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Single top quark production and decay at next-to-leading order in hadron collisions
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We present a calculation of the next-to-leading-order QCD corrections, with the one-scale phase space
slicing method, to single top quark production and decay process pp, pp — th + X — bfvb + X at
hadron colliders. Using the helicity amplitude method, the angular correlation of the final state partons and
the spin correlation of the top quark are preserved. The effect of the top quark width is also examined.
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L. INTRODUCTION

At hadron colliders, the top quarks () are predominantly
produced in pairs via the strong interaction process
qq, gg — tt. Though it is possible to study the decay
branching ratios of the top quark in ¢ pairs, to test the
coupling of top quark with bottom quark (b) and W gauge
boson in hadron collisions, it is best to study the single top
quark production. Compared to the top quark pair produc-
tion, produced by the interaction of the quantum chromo-
dynamics (QCD), the single top quark productions are
through the electroweak interaction connecting top quark
to the down-type quarks, with amplitudes proportional to
the Cabibbo-Kabayashi-Maskawa (CKM) matrix ele-
ments. Because of the nature of left-handed charged
weak current interaction, the top quark produced via single
top processes is highly polarized. Furthermore, the top
quark will decay via weak interaction before it has a
chance to form a hadron, so its polarization property can
be studied from the angular distributions of its decay
particles. Hence, measuring the production rate of the
single top event can directly probe the electroweak prop-
erties of the top quark. For example, it can be used to
measure the CKM matrix element V,;, and to test the V — A
structure of the top quark charged-current weak interaction
or to probe CP violation effects [1-3]. Besides playing the
role as a test of the standard model (SM), the precision
measurement of the single top quark events has additional
importance in searching for new physics, because the
charged-current top quark coupling (W-#-b) might be par-
ticularly sensitive to certain new physics via new weak
interactions or via loop effects, and a new production
mechanism might also contribute to the single top event
rate [4—20]. Furthermore, the single top event is also an
important background to the search of the Higgs boson
(qq' — WH with H — bb) at the Tevatron [21-23] and
other new physics searches [24].

Because of the unique features of the single top quark
physics, it has been extensively studied in the literature
[15,25—45]. There are three separate single top quark
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production processes of interest at the hadron collider,
which may be characterized by the virtuality of the W
boson (with four-momentum ¢) in the processes. The
s-channel process qg' — W* — tb via a virtual s-channel
W boson involves a timelike W boson, g > (m, + m,,)?,
the r-channel process gb — ¢'t (including g'b — qt, also
referred as W-gluon fusion) involves a spacelike W boson,
g*> <0, and the tW associated production process bg —
tW~ involves an on-shell W boson, g> = m3,. Therefore,
these three single top quark production mechanisms probe
the charged-current interaction in different ¢> regions and
are thus complementary to each other. Furthermore, they
are sensitive to different new physics effects [44] and
should be separately studied.

To improve the theoretical prediction on the single top
production rate, a next-to-leading-order (NLO) correction,
at the order of ay, for the s- and 7-channel processes has
been carried out in Refs. [31,32,39]. This is similar to the
study of the O(«;) correction to the top quark decay [46].
Although the above studies provide the inclusive rate for
single top production, they cannot predict the event topol-
ogy of the single top event, which is crucial to confront the
theory with experimental data in which some kinematical
cuts are necessary to detect such an event. For that,
Refs. [47,48] have calculated the differential cross section
for on-shell single top quark production. However, NLO
corrections to the top quark decay process were not in-
cluded nor were the effects of the top quark width consid-
ered. Since the top quark production and decay do not
occur in isolation from each other, a theoretical study
that includes both kinds of corrections is needed. A com-
plete NLO calculation should include contribution from
the production and the decay of the top quark, and the
angular correlation among the final state particles should
be calculated to analyze the polarization of the top quark.
The O(e;) corrections to kinematic distributions may de-
pend on the kinematic cuts and on the jet algorithm that
must be implemented in the experiments. Therefore, it is
necessary to obtain a fully differential calculation that can
be used to study the kinematics of the final state particles.

In this theory paper, we present a NLO QCD calculation
with the one-scale phase space slicing method, which treats
consistently O(a,) corrections to both the production and
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the decay of the top quark in single top events. Our
approach can give not only the inclusive total cross section,
but also the various kinematical distributions of the
final state particles and provide a study on the top quark
polarization at the NLO. Furthermore, since realistic kine-
matical cuts can be applied, our approach allows the ex-
perimentalists to compare their results directly with the
theoretical predictions. In our study, we assume in all cases
leptonic decays of the W boson (for the sake of definite-
ness, we shall consider W — e* v; the lepton mass effects
will be neglected throughout this paper). The phenomeno-
logical discussions will be given in our sequential paper
[49].

The rest of this paper is organized as follows. In Sec. I,
we outline the method of our calculation. In Sec. III, we
present the Born level helicity amplitudes of the production
and decay of the single top quark. In Sec. IV, we present the
NLO helicity amplitudes of the production and decay of
single top quark. The effective form factor approach is
adopted in the calculation to generalize the application of
our formalism to, for example, studying new physics ef-
fects. In Sec. V, we use the phase space slicing (PSS)
method to calculate the effective form factors. To regular-
ize divergencies in the calculation that involve the 7y;
matrix, both the dimensional regularization (DREG) [50]
and the dimensional reduction (DRED) [51] schemes are
examined and their difference is shown in each individual
form factor. In Sec. VI, we show how to assemble all the
components discussed above to enumerate the NLO dif-
ferential cross section of the single top quark. Finally, we
give our conclusions in Sec. VII.

II. OUTLINE OF THE CALCULATION

In this section we outline the method of our calculation
whose details shall be presented in the following sections.

A. Narrow width approximation

In this work, the narrow width approximation (NWA) is
used to study the production and decay of the single top
quark, in which the O(«;) corrections can be unambigu-
ously assigned to either the single top quark production
process or the top quark decay process. A finite top width

b
(a)

FIG. 1.
channel.
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will result in a new type of virtual NLO Feynman diagram
in which a gluon line is connected from the antibottom
quark (of the production process) to the bottom quark (of
the decay process). Moreover, there will also be interfer-
ence between the gluons emitted in the production and the
gluon emitted in the decay if the effects of finite top quark
width are considered. Those effects are nonfactorizable,
which are similar to the effects of QED radiative correc-
tions to the scattering process ete” — WIW~ —4f. It
was shown that the nonfactorizable effects are small as
long as the process is not near the threshold [52—-54]. This
provides the motivation of using the NWA for this kind of
calculation [55-57].

The single top quark can be produced through s-channel
and 7-channel processes, as shown in Figs. 1(a) and 1(b),
respectively. Using the NWA, we decompose the Born
level processes, depicted in Fig. 1 as indicated by symbol
®, into two parts: the top quark production and its sequen-
tial decay, where both the production and decay matrices
are separately gauge invariant. Making use of the polariza-
tion information of the top quark, we can apply the NWA to
correlate the top quark production with the top quark decay
processes by replacing the numerator of the top quark
propagator (g, + m,) by 3, _.ut(1)a* (r). Here u™(z) is
the Dirac spinor of the top quark with helicity A,, where
A; = + or — for a right-handed or left-handed top quark,
respectively. Therefore, the scattering amplitude of the
single top quark production and decay processes can be
written as [4]

M= 3 ME(A) MP(), (1)
A=

where M(A,) is the helicity amplitude and A, is the helicity
eigenvalue of the single top quark produced in the inter-
mediate state. The matrix element squared can be written
as the product of the production part and the decay part in
the density matrix formalism:

IM|? = A B 2)

where

d
(b)

Feynman diagrams of the Born level contribution to the production and decay of single top quark. (a) s channel, (b) ¢
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Ay = M) M (X)), 3)

dec

By = M (A) Myoa(A). 4)

In addition to the matrix elements, the phase space of the
single top quark processes can also be factorized into the
top quark production and decay for an on-shell top quark in
NWA by writing the denominator of the top quark propa-
gator as

fdpz 1 _w
(p2 - m%)z + m,zl—? m,l“,'

When the matrix element is calculated using the fixed m,
value, it is the usual NWA method. In this case, the
invariant mass of the top quark decay particles will be
equal to m, (a fixed value) for all events. Reconstructing
the top quark invariant mass from its decay particles is an
important experimental task at the Tevatron and the LHC;
it is desirable to have a theory calculation that would
produce the invariant mass distribution of the reconstructed
top quark mass with a Breit-Wigner resonance shape to
reflect the nonvanishing decay width of the top quark (for
being an unstable resonance). For that, we introduce the
“modified NWA” method in our numerical calculation, in
which we generate a Breit-Wigner distribution for the top
quark invariant mass in the phase space generator and then
calculate the squared matrix element according to Eq. (2)
with m, being the invariant mass generated by the phase
space generator on an event-by-event basis. In the limit that
the total decay width of the top quark approaches to zero
(i.e., much smaller than the top quark mass), the production
and the decay of top quark can be factorized. Therefore, the
S-matrix element for the production and the decay pro-
cesses are separately gauge invariant with any value of top
quark invariant mass. We find that the total event rate and
the distributions of various kinematics variables (except
the distribution of the reconstructed top quark invariant
mass) calculated using the modified NWA method agree
well with that using the NWA method. In the NWA
method, the reconstructed top quark invariant mass distri-
bution is a delta function, i.e., taking a fixed value, while in
the modified NWA method, it is almost a Breit-Wigner
distribution. The reason that the modified NWA method
does not generate a perfect Breit-Wigner shape in the
distribution of the top quark invariant mass is because the
initial state parton luminosities (predominantly due to
valence quarks) for the s-channel single top process drop
rapidly at the relevant Bjorken-x range, where (x)=

m,/+/s ~ 0.1.

