within lattice Yang-Mills theory, in a
variety of guises. The excess free energy in the presence
of twisted boundary conditions compared to periodic
boundary conditions was evaluated in [13–21]. Also the
free energy of more varied vortex configurations, including
open vortex world surfaces [8,17,22,23] and intersecting
planar vortices [18] was investigated. Partition functions in
the presence of twists can furthermore be related to electric
flux free energies via Z�N� Fourier transforms [10]; a
thorough discussion of this together with detailed measure-
ments can be found in [18], cf. also [24,25] for earlier work
with this focus. In addition, in the case of a system with a
first-order deconfinement transition, as found, e.g., for
SU�3� color, the vortex free energy in the deconfined phase
is related to the Z�3� order-order interface tension [3]; for
an evaluation of this interface tension using a different
method, cf. [26]. With auxiliary information about wetting
properties [26,27], the order-order interface tension can in
turn be connected to the order-disorder interface tension at
the critical temperature. Direct measurements of the order-
disorder interface tension at the SU�3� deconfinement
transition were reported in [27–34]; for a recent compari-
son with data obtained using a new calculational method
based on the vortex free energy, cf. [21]. The results
obtained in the present work will be put in relation to the
survey presented in [21] in Sec. IV.

II. VORTEX FREE ENERGY IN THE RANDOM
VORTEX WORLD-SURFACE MODEL

The main purpose of the work presented here is to
compute the dual string tension ~
�T� by evaluating the
free energy of appropriate vortex world surfaces within the
SU�3� random vortex world-surface model. This model
was first defined and studied for the gauge group SU�2�
in Refs. [11,35] and later extended to the SU�3� case in
Refs. [12,36]. It describes the infrared sector of Yang-Mills
theory as an ensemble of random (thick) center vortex
world surfaces. On a space-time lattice dual to the one
Yang-Mills lattice links are defined on,3 the vortex world
surfaces are composed of elementary squares, and can thus
link with the Wilson loops of the original lattice. As
described and motivated in detail in [11,12], since the
model is not intended to describe the structure of the theory
at arbitrarily short distances, it has a fixed lattice spacing a
representing the vortex thickness. Continuity of the mag-
netic flux forces the vortex world surfaces to be closed, and
the statistical weight of a (closed) vortex world surface is
determined by a model action inspired by a gradient ex-
pansion of the Yang-Mills action of a center vortex [37]:
3Two lattices of spacing a are dual to one another if one can be
generated by shifting the other one by the vector �1; 1; 1; 1�a=2.
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Here, the (dual) lattice elementary square extending from
the dual lattice site x into the positive � and � directions is
associated with a triality q���x� 2 f�1; 0; 1g [in the case
of an underlying SU�3� gauge group], labeling the center
flux carried by that elementary square. The value q���x� �
0 indicates that the square is not part of a vortex world
surface, whereas the other two values are associated with
the two types of center flux a vortex surface can carry4. The
two terms in Eq. (4) correspond to a Nambu-Goto and a
curvature term, respectively. They implement the notion
that vortices, on the one hand, may be associated with a
surface tension such that it costs a certain action increment
� to add an elementary square to the surface. On the other
hand, vortices are stiff, such that an action increment c is
incurred for each pair of elementary squares in the vortex
surface which share a link but do not lie in the same plane
(i.e., vortex curvature is penalized). For details on the
physical foundations of the model, and the determination
of the couplings � and c, the reader is referred to
Refs. [11,12]. In practice, physical ensembles which re-
produce the gross features of the corresponding Yang-Mills
theory in the infrared can be achieved with � � 0. In the
case of an underlying SU�2� gauge group, the value c �
0:24 generates a physical ensemble, whereas in the case of
the SU�3� gauge group, the appropriate value is c � 0:21.
These values were determined by requiring the models to
correctly reproduce the ratio of the deconfinement tem-
perature Tc to the square root of the zero-temperature
string tension