&)

B. Phase space slicing method

When calculating NLO QCD corrections, one generally
encounters both ultraviolet and infrared (IR) (soft and
collinear) divergencies. The former divergencies can be
removed by proper renormalization of couplings and wave
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functions. We do not need to renormalize the couplings in
our calculation because the Born level couplings do not
involve QCD interaction. In order to handle the latter
divergencies, one has to consider both virtual and real
corrections. The soft divergencies will cancel according
to the Kinoshita-Lee-Nauenberg theorem [58,59], but
some collinear divergencies will remain uncanceled. In
the case of considering the initial state partons, one needs
to absorb additional collinear divergencies to define the
NLO parton distribution function (PDF) of the initial state
partons. After that, all the infrared-safe observables will be
free of any singularities. To calculate the inclusive produc-
tion rate, one can use the dimensional regularization
scheme to regularize divergencies and adopt the modified
minimal subtraction (MS) factorization scheme to obtain
the total rate. However, owing to the complicated phase
space for multiparton configurations, analytic calculations
are in practice impossible for all but the simplest quanti-
ties. During the past few years, effective numerical com-
putational techniques have been developed to calculate the
fully differential cross section to NLO and above. There
are, broadly speaking, two types of algorithm used for
NLO calculations: the phase space slicing method and
the dipole subtraction method [60—69]. In this study, we
use the phase space slicing method with one cutoff scale
for which the universal crossing functions have been de-
rived in Ref. [63]. The advantage of this method is that,
after calculating the effective matrix elements with all the
partons in the final state, we can use the generalized cross-
ing property of the NLO matrix elements to calculate the
corresponding s-channel or #-channel matrix elements nu-
merically without requiring any further effort. The validity
of this method is due to the property that both the phase
space and matrix element of the initial and final state
collinear radiation processes can be simultaneously factor-
ized. Below, we briefly review the general formalism of the
NLO calculation in the PSS method with one cutoff scale.

The phase space slicing method with one cutoff scale
introduces an unphysical parameter s,,;, to separate the real
emission correction phase space into two regions: (i) the
resolved region in which the amplitude has no divergencies
and can be integrated numerically by the Monte Carlo
method; (ii) the unresolved region in which the amplitude
contains all the soft and collinear divergencies and can be
integrated out analytically. It should be emphasized that the
notion of resolved/unresolved partons is unrelated to the
physical jet resolution criterion or to any other relevant
physical scale. In the massless case, a convenient definition
of the resolved region is given by the requirement s;; >
Smin for all invariants s;; = (p; + p;)?, where p; and p; are
the four-momenta of partons i and j, respectively. For the
massive quarks, we follow the definition in Ref. [70] to
account for masses, but still use the terminology ‘re-
solved” and ‘“‘unresolved” partons. In the regions with
unresolved partons, soft and collinear approximations of
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the matrix elements, which hold exactly in the limit s,;, —
0, are used. The necessary integrations over the soft and
collinear regions of phase space can then be carried out
analytically in d =4 — 2¢e space-time dimensions. One
can thus isolate all the poles in € and perform the cancel-
lation of the IR singularities between the real and virtual
contributions and absorb the leftover singularities into the
parton structure functions via the factorization procedure.
After the above procedure, one takes the limit € — 0. The
contribution from the sum of virtual and unresolved region

corrections is finite but s,,;, dependent. Since the parame-
|
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ter spin 1S introduced in the theoretical calculation for
technical reasons only and is unrelated to any physical
quantity, the sum of all contributions (virtual, unresolved,
and resolved corrections) must not depend on s,;,. We note
that the phase space slicing method is only valid in the limit
that s.,;, is small enough so that a given jet finding algo-
rithm (or any infrared-safe observable) can be consistently
defined even after including the experimental cuts.

In general, the conventional calculation of the NLO
differential cross section for a process with initial state
hadrons H; and H, can be written as

doyy = Z[dxldxsz‘ (1 ) f 2 (v wp)dGNEO(xy X0, ), (6)
a,b

where a, b denote parton flavors and x;, x, are parton
momentum fractions. f#(x, uy) is the usual NLO parton
distribution function with the mass factorization scale ur,
and déNEO(xy, x,, pg) is the NLO hard scattering differ-
ential cross section with the renormalization scale wg. The
diagrammatic demonstration of Eq. (6) is shown in the
upper part of Fig. 2.

Unlike the conventional calculation method, the PSS
method with one cutoff scale will first cross the initial state
partons into the final state, including the virtual corrections
and unresolved real emission corrections. For example, to
calculate the s-channel single top quark production at the
NLO, we first calculate the radiative corrections to W* —
qG'(g), as shown in the lower part of Fig. 2, in which we
split the phase space of the real emission corrections into
the unresolved and resolved regions. After we integrate out

\
the unresolved phase space region, the net contribution of
the virtual corrections and the real emission corrections in
the unresolved phase space is finite but theoretical cutoff
(Smin) dependent, and it can be written as a form factor
(denoted by the box in Fig. 2) of the Born level vertex.
Second, we take the already calculated effective matrix
elements with all the partons in the final state and use the
universal “‘crossing function,” which is the generalization
of the crossing property of the LO matrix elements to NLO,
to calculate the corresponding matrix elements numeri-
cally. Once we cross the needed partons back to the initial
state, the contributions from the unresolved collinear phase
space regions are different from those with all the partons
in the final state. These differences are included into the
definition of the crossing function (including the mass
factorization effects), as shown in the middle part of

Pa Pa Pa Pa
+ — -
D, Do Po P,

virt soft 4 col

factorization hard

NLO
ab

Da Pa Pa
= -+ -
Dy, Dy by

hard

do

~Pa

Y23
Db

col col factorization

NLO
dgab
CTrossing —Da
«N<pb

FIG. 2 (color online).

Crossing Function

—Pa —Pa
+
Py -y

Illustration of the PSS method with one cutoff scale to describe the processes with initial state massless quarks.

Here only half of the real emission diagrams are shown. In this paper, we assign the particle’s momentum such that the initial state
particle’s momentum is incoming to the vertex while the final state particle’s momentum is outgoing.
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Fig. 2. In this paper, we present only the explicit expres-
sions of the crossing function. For the definition and de-
tailed derivation of the crossing function, we refer the
reader to Ref. [63]. After applying the mass factorization
in a chosen scheme, the s, dependent crossing functions
for an initial state parton a, which participates in the hard
scattering processes, can be written in the form:

N, Smi
CPe™e (x, tp, Smin) = (ﬁ)[/\u(x, M) log( :“‘)
F

4—B§“m%x;u»}, )
where
Aa(x’ IL’LF) = ZAp—m(-x; /“LF)’ (8)
p
BZCheme(x: /*'LF) = ZB;)CE?:!He(x’ /J“F)) (9)
p

and N, denotes the number of colors. The sum runs over
P = q, g, g- The functions A and B can be expressed as
convolution integrals over the parton distribution functions
and their explicit forms are shown in Appendix B.
Although A, is scheme independent, B, does depend on
the mass factorization scheme, and so does the crossing
function.

After introducing the crossing function, we can write the
NLO differential cross section in the PSS method with one
cutoff scale as

LTS [ dy £ ey, o) £

NLO()C1

X (xa, pp)do X2, MR)

+ a, (uR)[CL (xy, ) fy (o, )

+ fa' (e pp)CyR (v, wp)ldotO(xy, 1)) (10)
Here do-© consists of the finite effective all-partons-in-
the-final-state matrix elements, in which partons a and b
have simply been crossed to the initial state, i.e., in which
their momenta —p, and — p, have been replaced by p,
and py, as shown in Fig. 2. The difference between dohi©
and d6NEO has been absorbed into the finite, umversal

crossing function CH(x, up). Defining an “effective”
NLO parton distribution function F(x) as

Fa0) = fil (e pp) + o (up)Cll (x, p) + O(a),
1D

we can rewrite Eq. (10) in a simple form as

afi = j dxvyde, FH o) FI2 () doNO0 ),

12)
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C. y5 problem

Because of the presence of the axial-vector current, a
prescription to handle the ys matrices in d (= 4 — 2¢)
dimensions has to be chosen. In this paper, we show the
results of our calculations using both the DREG scheme
(’t Hooft-Veltman scheme [50]) and the DRED scheme
(four-dimensional helicity scheme [51]) to regulate the
ultraviolet and infrared divergencies presented in the
NLO calculations. We note that the results of form factors
and the crossing function should be done consistently in a
given scheme. Except for the top quark mass renormaliza-
tion, we work in the MS scheme throughout the paper to
perform the needed renormalization and factorization pro-
cedures in order to calculate any ultraviolet and infrared
finite physical observable. To renormalize the top quark
mass, we use the on-shell subtraction scheme.

ITI. LEADING-ORDER RESULTS OF SINGLE TOP
QUARK PRODUCTION AND DECAY PROCESS

In this section we present the leading-order results of the
single top quark processes. Using the density matrix
method in the NWA, cf. Eq. (2), we factorize the
s-channel and r-channel single top quark processes (cf.
Fig. 1) into the top quark production and decay, separately.
To compute the amplitudes, we use the spinor helicity
methods [71-75] with the conventions as in Ref. [76],
and, for completeness, we briefly review the notation in
Appendix A. We note that in some of Refs. [71-75] the
phase conventions do not correspond to the helicity con-
vention utilized in this paper. Below, we give the explicit
Born level helicity amplitudes of the single top quark
production and decay, respectively.