����



p
found in the corresponding Yang-Mills

theory.
In the random vortex world-surface model, the elemen-

tary squares q���x� of the dual lattice represent the build-
ing blocks for the dynamical center vortex degrees of
freedom; in this framework, it is thus particularly simple
to introduce an additional vortex world surface into the
configurations. One simply needs to replace5

q���x� ���! �q���x� � �q�mod3 (5)

for all elementary squares q���x� making up the world
4To be precise, in terms of elementary Wilson loops (pla-
quettes) on the original lattice, the plaquette U���y� extending
from y into the positive � and � directions takes the value
U���y� � exp�i�=3 � �����q���x��, where x � y� �e� �
e� � e� � e��a=2, with e� denoting the unit vector in the �
direction.

5The modulo operation is to be applied such that the result
again takes a value in f�1; 0; 1g.
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surface in question, with a fixed value of �q 2 f�1; 1g.
The two possible values of �q are related by a space-time
inversion which reverses the direction of magnetic flux
(and leaves the action invariant); one can therefore restrict
oneself to �q � 1 without loss of generality.

The dual string tension is obtained in this work specifi-
cally by calculating the excess free energy in the presence
of a vortex world surface P occupying an entire lattice
plane extending into two spatial directions. The plane P is
composed of elementary squares pi with 1 � i � I, where
I is the number of elementary squares in P. Let Q denote
collectively a vortex world-surface configuration fq���x�g,
and S�Q� the corresponding action (4). It will be useful for
the following to introduce a notation for introducing addi-
tional elementary vortex squares pi into configurations;
this is best done recursively: Starting with a configuration
Q0 from the conventional random vortex world-surface
ensemble, without any additional vortex surfaces intro-
duced, define the configuration Qi as the configuration
obtained by effecting the transformation (5) specifically
on the elementary square pi of the configuration Qi�1. One
can also define corresponding partition functions Zi as

Zi �
Z
�dQi� exp��S�Qi�� �

Z
�dQ0� exp��S�Qi��: (6)

In the notation of Eq. (1), ZP � ZI. To obtain the dual
string tension, it is thus necessary to evaluate

ZI

Z0
�

R
�dQ0� exp��S�Q0�� exp���S�QI� � S�Q0���R

�dQ0� exp��S�Q0��

� hexp���S�QI� � S�Q0���i0: (7)

However, this expression is of little practical use as it
suffers from a serious overlap problem: The quantity being
averaged varies over many orders of magnitude, so that
most configurations only give an exponentially small con-
tribution to the average. The resulting numerical noise
precludes extracting a useful signal. This problem is ad-
dressed by using an algorithm introduced by de Forcrand et
al. [17]. By decomposing

ZI

Z0
�

ZI

ZI�1
�
ZI�1

ZI�2
� � �

Z1

Z0
; (8)

the problem is separated into the calculation of a (sizeable)
number of independent expectation values with good over-
lap; namely, one evaluates the effect of introducing just one
additional elementary square pi into the configurations at a
time,

Zi

Zi�1
�

R
�dQ0� exp��S�Qi�1�� exp���S�Qi� � S�Qi�1���R

�dQ0� exp��S�Qi�1��

� hexp���S�Qi� � S�Qi�1���ii�1: (9)

Note that the classes of configurations Qi, excepting Q0

and QI, contain open vortex world surfaces, bounded by
center monopoles, which violate the Bianchi identity. As
-3
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already discussed further above, these are unphysical ob-
jects which are introduced here merely as intermediate
mathematical constructs. If one implemented the Bianchi
constraint in terms of an infinite action term penalizing
center monopoles, all intermediate partition functions Zi
(apart from Z0 and ZI) strictly speaking would vanish.
These Zi thus really are calculated with a modified weight
in which the infinite self-energies of the center monopoles
introduced explicitly into the configurations are left out (all
other center monopoles are of course still completely sup-
pressed; the integration

R
�dQ0� is over the conventional

ensemble which respects the Bianchi identity). Of course,
the final result for the dual string tension ultimately de-
pends only on the physical partition functions ZI and Z0;
all intermediate partition functions cancel out in the prod-
uct (8).

In practice, it is possible to improve the measurement of
the individual expectation values (9) further by using a
multihit procedure. The quantity S�Qi� � S�Qi�1� depends
only on the configuration in the neighborhood of the ele-
mentary square pi; thus, by performing multiple configu-
ration updates and measurements in that neighborhood
before carrying out the next global update of the configu-
ration, statistics can be improved considerably without
spoiling detailed balance or ergodicity.

As the plane P is filled up one elementary square pi at a
time6, one can record the free energies

Fi � � ln�Zi=Z0� (10)

of the partial vortex surfaces, up to the free energy FI of the
full plane P. The dual string tension is extracted as

~
�T� �
FI

Ia2
(11)

where a denotes the lattice spacing. As already mentioned
above, the lattice spacing in the random vortex world-
surface model is a fixed physical quantity related to the
transverse thickness of the vortices; for a detailed discus-
sion, cf. [11,12]. At the physical point � � 0; c � 0:21 of
the SU�3� model, its value is a � 0:39 fm, where the scale
was fixed by equating the zero-temperature string tension
with �440 MeV�2. Besides the dual string tension, which is
the principal quantity of interest in this work, below also
the partial free energies Fi will be discussed.

III. NUMERICAL RESULTS

A. General remarks

Since the lattice spacing a of the random vortex world-
surface model is taken to be a fixed quantity that is not
scaled towards a continuum limit, the temperature in the
6In practice, this was done row by row, as one would read a
text.
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model can only be changed in rather large steps if the
coupling constants are kept fixed. However, by employing
an interpolation method, a continuous range of tempera-
tures can be explored [11,12]: For all measurements in this
work, � � 0 is fixed and only variations in the curvature
coupling c are considered. For several temporal extensions
N0 � 1; 2; 3 of the lattice, one can vary the coupling c until
the deconfinement phase transition is observed at critical
couplings c�i � c��N0 � i�. The critical couplings for the
gauge group SU�3� on lattices of extension N0 � 303 are7
N0 � i
7The value of c�3 w
due to its weak infl
tice. The other two
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1

as only determined
uence on the interp
values are accurate
2

to within an error
olations needed in
to the digits show
3

c�i
 0.0872
 0.2359
 0.335
From the critical temperature aTc � 1=N0 for the three
values c � c�i , the function aTc�c� can be determined for
all relevant couplings c by interpolation. This, in turn,
specifies the temperature in units of the deconfinement
transition temperature for any c and N0 via

T
Tc

�
1

N0 � aTc�c�
:

In particular, this permits carrying out measurements at a
given T=Tc for different N0 and the corresponding c.
Combining these measurements, the quantity in question,
at the given T=Tc, can then also be obtained for the
physical value c � 0:21 by interpolation in c. This proce-
dure is used to arrive at the last two columns of Table I
below.

To be consistent with this determination of the tempera-
ture, and also in order to minimize finite-size effects, the
evaluation of the dual string tension in this work was
likewise carried out on N0 � 303 lattices. To check for
finite-size effects, control measurements were performed
on lattices with spatial extensions of 10, 12, and 16 lattice
spacings; in all cases, the discrepancies between measure-
ments of the dual string tension at spatial extensions 16 and
30, respectively, were smaller than the statistical errors of
the measurements.

B. Boundary effects on open vortex world surfaces

The left-hand panel of Fig. 1 shows a typical result for
the free energies Fi of partial vortex world surfaces in the
deconfined phase, at T=Tc � 1:093. The area of the sur-
faces in units of a2 is i, and the approximate linear rise with
i thus indicates an area law, as expected in the deconfined
phase. However, there are also systematic deviations from
a behavior purely proportional to the area, in particular, for
small i, and for large i, when the surface almost completely
covers the lattice plane it is located in. Presumably, in the
latter case, configurations are relevant in which a vortex
of 1%
prac-

n.