A. Helicity matrix elements of single top quark pro-
duction

The helicity amplitudes for the s-channel single top
quark production can be written as following:

M?r(’d(/\; — ) =2+ |2+><12 + |l;—)wt_, (13)

Mgrod(/\, _ _) = 2(?— |2+><12 + |l§—)wt+, (14)

where we have suppressed, for simplicity, the common
factor \/2E,\/2E;+/2E,, the coupling constants (%)2, and

the propagator 1/(s — m3,), with s = (p, + pz)*. Here g
is the SU(2) coupling constant, my denotes the mass of W
boson, and w’. = ./E, = |p,|, where E, and p, are the
energy and momentum of the top quark, respectively.
The meaning of the bra ({| ) and ket ( |)) in the above
helicity amphtudes 1s summarized in Appendix A. We

note that i, d 7, and b within the bra and ket denote the
normalized three-momentum of the particle, cf. Eq. (A6).
We did not write explicitly the helicity states of the other
massless quarks because only one set of the helicity states
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gives a nonvanishing matrix element. For example, in this
case the incoming u quark is left-handed, d is right-handed,
and b is right-handed. To calculate the squared matrix
element, one also needs to include the proper spin and
color factors, which are not explicitly shown in this paper.

For the t-channel single top quark production process,
the helicity amplitudes are given by

j\/lfr()d()\[ — +) — 2<12 + |5—><f+ |C?+>(1)[,, (]5)

MErOd(/\[ — _) = 2(12 + |l;—><f— |ﬂ~|—>w’+, (16)

where we have also suppressed the common factor
V2E,\J2E;\J2E,, the coupling constants (%)2, and the
propagator 1/(t — m%,), with t = (p, — py)*.

B. Helicity matrix elements of top quark decay

For the top quark decay process, the helicity amplitudes
are given by

M(N, = +) = =2b' — |p+)e + i)',  (17)

Méke(r, = =) = =D — |[p+)e + li-)w',, (18)

where we consider only the leptonic decay mode of W
boson and suppress, for simplicity, the common factor

V2E J2E \J2E,/, the coupling constants (%)2, and the

propagator 1/[(p%, — m3,) + imyT'y], where py and T'y
are the four-momenta and the total decay width of W
boson, respectively. All throughout this paper we use b’
to denote the bottom quark from top decay.

IV. NLO MATRIX ELEMENTS OF SINGLE TOP
QUARK PRODUCTION AND DECAY PROCESSES

Beyond the leading order, an additional gluon can be
radiated from the quark lines or appear as the initial parton
in the single top quark process . Since the single top quark
can be produced only through the electroweak interaction
in the SM, we can further separate the single top quark
processes into smaller gauge invariant sets, even at the
NLO. Taking advantage of this property, in the first part
of this section we separate the s-channel and ¢-channel
single top quark processes into smaller gauge invariant sets
of diagrams to organize our calculations. As we pointed out
in Sec. II B, NLO QCD corrections in the PSS method can
be separated into two parts: (I) the resolved real emission
corrections and (II) the virtual correction plus the unre-
solved real (soft + collinear) emission corrections, de-
noted by “SCV.” After integrating out the virtual gluon
and the unresolved partons, the SCV corrections can be
written as form factors multiplying the Born level vertex.
The form factors either modify the Born level coupling or
give rise to new Lorentz structure of W coupling to fermi-
ons. In the second part of this section, we will write down
the most general form factors of the single top quark
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processes and show their contribution to the helicity am-
plitudes for both s-channel and 7-channel processes explic-
itly. It is worthwhile to mention that the form factor
formalism presented here can be easily extended to study
new physics models whose effects also show up as form
factors. The derivation of the form factors for single top
quark production and decay processes as predicted by the
SM can be found in the second part of this section. The
resolved corrections are also calculated using the helicity
amplitude method and the results are shown in the third
part of this section.

A. Categorizing the single top quark processes

Here we separate the NLO s-channel and #-channel
single top quark processes into smaller gauge invariant
sets of diagrams to organize our calculations. The NLO
s-channel diagrams consist of all the virtual correction
diagrams as well as the Feynman diagrams of the following
real correction processes:

qq' — W*g — bgt(— bW™), (19)
g8 — W*q' — bq't(— bW™), (20)
8q' — W*g— bgi(— bW™), 1)
qq — W* — bgt(— bW™), (22)
qq — W* — bt(— bWt yg), (23)

where the gluon is connected only to (g, ¢) lines in (19)—
(21), only to (¢, b) lines in (22), and only to (¢, b) lines in
(23). We note that diagrams (20) and (21) do not include
those in which the gluon line is connected to the final state
b and ¢ line, for those are part of the NLO corrections to
t-channel process as shown in Eqgs. (26) and (27). To
facilitate the presentation of our calculation, we separate
the s-channel higher order QCD corrections (including
both virtual and real corrections) into the following three
categories:

(i) corrections to the initial state of the s-channel
single top quark production (INIT), in which the
gluon is connected only to the initial state light
quark (g, g') line,

(ii) corrections to the final state of the s-channel single
top quark production (FINAL), in which the gluon
is connected only to the final state heavy quark
(¢, b) line of the single top quark production,

(iii) corrections to the decay of the top quark (SDEC),
in which the gluon is connected to the heavy quark
(z, b) line of the top quark decay.

The three types of corrections are illustrated in the upper
part of Fig. 3, in which the blobs represent the higher order
QCD corrections. The explicit real emission diagrams for
the s-channel process can be found in Fig. 4.
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FIG. 3 (color online).
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The way we organize our calculations at the NLO. The blobs in the diagrams denote the higher order QCD
corrections, including both virtual and real emission contributions.

u d
a . L
4y
q
g )
D
(d)
t
W g
P\
q
b
(h)

u
; M
d b

FIG. 4. Feynman diagrams of the real emission corrections to s-channel single top quark production.

The NLO t-channel real correction processes for the top
quark production and decay are

bq— q'gt(— bW™), (24)
bg' — ggt(— bW™), (25)
qg — q'bt(— bW™), (26)
g'g— gbi(—bw), (27)
bg — qq't(— bW™), (28)
bg— q't(— bW g), (29)
bg' — Gi(— bW ). (30)

Here the gluon is connected to both (g, ¢') lines and (z, b)
lines in (24) and (25) but only to (z, b) lines in (26) and
(27). In (28), we restrict the gluon to be connected only to
(g, ¢') lines. When the gluon in (28) is connected to (7, b)
lines, it corresponds to the process bg — tW with W —
qq'; therefore, it is not included here. As done in the
s-channel case, we separate the t-channel NLO QCD cor-
rections (including both virtual and real corrections) (24)—

(30) into three categories. As illustrated in the lower part of
Fig. 3, they are
(i) the one in which the gluon is connected to the light
quark (g, ¢) lines (LIGHT),

(i) the one in which the gluon is connected to the
heavy quark (¢, b) lines (HEAVY),

(iii) the one in which the gluon is radiated from the
heavy quark (7, b) lines of the on-shell top quark
decay processes (TDEC).

The explicit real emission diagrams for the #-channel pro-
cess can be found in Fig. 5.

B. Form factor formalism for SCV corrections

Below, we present the form factor formalism for each
category defined in Sec. IVA, after including both the
virtual and unresolved real corrections.

1. INIT form factors
Higher order QCD corrections to the diagrams labeled as
INIT in Fig. 3 do not change the Lorentz structure of the
W* — u — d coupling; therefore, the most general form of
the initial state contribution can be rewritten as

ig
E')’MPLIL, (€2))
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(n)

FIG. 5. Feynman diagrams of the real emission corrections to the t-channel single top quark production.

where I; denotes the effective form factor that includes the
higher order corrections. Denoting the helicity amplitude
as Mpr(A,) with top quark helicity A, = =1 and
suppressing, for simplicity, the common factor
V2E,\J2E4\2E}, the coupling factors (%)2, and the propa-
gators 1/(s — m3,), with s = (p, + p;)>, we obtain the
helicity amplitudes which include higher order corrections
to the initial state of the s-channel single top quark pro-
duction as following:

M ir(+) = 21, + |d+Xa + |b—)o', (32)

Mpar(—) = 20,G — |d+)a + |b—Yo',,  (33)

where w'. = \/E, = |p,|, cf. Appendix A.

Needless to say, when calculating the scattering ampli-
tude of the single top quark production and decay process,
cf. Eq. (1), up to the NLO, the decay matrix elements in
this case are taken to be the Born level ones as given in
Egs. (13) and (14).

2. FINAL form factors

In the limit that the bottom quark mass is taken to be
zero,' the most general W* — t — b coupling, labeled as

"We take the bottom quark mass to be zero throughout our
calculation because (m,/m,)*> can be ignored numerically.
Strictly speaking, «,In(m;) terms have been included in the
definition of NLO PDF.