TABLE I. Dual string tension ~
 measured on 303 � N0 lattices
with � � 0. The curvature couplings c were chosen such that the
corresponding measurements for N0 � 1 and N0 � 2 implement
the same temperature T=Tc. The results in the last two columns
represent the interpolation to the physical point c � 0:21. The
errors quoted for these interpolated values contain an estimate of
the uncertainty associated with the interpolation, cf. main text,
compounded with the statistical error of the raw data. Note that
the measurement at T=Tc � 1:77 with N0 � 1 is carried out
directly at the physical point c � 0:21; therefore, no interpola-
tion is necessary to obtain the physical dual string tension at that
temperature. Since the lattice spacing at the physical point is
fixed to a � 0:39 fm, the value of the physical dual string
tension ~
phys can be given in absolute numbers in the final
column.

T=Tc c ~
 �30a�2 ~
phys �30a�
2 �����������

~
phys
p

/ MeV

1.0015 N0 � 1 0.08753 4:9� 0:3 6:3� 0:6 42:3� 1:9
N0 � 2 0.2362 6:6� 0:4

1.0052 N0 � 1 0.0884 14:4� 0:3 11:5� 0:9 57:0� 2:4
N0 � 2 0.2370 10:8� 0:5

1.0118 N0 � 1 0.0899 29:3� 0:1 26:2� 1:0 86:2� 1:6
N0 � 2 0.2384 25:5� 0:5

1.0147 N0 � 1 0.0905 35:6� 0:2 30:0� 1:5 92:3� 2:3
N0 � 2 0.2390 28:7� 0:5

1.0195 N0 � 1 0.0916 46:7� 0:3 33:4� 3:4 97:3� 5:0
N0 � 2 0.2400 30:0� 0:9

1.044 N0 � 1 0.0969 98:1� 0:1 66:9� 7:9 138� 8
N0 � 2 0.2450 57:3� 0:7

1.068 N0 � 1 0.1021 144� 0:1 97:5� 13:1 166� 11
N0 � 2 0.2500 80:2� 0:7

1.093 N0 � 1 0.1073 188� 0:2 134� 17 195� 12
N0 � 2 0.2550 110� 0:8

1.118 N0 � 1 0.1123 226� 0:3 164� 21 216� 14
N0 � 2 0.2600 133� 0:8

1.326 N0 � 1 0.1495 437� 0:2 385� 32 330� 14
N0 � 2 0.3000 308� 1:5

1.500 N0 � 1 0.1756 513� 0:3 486� 22 371� 8
N0 � 2 0.3350 387� 0:9

1.770 N0 � 1 0.2100 579� 0:3 579� 0:3 405� 0:1
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surface of maximal size has detached from the externally
introduced one, leaving only a surface extending between
the center monopole world-lines in the shorter direction as
opposed to winding almost completely around the lattice.

The deviations from a pure area law can be formally
attributed to self-energies and residual interactions of the
center monopole world-lines which necessarily bound the
intermediate open vortex world surfaces. They are the most
transparent when considering surfaces made up of full rows
of elementary squares, i.e., when i is an integer multiple of
the spatial extension of the lattice, i � kNs. In this case,
there are two parallel center monopole world-lines winding
along a spatial dimension of the lattice at a distance k � a
and the deviations from the area law formally correspond
to self-energies and residual interactions of the two mono-
poles. The right-hand panel in Fig. 1 displays the deviation
054026
�F�k� � FkNs
� FI � kNs=I from an area law as a function

of the center monopole separation in lattice units k. It
should again be noted that this quantity does not have an
immediate physical interpretation. Apart from the mono-
poles propagating into a spatial instead of the temporal
direction, they strictly speaking are associated with an
infinite self-energy preventing their appearance in the
physical vortex ensemble. An additional finite contribution
to this infinite self-energy is physically inconsequential.