FINAL in Fig. 3, is

(t, —b,)
myy

ig

NG

(34)

where the asterisk in the superscript of the form factors
indicates taking its complex conjugate. This is different
from the coupling in Eq. (31) because the top quark mass is
kept in the calculation, and only the bottom quark mass is
taken to be zero. Because the charged current interacts with
massless quarks in the initial state, one can use the on-shell
condition of the massless initial state quarks to rewrite
Eq. (34) as

ig
V2
where the myy, has been absorbed into form factors FX* and
F%*. Denoting the helicity amplitude as Mpar (A, A,),
we obtain the helicity amplitudes which include higher

order corrections to the s-channel single top quark produc-
tion as following:

{y (FL*P, + FRPg) + b, (FF*P, + FY*Pg)}, (35)

Mpar(— =) = 2FEG — |d+)a + [b—)o!,
+ FRd — |Bla—)i — |b—Yo", (36)

Mpar (+, =) = 2FRG — |a—Xd — |b+)w'
+ FLd — |Bla—)i — |b+)e’,,  (37)
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Mear(—, +) = 2FLG + |d+Xa + |b—)o'
+ FRd — |Bla—)i + |b—)w',, (38)

Mear(+, +) = 2FFE + la—)d — |b+)w’,
+ FYd — |Bla—)i + |b+)w".  (39)
As before, we have suppressed the common factor

2E\J2E 4, J2E;, the coupling factors (%)2, and the propa-
gators 1/(s — m%,), with s = (p, + py)*.

3. LIGHT form factors

The effective form factor for u — W* — d, labeled as
LIGHT in Fig. 3, takes the exact same formas W* — u — d
in Eq. (31). Hence, the helicity amplitudes M ;gur(A,) for
the r-channel single top quark production are given as
follows:

M Ligur(+) = 2L (7 + |d+)Xa + |b—)w", (40)

M Ligur(—) = 2L (7 — |d+)Xa + |b—)w',, (41)

where L; is the effective coupling induced by higher order
corrections. Again, we have suppressed the common factor

V2E \2E;+/2E}, the coupling factors (%)2, and the propa-
gators 1/(t — m3,), with t = (p, — pa)*.

4. HEAVY form factors

The effective form factor for b — W* — ¢, labeled as
HEAVY in Fig. 3, takes the exact same form as W* — ¢ —
b in Eq. (35). Hence, the helicity amplitudes
Mugavy(Ap, A,) for the t-channel single top quark pro-
duction are given as follows:

Myeavy(=, =) = 2HY (@ = |d+Xa + [b-)o',
— HEd — |Bla—Xi — |b—)o",
(42)
M ypavy(+, =) = 2HFF — [a=Xd — |b+)w"
— HYd — Bla—)F — |b+)o',
(43)
Myeavy(=, +) = 2HYG + |d+ )@ + =)ot
— HEd — |Pla=Xi + |b—)w',
(44)
M ypavy(+, +) = 2HFG + [a=Xd — |b+)w",
— HYXd — Bla—)G + |b+)o’,
(45)

where Hf‘zR denote the effective couplings induced by

PHYSICAL REVIEW D 71, 054022 (2005)

higher order corrections. Here we have suppressed the

common factor /2E,\/2E;/2E,, the coupling factors
(4, and the propagators 1/(t—my), with =

(Pu — Pa)*.

5. Top quark decay form factors

The most general t — b — W coupling, labeled as DEC
for both s-channel and #-channel processes, is

i
J5u(DEP, + DEPY) = bl (DEPy + DEPL)) - 46)
where D'f"2R denote the form factors which include higher
order QCD corrections. Denoting the helicity amplitude as
Mpgc(A;, Ay), we obtain the helicity amplitudes which
include higher order corrections to single top quark decay
process as following:

Mpec(—, =) = —2DK(B' — |p+)Xe + |i—)o',
+ DX(p — | le—Xb' — li-)o',  (47)

+ DX — |fle—Xb' — |i+)e’,,  (48)

Mpgce(—, +) = _2D{e<l;/ +le=Xp — li-)w"
+ DY — |Ple—Xb' + li—)o',,  (49)

Mpgc(+, +) = 2D + |e=Xp — |i+)o’,
+ DD — [#le—Xb' + |li+)w’,  (50)

where we ignore the common factor \/2E,+/2E,+2E,, the
coupling factors (%)2, and the propagator 1/[(p?, —
m¥) + imy Ly ], with py = p.+ + p,.

The category SDEC (or TDEC) in Fig. 3 is obtained by
convoluting the s-channel (or #-channel) Born level helic-
ity amplitudes, cf. Eqgs. (13) and (14) [or Egs. (15) and
(16)], with the corresponding DEC amplitudes listed
above.

C. Helicity amplitudes of resolved contributions

Here we present the helicity amplitudes of resolved
corrections for each category defined in Sec. IVA.

1. NLO corrections to INIT

The Feynman diagrams of the initial state real emission
corrections are shown in Figs. 4(a)—4(f). At the NLO, a
hard gluon can be radiated from the initial state quark line,
or a quark can be generated from the gluon splitting. We
separate the NLO INIT real emission corrections into three
categories:
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INIA: ¢ — W'g— tl}g, including (a) and (b),
INIB: gg— W*q' — tbq', including (c) and (d),
INIC: §'g— W*G—tbg, including (e)and (f),

which are separately gauge invariant. Denoting the helicity
amplitude as M2 €(),), we calculate the helicity ampli-
tudes for a given helicity state (A;) of the top quark, which
are listed as follows.

The helicity amplitudes for INI A are

(d = 1i=)b + ¢ o)

2

MA(+) = 2wf_{

p
WA
q
d — 1i+)b + ¢ la—
b+ la—Xd ~ £ 4li+)
- s } (52)
q
with p = p, — pgand ¢ = p; — p,.
The helicity amplitudes for INI B are
~ + A A . - A_
MBu(+) = 20)1_{_<b la—Xd ; |£:p-li—)
p
PR
q
b+ la—)Xd — ¢, p_li+
Mf*m—>=2wf+{—< Ka~ I#+p-1i4)
p
R
q
with p = p, — p;and ¢ = p, + p,.
The helicity amplitudes for INI C are
~ + ﬁ_ ~ . - A_
M5 = 20 |- SN0
~ T ~ n - A
e
p
b+ li—Xd — £, 41+
Mgy = 20t |- SN 1)
~ _ A+ ~ + - ﬁ_
Ao i)
p

with p = p, — p; and ¢ = p, + p;.
Again in all the above equations, we have suppressed the

common factor +/2F,./2E;/2E;, the coupling factors
gs(%)Z, and the propagator 1/(p%, — m3, + imyTy),

PHYSICAL REVIEW D 71, 054022 (2005)

with py = p; + p;. Here g, is the coupling constant of
the strong interaction.

2. NLO corrections to FINAL

The Feynman diagrams for NLO real emission correc-
tions to the final state of s-channel top quark production
process are shown in Figs. 4(g) and 4(h). Denoting the
helicity amplitude as Mpar(A,), then

(@ + 1b=)i + |¢, p_ld+)

M pnaL(+) = 20"

p* —mj
(@ + |b=)7 + 1#_|d+)
+2m,w’, 1
)4 my
Loy ld+)a + |g_# . 1b—)
C(), qz ’
(57)
(@ + b= — £, p_ld+)
M pnar(—) = 207 2 _ 2+
P niy
(@ + b= — 1¢_|d+)
+2m,w" R
P ur
s (= ldEa I 1o
(1)+ qz y
(58)

with p = p, + p,and ¢ = p, + p;. We again suppressed

the common factor /2F, /2E;,/2E, the coupling con-
stants gs(%)z, and the W boson propagator 1/(p3, —

m?, + imyy), with py, = p, + pg.

3. NLO corrections to LIGHT

The Feynman diagrams that generate real emission con-
tributions through coupling a gluon to the light quark lines
are shown in Figs. 5(a)—5(f). To facilitate our calculations,
we separate the NLO LIGHT real emission corrections into
the following three categories:

LIGHT A: bg — q¢'gt,

LIGHT B: bg' — Gaet,
LIGHT C: bg — qq't,

including (a) and (b),
including (c) and (d),
including (e) and (f).

Denoting the helicity amplitude as M{251(A,), then the

helicity amplitudes for LIGHT A are

M tiour(+) = —2w’{<d — li=Xb :2|I5—¢(*+|12—>
n (b + |a—)d - |¢*+4_|;_>}
7’ :

(39)
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(d—i+Xb + |p_# la—)
M/EIGHT(_) = 2‘”1{ » -
b+ a—Nd — |£*. 4|1+
A
q
with p = p, — pgand g = p; + p,.
The helicity amplitudes for LIGHT B are
(b + li—)d — 1§, p_1i-)
MLIGHT( ):2‘”t—{ » .
~ B A_ A + ~ " ﬁ_
PSR
q
(b + li—)d — ¢, p_1i+)
MEIGHT(_):_ZM{F{ 2 .
p
d— |F+Xb + |f_¢*, |i—
SRR SRS e
k
Withp=p,;—pgandq=p,;+pg.
The helicity amplitudes for LIGHT C are
(d—1i=Xb+|p_#+li—)
MEIGHT(+)=_2wt—{_ pzl‘ .
SRTSRVE e
N A
k
(d—i+)Xb+ |p_¢. i)
MEIGHT(_) = 2“’{#{_ » .
b+ |ii—Nd — _|i+
+<b | ><dk2 |# K17 >}, (64)

with p = p, — pz and ¢ = p, — py.

Again in all the above equations, we suppressed the
common factor /2F,/2E;+/2E;, the coupling constants
gs(%)z, and the W boson propagator 1/(p}, — m}, +

imy'y), with py, = p, — p,,.