C. The dual string tension

Approaching the deconfinement phase transition tem-
perature Tc from below, one can verify that the dual string
tension is compatible with zero. Corresponding measure-
ments on 303 � 2 lattices at couplings c below the critical
coupling c � 0:2359, which realize the confining phase,
yielded
c

-5
~
a2
0.21
 0:000 190� 0:000 214

0.23
 3:6� 10�6 � 0:001

0.235
 �0:000 37� 0:001
Also, for comparison, a measurement on a 163 � 2
lattice at c � 0:21 resulted in ~
a2 � �0:000 205�
0:000 271.

Above the phase transition temperature, measurements
were carried out for a sequence of temperatures T=Tc. As
displayed in Table I, for each temperature, measurements
were performed both on a 303 � 2 and a 303 � 1 lattice
with the appropriate couplings c realizing the given tem-
perature. Thus, for a fixed temperature T=Tc, the dual
string tension ~
 for the two values c1 (N0 � 1) and c2
(N0 � 2) is obtained. To arrive at the physical value, those
two results are then interpolated linearly to the physical
coupling cphys � 0:21. To estimate the uncertainty associ-
ated with the interpolation, also the two limiting parabolas
through the data were constructed which just still behave
monotonously between c1 and c2 (these are, of course, the
ones whose slope vanishes at c1 or c2, respectively).
Evaluated at cphys � 0:21, these yield the interpolation
uncertainty which, compounded with the statistical error
of the data, is quoted in Table I for the interpolated dual
string tension. Finally, since the lattice spacing at the
physical point is known in absolute units, the physical
value of the dual string tension can also be given in
absolute units. This is shown in the last column of
Table I. These results are also presented graphically in
Fig. 2.

As can be seen from the data, the dual string tension ~

rises with increasing temperature in the deconfined phase.
As the phase transition is approached from above, the dual
string tension ~
 quickly vanishes as is expected for an
order parameter. Since the phase transition in the SU�3�
case is weakly first order [12], a weak discontinuity is
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FIG. 1 (color online). Left panel: Free energies Fi, cf. Eq. (10), of partial vortex world surfaces, as a function of the number i of
elementary squares included in the surface. Measurements were taken on a 303 � 2 lattice at � � 0 and c � 0:2550, which
corresponds to T=Tc � 1:093 (deconfined phase). Right panel: The residual magnetic monopole correlation �F�k� � FkNs

� FI �

kNs=I as a function of the monopole pair separation in lattice units k, from the same measurement. The curve represents a fit by a (self-
energy) constant plus a Yukawa potential, �F�k� � V0 � exp���k�=k.
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expected in the dual string tension ~
�T�. The discontinuity
can be obtained by using the two data points nearest to Tc
and extrapolating linearly to T � Tc. Using the values for
the dimensionless combination ~
phys�30a�2 from the sec-
ond to last column in Table I, i.e., 6:3� 0:6 at T=Tc �
1:0015 and 11:5� 0:9 at T=Tc � 1:0052, and varying the
slope of the extrapolation line within the error bounds, the
resulting dual string tension at T � Tc� is
0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
T/Tc
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FIG. 2 (color online). Dual string tension ~
 as a function of the
temperature T in the deconfined phase, taken from Table I. The
symbols are as large or larger than the uncertainty indicated in
Table I.
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�����������
~
phys

q
jT�Tc�

� �34:5� 4:9� MeV: (12)

As a cross check, a spline extrapolation through the five
data points nearest to the transition (up to T=Tc � 1:0195)
yields

�����������
~
phys

p
jT�Tc�

� 36:8 MeV, whereas using only the
three nearest data points leads to

�����������
~
phys

p
jT�Tc�

�

36:5 MeV, both consistent with (12). Also, linear regres-
sion through the nearest three data points yields�����������
~
phys

p
jT�Tc�

� 35:5 MeV. The data thus provide a clear
signal for the discontinuity of the dual string tension ~
 at
T � Tc, in accordance with the first-order character of the
phase transition previously verified for the SU�3� random
vortex world-surface model via the action density distri-
bution at the critical temperature [12]. The small value of
the discontinuity compared with typical strong interaction
scales again demonstrates the weak first-order character of
the transition.
IV. DISCUSSION