4. NLO corrections to HEAVY

The Feynman diagrams that generate real emission con-
tributions through coupling a gluon to the heavy quark
lines are shown in Figs. 5(g)-5(n). We separate the NLO
HEAVY real emission corrections into the following four
categories:

HEAVY A: bg— ¢'gt, including (g) and (h),
HEAVY B: bg' — ggt, including (i) and (j),
HEAVY C: ¢g — ¢'bt, including (k) and (1),
HEAVY D: §'g— gbt, including (m) and (n).

Denoting the helicity amplitude as M{3E55(A,), then the
helicity amplitudes for HEAVY A are

PHYSICAL REVIEW D 71, 054022 (2005)

(@ + 1b=)i + | 4-1d+)
q° —m;

(@ + 16— ><t+lrf |d+)

q* — m;
(F+ |d+Xa + |p-¢ 1b-)

e

M fipavy(+) = 20

+ 2m,w’,

+2w"

(65)

b=Yi— ¢ 4_1d
M fipavy(—) =20 (u+| >q<t—!ft24|+>

(ot |- ><t — ¢ _1d+)

+2m,w
q* — m;
P—ld+Xa+ |p_ ¢, |b—
b2, AN B 15
p
(66)
with p = p, — p, and ¢ = p, + p,.
The helicity amplitudes for HEAVY B are
(it + 1b=)i + |# o 4-ld+)
M fgavy(+) = 20° 2 _ 2+4
q ny
b)Y + £ _|d+
b amr, B+ 1 104
C] - ny
P ld )G+ | po g b
b2 DB 15
p
(67)
L+ 1b=)E = 1 - ld+)
MﬁEAVY( ) =20 P _mtz+
i+ b)Y — |#_ld+
b a1~ I 1)
q- — ny

(= ld )i+ |p-#* 16-)

+2w!
+ pz
(68)
The helicity amplitudes for HEAVY C are
(@ + lb— X+ 1.4 |d+)
Mg +) =2w"
fEAVY () w 7 —m?
, i+ 1b=)E + [£-1d+)
—2m,w', 5 5
q- — m;
,(EHld+)a + | p-#1b—)
L o ,
(69)
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MﬁEAVY(_) = 2w’ (@ + 1b—){7 — |i42+47|d+>

qz - my
o Gt =) £ 1d)
T emw— 2 2
q- — m;
! (= ld+Xa + |p_¢.1b—)
— 20, : )
p
(70)
where p = p, — p; and ¢ = p, — p,.
The helicity amplitudes for HEAVY D are
(i + =) + |¢- 4_ld+)
M feavy(+) = 20° 2 _ 2+4
q ny
, a+ 1b=)F+ 1 ld+)
—2m,w', 5 5
q- — m;
ht 1N+ 1 #416-)
— 2w’ : )
p
(71)
(i + =) = |¢- 4-ld+)
MPb (—) =2w!
HEAVY + 7 —m?
o (i + |b=)1 — |¢_ld+)
T amw— 2 2
q- — m;
,E—ld+)u+ 1 p_¢.1b—)
— 20, 3 R
p
(72)

where p = p, — py and ¢ = p, — p;.

Again in all the above equations, we suppressed the
common factor «/2E,/2E;+/2E,, the coupling constants
gs(%)z, and the W boson propagator 1/(p%, — m}, +

imyTy), with py = p, — pg.

5. NLO corrections to top quark decay

The Feynman diagrams for NLO real emission correc-
tions to the top quark decay process are shown in Fig. 6.
Denoting the helicity amplitude as Mpgc(A,), then

£<l9 PN+ [P £ lt+)

M pec(+) =2 5 3
pm—m;
b—|p+)e+ ¢ _|i+
+2m’w,+< |p >2<e I;f |7+)
p-—ny
o+ |1+ Xb —|# 4|+
+2w,_<e |7+Xb zlrf ay >’ (73)
q
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(a) 0]

FIG. 6. Feynman diagrams of the real emission corrections to
top quark decay processes.

(b—lp+)e+p_# . 1i-)

M pec(—) =20,

p*—m;
b—|p+)e+ ¢ _|i—
+2mtw,_< | >2<e If |-
pr—nm;
e+ 1—Xb— ¢ o f 19+
+2w,+<e |7=X 2|f5+¢i +) (74)
q

with p = p, — p, and ¢ = p, + p,. We again suppressed
the common factor /2E,/2E,/2E,, the coupling con-
stants gs(%)z, and the W boson propagator 1/(p%, —

my, + imyTy), with py = p,+ + p,.

V. NLO SCV FORM FACTORS OF THE SINGLE
TOP QUARK PRODUCTION AND DECAY
PROCESSES

In this section, the analytical results of the effective
form factors are given in detail together with the corre-
sponding phase space boundary conditions which slice
the phase space of real emission corrections into unre-
solved and resolved regions. Provided with such phase
space boundary conditions, one can use the helicity
amplitudes given in the previous section to perform
numerical calculations. Since the unresolved regions of
massless partons differ from the ones of massive partons,
we separately consider the massless and massive partons
and present the detailed derivations of the SCV form
factors in Secs. VA and V B, respectively. For comparison,
we present our results in both the DREG and DRED
schemes. We note that the form factors and the crossing
functions should be applied consistently in any given
scheme.

A. NLO corrections to INIT

Let us first examine the initial state corrections to the
s-channel single top quark process, cf. Fig. 3. After calcu-
lating the effective matrix element with all the partons in
the final state, we cross the relevant partons into the initial
state to obtain the needed matrix element. In dimension
d =4 —2¢, the NLO matrix element for the vertex
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FIG. 7.
g — §' — W* can be written as’

M=V = B 5@y PLug),  (5)

ig
V2
where u(g)(v(g')) is the wave function of ¢(g'), P;, = (1 —
vs)/2. The calculation of the virtual corrections for the

vertex g — q' — W* is straightforward and after renormal-
ization it yields

(v a
fqu’ W(virt) __ _SCFCE

2 2.8 3 472
— In —_—
4 {

e PN
e€ € m € 3

§ ) § qg'—W (virt)
+3 hlm—tz In m—tz + Ischeme s (76)

where § = 2p, * py, Cp = 4/3, Cc = (4mu?/m})T(1 +
qq'—-W(virt) .

€), and the scheme dependent term /27 """ is

J97—W i) _ —8 in DREG scheme, a7
Scheme —7 in DRED scheme.

We have neglected all the possible imaginary parts in the
above result and also in what follows, because they do not
contribute to cross sections up to the NLO. Note that the

tree-level amplitude corresponds to setting f j]q/_'w = 1in
Eq. (79).

In the phase space slicing method, the soft and collinear
singularities in the virtual corrections, the poles of € in
Eq. (76), should be canceled by the unresolved real emis-
sion corrections from processes shown in Egs. (19)—(21).
Below, we will partition the phase space of the real emis-
sion corrections to calculate the unresolved contribution.

As an example, let us examine the gg — W*g process.
After crossing all the initial state partons of the process
qq' — W*g into the final state, the particles’ momenta are
assigned as in Fig. 7, which implies the crossed process
W* — Gq'g. Let us consider the whole phase space of the
process W* — Gq'g as the identity and partition it into
three regions as shown in Fig. 8:

It yields 7, = £97~"" in Eq. (31).

Crossing WH*

—
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q
//_ Dq
g
by

o
\q, '

Illustration for crossing the initial state partons into the final state in the process gg’ — W*g.

1= ®(|st?g| + |Sq'g| - 2smin) + ®(2smin - |S¢?g| - |s‘]lg|)
— @(lngl — Q«Smin)@(smin - |sq’g|)
— ®(|Sq/g| = 281min) O (i — |sl?g|)

+ O(Isze] = 25min) O (Simin — I ])
+ O(Isyr] = 25min) O(Smin — 1551
=Fi+F.+F; (78)
where

:]:1 = ®(|s¢?g| + |Sq’g| - 2smin)
= O(lsze] = 25min) O(Smin — 1547,1)
= O(sggl = 25min)O(smin — Isgel), — (79)

.7:2 = ®(2smin - |sz}g| - |Sq’g|)r (30)

f:i = @(lngl - 2smin)®(smin - |Sq/g|)
+ Osggl = 25min) O(smin — lsgel). (81

Here O is the Heaviside step function and s;; = 2p; * p;,
where p; is the four-momentum of the particle i. In the
phase space region constrained by function F; (resolved),
there are no soft and collinear divergencies; therefore, it
can be calculated in four dimensions numerically. The soft
region is defined by the function F,, which have both the
soft and collinear divergencies. The collinear regions are
defined by the function F5 as shown in Fig. 8 which only
have the collinear singularities but no soft singularities. In
function 3, the first term denotes the collinear region of
g |l ¢’ and the second term represents the collinear region
of g ll g.

Under the soft approximation, i.e., in the soft region
(F»), the squared matrix element can be written as a factor
multiplying the squared Born matrix element:

®(2Smin - |sqg| - |Sq/g|)|:]\/l(‘/v>k
2P0

— Gq'g)lP— VT MW — gg)I>,  (82)

where we have defined the eikonal factor f¥ ~79'¢ as
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Sgg |-
“lalg
Fi
F3
resolved
251nin
Smin'fQ
/
(soft) F3 dllg
Sd'g
FIG. 8. The s;, — 5., plane for quark pair annihilation to

virtual W boson showing the delineation into soft (/F,), collinear
(F>), and resolved region ([F,).