The dual string tension in the framework of the SU�3�
random vortex world-surface model was verified in this
investigation to represent an order parameter for the de-
confinement phase transition, and to furthermore reflect the
weak first-order character of the transition. Quantitatively,
the result (12) for the discontinuity at the transition,����

~

p

jT�Tc�
� �34:5� 4:9� MeV;

turns out to be of the same order of magnitude, but smaller,
than the dual string tension at criticality which has been
extracted from measurements of the order-disorder inter-
-6
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face tension in SU�3� lattice Yang-Mills theory assuming
perfect wetting. The available data for the order-disorder
tension [21] indicate a value of 
od � 0:015T2

c , which
translates to 
od � �34 MeV�2, if the scale is set by equat-
ing the zero-temperature string tension with �440 MeV�2.
Assuming perfect wetting, the order-order interface ten-
sion, equivalent to the dual string tension, would be ex-
pected to take the value 2
od � �48 �MeV�2.

There are, however, caveats to this comparison. On the
one hand, though wetting has been observed in SU�3�
lattice Yang-Mills theory [26,27], there remains an uncer-
tainty as to its quantitative extent. On the other hand, there
are also still significant uncertainties involved in extrapo-
lating the aforementioned measurements of the order-
disorder tension from the lattice spacings at which they
were obtained to the continuum limit. Current efforts to
accurately determine the dual string tension at the decon-
finement transition in SU�3� lattice Yang-Mills theory [21]
actually indicate significantly higher values of the tension
at coarse lattice spacings; however, also in this case, no
conclusive statement concerning the extrapolation to the
continuum limit can be made on the basis of the prelimi-
nary data presently available. These data display a sub-
stantial downward trend for the dual string tension as the
lattice spacing is reduced.

In view of the current status, it seems premature to draw
a final conclusion as to whether the result obtained here
within the random vortex world-surface model quantita-
tively reflects the behavior of full SU�3� Yang-Mills theory
or not. On the other hand, it should be noted that it is
possible to significantly enhance the first-order character of
the deconfinement phase transition in the vortex model by
introducing an additional term into the action (4) which
favors vortex branchings; the latter are presumably instru-
mental in establishing first-order behavior in the SU�3�
vortex model, since they represent the feature which quali-
tatively distinguishes SU�3� vortex configurations from
SU�2� vortex configurations, cf. the similarity of the model
action used in the two cases [11,12]. Introducing the afore-
mentioned mechanism has indeed proven to be efficacious
054026
in preliminary investigations of the SU�4� random vortex
world-surface model, which will be reported in a separate
publication. Whether it will ultimately be necessary to
invoke this type of mechanism in the SU�3� case is as yet
unclear in view of the current status of the data discussed
above; however, in the SU�4� case, such an additional term
in the action will certainly play a role.

A related example worth mentioning in closing is the
case of Sp�2� Yang-Mills theory recently discussed in [38].
The Sp�2� group has the same first homotopy group (after
factoring out the center) as the SU�2� group. Thus, the
geometrical structure of center vortices in the Sp�2� and
SU�2� theories is identical. Nevertheless, the Sp�2� theory
exhibits a first-order deconfinement transition, as opposed
to the SU�2� theory, in which the deconfinement transition
is second order. Of course, this does not logically imply
that vortices are irrelevant in determining the order of the
deconfinement transition; rather, it demonstrates that it
would be too superficial to discuss the vortex content of
gauge theories purely on a geometrical level. Instead, the
effective vortex dynamics specific to each Yang-Mills the-
ory play a crucial role. While sharing the geometrical
characteristics of SU�2� vortices, Sp�2� vortices must be
governed by an action which differs substantially from the
SU�2� case explored in [11,35]; as in the aforementioned
SU�4� model, additional action terms will be relevant,
inducing qualitative modifications of the effective
dynamics.
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