42p; - py)

AW'—qq's _ 2e
fS - gsCFM .

(83)

Itis very simple to analytically integrate the eikonal factors

fW'=49'¢ in 4 dimensions over the soft gluon momentum
[70] and get the soft factor
g

[W—ads g’ Cr 47T,u,§ 2 3 41n2
ot 167 T(1 — €)\ s ) |€
2 .
~Zn <sm“‘> a2 - 1n2<s“jm>
€ s 3 Ky
+ 41n21n ( m)} (84)
S

In addition to being singular in the soft gluon region, the
matrix elements are also singular in the collinear region
([F5) where the matrix elements exhibit an overall factori-
zation. In the limit g || g, we define

peBep, p - Ops (85)

with p, = p, + p;. In this limit,
G)(lsq/gl - 2Smin)(a(smin -

) lg . .
— Gq'g) P51 MW — Gg)12, (86)

sz DIM(W*

where the collinear factor ¢7677 is defined as [70]

o Pis—a
8480 = ECFA (87)
2p, - Pg
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The function P27 is related to the Altarelli-Parisi split-
ting function, which depends on the regularization scheme.
In this paper, we adopt two schemes: the conventional
dimensional regularization (DREG) scheme and the di-
mensional reduction (DRED) scheme. We have

o 2% in DREG scheme,
PiEZA(E) =1 L ‘ ; (88)
pJLus g in DRED scheme.

After integrating over the collinear phase space [70] for the
case g || ¢/, we obtain the collinear factor

IW*—w]q’g _ g% CF 477-1”’3 € ill’l %
col 16772 T'(1 — €) € §

Smin

3 277 28 mi .
rem T () )
(89)
where the scheme dependent factor 10,94V
Vi—aq (el _ 7 in DREG scheme, (90)
Scheme 6 in DRED scheme.

Summing over the soft and collinear factors and crossing
the needed partons into the initial state, we get the con-
tributions to M97="" from the unresolved real (soft +
collinear) corrections from processes (19)—(21) as follow-
ing:

. 2
qq'—W(real) _ ﬁc C 3 _ % lni + E — 41
h 4 T2 € m?: e 3
2 A
m 3
+ 2In22 + 3 In—= — 2In?
Smin Smin
§ -
i+ ) 1)
l
where the scheme dependent term I‘Slcqh;lvg(real) is

97— Wireal) _ 7 in DREG scheme, 92)
Scheme 6 in DRED scheme.
It is clear that the divergencies of ffqlﬁw(vm) and

PYEN ; . . .
fa4=Weea) cancel with each other and the sum is finite

and s,;, dependent. The remaining unresolved real correc-
tions for gg' — W™ are included through the process inde-
pendent, but s,;, and factorization scheme dependent
universal crossing functions.

The corrections from the resolved regions of processes
(19)—(21) can be obtained by multiplying the following
phase space slicing functions to the corresponding phase
space elements and matrix element squares in the cross
section calculations:
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[®(|qu| + |sgq’| - 2Smin) - ®(|sgq| - 28min)®(smin - |qu’|) - ®(|sgq’| - 2Smin)(@(smin -

for g’ — W*g — tbg,

[1 = O(spmin — Isgg )] for gg — Wq' — thq',  (94)

[1 = O(smin — IsggD] for gg' = W*g—tbg. (95

The O functions ensure the amplitude squares to be finite
in four dimensions. Therefore, they can be calculated
numerically.

B. NLO corrections to FINAL

Now we examine the final state corrections to W; —t—
b. The NLO matrix element for the W* — ¢t — b vertex can
be written as’

g .
iy = = i) =y,

—f b (pi — pE),u
2

t

:|PLU(5). (96)

The above formula is valid only when W boson is on-shell
or off-shell but coupled to massless quarks because we
have neglected the term proportional to (p, + p;),,. At the
tree level, /1"~ =1 and £}~ = 0. At the NLO, the

virtual corrections to f fV_'”’ and f;v —tb are, respectively,
2 3

W—ib(virt) __ @ C.C 1 5 +2 S 2
= ————+t-Ih—=S+7x
! 4 T € 2 € m?

A A 2 A A
. S S m S S
~|—2L12< >+31n—1—%1n—12—1n2 !
m

E th s my _tz
—th(vi
+ Iﬁiheini“")}, 97)
W—th(virt) ag C.C mt2 1 8 (98)
= - —_— n_ y
2 4 T s T m2

where § = (p, + pp)?, §, =2p, - p; =8 —m? and the
W—tb(virt) -
Scheme 18

IW—»tE(virt) _ —6 in DREG scheme,
Scheme —5 in DRED scheme.

scheme dependent term /
99)

In the presence of a massive top quark, the structure of
collinear and soft poles of FINAL matrix elements is
completely different from the massless case (INIT). The
top quark mass serves as a regularizer for collinear singu-
larities. Thus, the matrix element contain fewer singular
structures. However, the presence of the top quark mass
leads to more complicated phase space integrals. Again, let

I yields FI = [V, FE = 2p0 = i, and P =
FL* =0 in Eq. (35).
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IsgqD)] ©3)

us consider the whole phase space of the process W* —
tbg as the identity and partition it into three regions as
shown in Fig. 9:

1= ®(S,g + Spg 2Smin) + ®(2Smin = S T ng)
+ ®(Stg - 2Smin)(")(smin - SEg)
- ®(Stg - 2Smin)®(smin - sl;g)

=Fi+F+Fs (100)
where

Fi= ®(stg + Sbg — 28min) — ®(Stg = 25min) O (Spin — Sb_g)’

(101)

.7:2 = ®(2smin S T SEg)! (102)

:F3 = ®(Stg - 2Smin)®(smin - SBg)- (103)

Here again, we divide the phase space of process
W* — tbg into three parts: the resolved region (F)),
the soft region (F,), and the collinear region (F5).
Moreover, the phase space boundary conditions are
much simpler than the case of massless partons, cf.
Eqgs. (79)-(81).

Under the soft approximation, in the soft region (F»,),
the squared matrix element can be written as a factor
multiplying the squared Born matrix element:

Stg
F
resolved
25min
Sminf fQ -
(soft) F3 bllg
Sl;g

FIG. 9. The s, — 53, plane for quark pair annihilation to
virtual W boson showing the delineation into soft (F,), collinear
(F>), and resolved region ().

054022-15



QING-HONG CAO AND C.-P. YUAN

O (25 min — Stg ™ sEg)lm(W* - tb—g)PPi’fzv*_)tbgUVl(W* —1h)|%,

where we have defined the eikonal factor fl’vu’gg as [70]:

~
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0,
(104)

frte = gst,uzf[

42p, - p;)  Am? }
(2p; p)2ps Py 2pi p)* ]

(105)

Integrating the eikonal factors ffv*_’”;g in d dimensions over the soft gluon momentum [70], we get the soft factor

IW*—»rl;g _ g% CF 4771“%1 2 Smin —€ i _
soft 167> T(1 — )\ spmin / \8; + m? € €

8 + 2m? S\ 1
+ [21112 + u}ln<l + S—‘2> - 51nz<1

S

§1 77'2
[ln<1 + —2> +2m2 — 1} -2 o2 - 22

m;

In the collinear region (F5), where g || b, the matrix elements exhibit an overall factorization as

8§ . 8§
LI ) Y L B || 1
- ) 255l (106
* i 2g”5 Abg—b s \[2
O(s1 = 28min) O(Spin — 5 ) | M(W* — thg)|>—2"~2(&)| M(W* — tb)I, (107)

where the collinear factor ¢°6=% is defined as [70]:

Pl;g—»l; 4 2
2M26CF|: (f) _ mt

abg—b —
¢ g3
2p5 Py (2p; - po)?

} (108)

in which P’;g_‘g(f) is the same as Eq. (88). Integrating over
the collinear phase space [70], we get the collinear factor

e _ 8 Cr (AmERN2 25w , 3
col 1672 T(1 — €)\ Spmin / |€ § 4

2 o 2 T
St G L Sl
(109)
where the scheme dependent factor ISVZ;:nizg(COD is
IW*—%Z;g(CO]) _ % in DREG scheme, (1 10)
Scheme 3 in DRED scheme.

Summing over the soft and collinear factor, we get the
contributions to M " = from the unresolved real (soft +
collinear) corrections as following:

) a 2
W*—tbg(real) __ &C C i + i — g 1nS_1 — 21 +1n22
fi 4 F7e2 26 e m2 3
~2In2 - 2Li2<s71> — I 4 212 In
§ 2 my m;
2m7\, § §
+ (2 + in’>1ni2 - lnzi2
S my my
R A ' 2
— 22+ 21ns—12 1nsm12n -
Smin my n; 1
] an

W*—tbg(real) .
g(real) is

where the scheme dependent term Ig

Scheme 2 ( 1 12)

Wi thg(real) _ 7 in DREG scheme,
3 in DRED scheme.

|

The correction from the resolved regions of process (22)
can be obtained by multiplying the following phase space
slicing functions to the corresponding phase space ele-
ments and matrix element squares in the cross section
calculations:

[®(stg + Spg — 2Smin) - ®(Stg - 2Smin)®(smin - SEg)l
(113)

C. NLO corrections to LIGHT

The NLO matrix element for the ¢ — W}, — ¢ vertex
can be written as*

MV = (114)

18 _ 0 nrpa—Wd

— i P, Ju(g),
N (@ T yuPrlulg)
where u(q)(ii(g’)) is the wave function of g(g’). The virtual
correction to £~ 7 is

A 2
=W tvir) _ X~ - _34_%1 _t _§+1
fi 47 F E{ 2 ¢ \om? 3

mj €
b 3n( =) 2 ZE) 4+ gt
n m_? n m_t2 scheme ’
(115)
where 7 = —2p, * py and the scheme dependent term
9= Wd viry)
Scheme 18

(116)

74— W g (in) _ —8 in DREG scheme,
Scheme —7 in DRED scheme.

The tree-level amplitude can be obtained by setting
—W*ag'

=1
We now consider the unresolved real correction to
—W*ag' .

FI~"4 There are two processes that contribute to the g —

W, — q' vertex:

It yields I, = £~ in Egs. (40) and (41).
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(1) bg — tq'g(l), in which the gluon only connects
with the light quark (g, ¢’) line, cf. Egs. (24) and
(25),
(i) bg — 13, cf. Eq. (28).
The soft and collinear divergent regions of bg — tq'g(I)
can be constrained by the function

[®(2smin - Isqgl - |sq’g|) + ®(|sqg| - 2Smin)®(smin
—15gD) + OUsyrgl = 28min) O (spmin =I5 D]

In the above function, the first term constrains p ¢ O be soft,
and the second and third terms restrict p, to be collinear
with p, and p,, respectively. The process bg — tGq' has
only collinear divergent phase space region, which is pro-
jected by

(117)

[®(Srnin - |55g ) + ®(Smin - |Sq’g|)]r (118)

in which the two terms require p, to be collinear with p,
and p,, respectively. After performing all the above con-
strained phase space integrations analytically, one can get
the contribution to £7~""¢ from the unresolved real emis-
sion corrections as:
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A 2
g—Wgreal) _ X5 ~ ~ 3_%1 _t +§_4l
/i P P m?) € 3

? - -
+ 2122 + 3In—- — 21n2< ) + ln2<—2>

Smin Smin

g, (119
where the scheme dependent term Igc_h’:fng (real) 4
g—W*q/(real) _ 7 in DREG scheme,
Ischeme {6 in DRED scheme. (120)

—W*q' (vi
It is clear that the divergencies of f4~" 7™ ang

fImWatead cancel with each other and the sum is finite
and s,;, dependent. The remaining unresolved real correc-
tions for ¢ — W*q' are included through the process inde-
pendent, but s,;, and factorization scheme dependent
universal crossing functions.

The resolved phase spaces without divergent regions are
obtained by multiplying the following function to the phase
space:

[®(|qu| + |sq’g| - 2Smin) - ®(|qu| - 2Smin)®(smin - |Sq’g|) - ®(|Sq’g| - 2Smin)(@(smin - |qu|)] for bq - tq,g(l)r

[1 = O(smin — Isg¢]) = O(spin — Isz,))]  for bg — 1g4'.
(122)

D. NLO corrections to HEAVY

The NLO matrix element for the b — W; — tvertex can
be written as®

., ig _ .,
M= = Sato) f -y,

V2
bWt (ph + pt),u,
J2

t

}PLu(b). (123)

The above formula is valid only when the W boson is on-
shell or off-shell but coupled to massless quarks because
we have neglected the term proportional to (p, — pj),,. At
the LO, 2" =" =1 and f5%' =" = 0. At the NLO, the
virtual correction to f?% =" and 5" "= are

°It yields H{* = %"~ HY = 2f3""~"/m,, and Hf" =
HY =0 in Egs. (42)—(45).

(121)

iy @ 1 5 2 /i
117W t(v1rt):_sCFCE ____+_ln< 1)
4ar €

—3 o
- 1n2(—m2‘> + zgcwhemgm)}, (124)
1
2 o
bW —t(virt) _ & nty —h
f2 Vi — E;CFCG{T hl(;n%)}’ (]25)

where f;, =7 —m? =

bW*—t(virt) -
dent term Igy . . is

—2py, - ps» and the scheme depen-

W —itvin) _ { —6 in DREG scheme, (126)

Scheme —5 in DRED scheme.

We now consider the unresolved real correction to
fo%=1. The unresolved real correction to f?" =" comes
from the soft and collinear regions of the following three
processes:

(i) bg — tq'g(II), in which the gluon only connects
with the heavy quark (7, b) line, cf. Eqs. (24) and
(25),

(ii) qg — tq'b, cf. Eq. (26),

(iii) g'g — g bt, cf. Eq. (27).

The soft and collinear divergent regions of bg — tq'g(II)
are sliced out by
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[®(2smin - |sbg| -

The gg — tq'b and §'g — G bt processes both have the
collinear divergent region restricted by O(sy, — |sj,).
After integrating out the soft and collinear regions, we
get the contribution to the form factor f?w**‘ from the
unresolved real emission corrections as:

bW*—t(real) :ﬁc C i‘f'i_gl _il 277 41 22
i 4 F 6{62 2¢ € nm,2 3 f
- 7 A
—21n2—2Li2< ; ‘A>——1nsm‘2“
m; — f 2 m;

+ 21n2 1n<

7 2m? 3
my 5] my
—f S
—1n2(1 — L) —In?[—1L) — [p22min
( m?) (m? m?

—i 1 s bW*—t(real)
+ 4ln<m_?>l ’;‘:2“ + + Igpoma
(128)
bW*—t(real) .
where the scheme dependent term Ig. . is
v 7 -

*p(rez 2 DREG scheme
IbW t(real) __ | 5 ?Il s 129
Scheme 3 in DRED scheme, (129)

and the remaining unresolved real corrections for bW* — ¢
are included through the process independent, but s.;,
and factorization scheme dependent universal crossing
functions.

The resolved phase spaces without divergent regions are
obtained by multiplying the following function to the phase
space:

[®(|Sbg| + |Stg| - 2smin) - ®(|stg| - 2smin)®(smin -

forbg—tq'g(1l),

Ispel)]
(130)
[1 = O(smin — Is5,D] forgg—1q'b and §'g— gbr.

(131)

E. NLO corrections to the decay process t— Wb’

The NLO matrix element for the t — W — b’ vertex can
be written as®

g

7

+ fw um}m
m

t

M;:»Wb ( /)|:ft_>Wh/’)/,uPL

(132)
where Pp = (1 + v5)/2 and b’ denotes the bottom quark

6It yields Dy = fioWV DR = —2f=WV /i, and DF =
=0 in Eq. (46)

|stg|) + ®(|stg|
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- 2smin)®(smin - |sbg|)]- (127)

I !
from the top decay. At the tree level, f° i*W” =1
0. At the NLO, the virtual correction to f~"*" and f5~"*'
are, respectively,

fé—»Wb’ —

—Wb' (vi K 1 5 2
7 W' (virt) _ a_CFCE{—_2 ——+—=In(1 — By)
T € 2€ €
3By — 1
+ 2Liz< Bu >+ By =L - gy)
Bw — 1 Bw
B T

— Wb (virt) __
I

CF { In(1 — ,BW)} (134)

P

Wherel( ﬂ;}y = m3,/m?, and the scheme dependent term
t—Wb'(virt) -
IScheme 18

(135)

JoWh i) —6 in DREG scheme,
Scheme —5  in DRED scheme.

The unresolved real correction to f° i_'Wb' is obtained by
integrating out the soft and collinear regions of r — Wb'g
which are sliced by

[®(2smin - |stg

— |Sb’g|) + ®(|stg| _zsmin)G)(smin - lsb'8 )]
(136)

After integrating over the sliced regions, we get the con-
tribution to fI="*' as

2 2772
——In(1-By)———
€ 3

1- 7
+1n22—2In2 — 2Li2( A W) n-min
2— Bw

~28y
~Bw
10’2~ By) ~ In*(1 = By) ~ 10?5

t

z—»Wb/(real)Z&C C i+i
1 47 F 5{52 2e

20 m?

+21n21n(1—,8w)+ In(2— Bw)

. 1 .
+4In(1 — By)In™08 4 oW (rea])}’

m% 1 IBW Scheme
(137)
where the scheme dependent term Ig;Zﬁ;“"a” is
It—>Wb’(rCal) _ % in DREG SCheme, (138)
Scheme 3 in DRED scheme.

The resolved region of t — Wb'g is obtained by multi-
plying the following function to the phase space:
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[®(|Stg| + |sb’g| - 2smin) - ®(|Stg| - 2smin)®(smin - |Sb’g|)]-
(139)

We have checked the formulas of (132)—(139) by compar-
ing the result of NLO correction to I'(r — Wb') with
Ref. [77].
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VI. COMBINING THE PRODUCTION AND
DECAY PROCESSES

With those building blocks given in the above sections,
the NLO QCD corrections to single top quark production
and decay can be computed, keeping the full information
on the spin configuration of the intermediate top quark
state. The general differential hadronic cross section at
NLO can be written as

dotHiHy = ¥X) = 3 [ duidlfl . wo)f o wr)ldoyab = ¥) + doab— V)]
a,b

+ a fa (xy, ,U«F)sz(xzy Mps Smin)dog(ab —Y)

+ a,C (x, wp, smin)ffz(xzr wr)doglab —Y) + (x; < xp)},

(140)

where do, is the leading-order subprocess cross section, do is the O(ag) “crossed” subprocess cross section, cf. Fig. 2.

We now consider the single top quark production subprocess ab — r,h; with 1, — W, h, and W, — [v. (Here, h; and
h, stand for any single parton or multiple partons. A and p are the top quark spin and W boson polarization indices,
respectively.) In the framework of NWA, the cross section can be written as

1
do(ab — lvhihy) = —
28

X

zmwrw

where Sy denotes the proper spin and color factors, d®’s
are the phase space elements [(27)*6*(P — Y p;) X
[14°pi/2E:(2m)*]. At the LO, T, in the above equation
should be replaced by the Born level decay width I'V(r —
bW). At the NLO, special care should be taken to assign I';,
cf. Eq. (149). I'y, is the W boson total decay width.

The matrix element square can be calculated as follows.
The sum over p (the polarization state of the W boson from
top decay) is equivalent to the following replacement in
M(l,\ il thz):

g
el — ——ii,y*(1 — vs5)v,.
w 2\/-2‘ 7( 75)6

(142)
We denote the result by M(ty — Wh,). Decomposing
M(db - t)‘hl) and M(f/\ - th) by

M(ab — tyhy) = ii,\(p,)MP™, (143)

M(t) — Why) = M*u,(p)), (144)

where we have explicitly separated the on-shell top quark
spinors from both the production and the decay matrix
elements, then we have

2
ZM(ab — 1, h)M(ty — W,h)M(W, — [v)
Ap

= |Me(p; + m )M, (145)

2
ZM(ab — 1 h)M(ty — W,h)) M(W, — [v) | Sp
Ap

dD(ab — th))dD(t — Why)dD(W — €v),

1
2m,I;

(141)

In our calculations, M9 and MP" are calculated numeri-
cally using the helicity amplitude approach and can be
easily obtained from the formulas presented in Secs. III
and IV. Equations (142) and (145) guarantee that the spin
and angular correlations of the decay products are

preserved.
Denoting
dP© = S, : édd)(ab — thy)
X dD(t = Why)dP(W — {v), (146)
dPNO = SF; #dq)(ab — thy)
Zm,Ft zmwrw
X dO(t — Why)dP(W — €v), (147)

where I', = I'%(t = bW) + '} (t — bW) and T’} (t — bW)
is the O(ag) correction to the Born level decay width
I'%(t — bW), the LO subprocess cross section is

1
doylab — lvh h,) = oF |M&<(p, + m,)ME[2d DO,
S
(148)

where MJ** stand for the LO amplitude. The NLO
crossed subprocess cross section is
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l ¢ 1 ¢ T
doi(ab — lvh h,) = % |Mde<(B, + m)MPR[2dDLO + %ZRe[Mgec([f, + m)MPS (M (B, + m)MP) 1 ]dDLO

1 ¢ ¢
+ %2R6[M‘f§°cv(]5t + m MY (ME (P, + m)ME)T ]aDNLO

1
+ % |M(1]?ec([5t + mz)Mgrdlqu)NLO,
S

where MYgesx stand for the O(as) amplitudes contrib-
uted from either soft + collinear + virtual or resolved real
corrections for the production or decay processes. The first
term is the real NLO correction from production. The
second term is the soft + collinear + virtual correction
from production. The last two terms are the corrections
from the top quark decay. If no kinematical cut is applied,
the last two terms cancel each other, which means there is
no net correction to the cross section from the top quark
decay. Because the virtual correction processes and the real
correction processes have different phase spaces d®"© and
d®NO we calculate them separately using different
Monte Carlo programs.

VILI. CONCLUSIONS

Precision measurement of the single top quark events
requires more accurate theoretical prediction. The fully
NLO differential cross section for on-shell single top quark
production has been calculated two years ago, but NLO
corrections to the top quark decay process are not included
nor the effect of the top quark width. Since the top quark
production and decay do not occur in isolation from each
other, a theoretical study that includes both kinds of cor-
rections and keeps the spin correlations between the final
state particles is in order.

In this paper, we have presented a complete calculation
of NLO QCD corrections to both s-channel and ¢-channel
single top quark production and decay processes at hadron
colliders. In our calculation the phase space slicing method
with one cutoff scale is adopted because it takes advantage
of the generalized crossing property of the NLO matrix
elements to reduce the analytical calculations. After cal-
culating the effective form factors with all the partons in
the final state, we can easily cross the needed partons into
the initial state to calculate the s-channel or #-channel
single top quark cross sections. To respect the spin corre-
lations between the final state particles, all the amplitudes
are calculated using the helicity amplitude method. The
form factor approach is used for including the SCV (soft +
collinear + virtual) corrections so that our results can also
be used to study new physics effects that result in similar
form factors. To consider the top quark production with top
quark decay consistently, the ‘“modified narrow width
approximation,” cf. Sec. IT A, is adopted in our calculation.
Our results are given in both the DREG ('t Hooft-Veltman
7v5) [50] and DRED [51] schemes to treat the y5 matrix in

(149)

\
the scattering amplitudes which is important for predicting
the distributions of final state particles.

A preliminary study on the phenomenology of single top
physics at the Tevatron collider based on the theoretical
framework presented in this paper was already presented in
Ref. [78]. A more detailed study on the phenomenology
predicted by our calculations will be presented in a se-
quential paper [49].
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APPENDIX A: HELICITY AMPLITUDES

In this appendix we briefly summarize our method for
calculating the helicity amplitudes. The method breaks
down the algebra of four-dimensional Dirac spinors and
matrices into equivalent two-dimensional ones. In the
Weyl basis, Dirac spinors have the form

¢f+>
, (AD)
(W
where for fermions
”(3=l) = W+ X112
pe =45 , (A2)
Ux =Wz X-1/2
and antifermions
(/\=l) — +
vy =twry_
g =1 V5T ORI (A3)
Vi = +wWxX1/2

with w. = /E = |pl, where E and p are the energy and
momentum of the fermion, respectively. Explicitly, in

spherical coordinates,
p* = (E, |p| sinf cose, | p| sinf sing, | p| cosh). (A4)

The yx,/,’s are eigenvectors of the helicity operator
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h=p-o, (A5) where
where p = p/|p| and the eigenvalue A = 1 stands for 4y — =
“spin-up”’ fermion and A = —1 for “spin-down”” fermion. v = (1, %0). (Al4)
R cosf/2
Xi2=I1p+) = ( i o 0/2>,
¢ sm (A6) APPENDIX B: A, AND B, IN THE CROSSING
—e'?sinf/2 FUNCTIONS
X-1/2 = lp—) = ( ) .
cos6/2 There are four independent A, ,y(x, up) and
where we introduce the shorthand notations |p=) for B ic—hslr?l}e(x’ pp) coefficient functions in the process inde-

X+1/2- Furthermore,

pendent, but s.;, and factorization scheme dependent

crossing functions, cf. Eq. (7). They are listed below, after

(p=1=(p=Nt,
where the superscript denotes taking Hermitian complex
conjugation. Under the operation of charge conjugation,

(A7)

denoted as |p+), we have

33 —2n
Agrge(¥) = |: 1

suppressing the u dependence.

82 L+ 21In(1 — x)}fg(x)

b+) = ioalp+)* = ~1p-). (A8) w2 [ aut Wﬂ[ ]
Similarly, N +y f fg’(x/lz)_ fH(x) ’ B1)
lp=) = +1p+), (A9) ‘
BFl=—(p -1 (A10) > 8 4
Apagg) = [3 + In(l = x)}qu(x) +2
Pp—l=+p+1 (Al1) (1 + Zz)/ZfH(X/Z) _ ZfH(x)
Gamma matrices in the Weyl basis have the form X ﬁ 1-z2
01 . (0 —o; 1 0 (B2)
?=(io) 7=l ) =l 5)
(A12)
. . . 1 22+ (1—2z)7?
where o; are the Pauli 2 X 2 spin matrices. In the Weyl Aggq(X) = 3 f dzfi(x/z )7, (B3)
basis, p takes the form
_ 0 pot+a-p
[5=pﬂy“—( -0 p 0 ) H 1+(1 -2
Po p ) A gy (X) = ] dzfi (x/z )—, (B4)
0 p (U
= = Al
L)
!
_ 2 5
B =[5 5 3o =0 @ 2 [ depf/ama — o e 1]
H H
+ 2[1 dzin(l — 2 e/ TS /IZ) Zf ® (BS)
8/m* T\ 4 4 1—
B0 =[5(% —3) Fowt —w w5 [z
2/, ¢H _hfH
+gf1dz1n(1—z)(1+z)/Zf;’(f/;) 2) (B6)
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2 _ 2
BS540 = % ﬁ deQ’(X/z)[iZ ’ (l 9 (1 - 2) +2(1 - z)} (B7)
— )2
B0 = 5 [aeriesa P a0 (B8)
2
BIRER() = T 9T U2t — 1) + 2] dzff(x/2) In(1 — z)[ }
+2f dzin(l — 2D =S (BY)
 1-z
BERED(x) = B<7:_3> #gin = | =5 [azpter)-
] dzIn(1 (1 T )/fo(f/;) - 2fH(X) (B10)
DRED L u 22+ (1 —2)?
B;ﬁqq(x) = 3 / dzfy (x/z)[f In(1 —z) —2(1 — z)} (B11)
— )2
B =5 [Maerosa 0w -0 1] ®12)

where n, is the flavor number, f}/(x) is the parton
distribution function of parton h inside hadron H. In
the above, we have set N, = 3. The superscript MS in-

|
dicates the results in the MS DREG scheme, while the

superscript DRED indicates the results in the DRED
scheme.
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