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Modeling quark-hadron duality in polarization observables
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We apply a model for the study of quark-hadron duality in inclusive electron scattering to the
calculation of spin observables. The model is based on solving the Dirac equation numerically for a
scalar confining linear potential and a vector color Coulomb potential. We qualitatively reproduce the
features of quark-hadron duality for all potentials considered, and discuss the onset of scaling and duality
for the responses, spin structure functions, and polarization asymmetries. Duality may be applied to gain
access to kinematic regions which are hard to access in deep inelastic scattering, namely, for xBj ! 1, and
we discuss which observables are most suitable for this application of duality.
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I. INTRODUCTION

Quark-hadron duality is a fascinating phenomenon that
was first observed by Bloom and Gilman [1] more than
30 years ago. It is receiving plenty of attention today from
both the experimentalist [2–10] and theorist [11–36] com-
munities, due to an interest in duality itself, and due to the
huge field of experimental applications of duality in kine-
matic regions that are very difficult to access without it.

The most straightforward definition of quark-hadron
duality says that any hadronic process can be described
in terms of either a quark and gluon picture, or in terms of a
purely hadronic picture, provided either calculation con-
tains all Fock states. However, in the former case, a full
numerical solution of QCD is prohibitive in most situ-
ations, despite the impressive progress of lattice QCD,
and in the latter case, a full hadronic solution, e.g., employ-
ing an effective field theory, also is not feasible unless the
kinematic region is restricted to low energies and mo-
menta. Thus, this most general version of duality is not
very useful, as many interesting processes take place in a
region that is neither perturbative nor very low energy.

There is a much more practical version of duality: in
certain kinematic regimes, properly averaged hadronic
observables can be described by a perturbative QCD
(pQCD) calculation. This version of duality is highly rele-
vant as perturbative QCD calculations can be performed.
Using duality, these pQCD calculations can then be related
to averaged data taken in the resonance region. Quark-
hadron duality has been observed experimentally in
many processes: it was discovered by Bloom and Gilman
in inclusive, inelastic electron scattering, it made its way
into the textbooks in e�e� ! hadrons, was studied in the
semileptonic decays of heavy mesons [37–39], is consid-
ered in the analysis of heavy ion reactions [40], and forms
the basis for using QCD sum rules [41]. In addition to the
‘‘classical’’ examples and applications of duality, duality
ideas are applied in new areas, too. For neutrino scattering,
the beam energies are not well known, and an averaging
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will thus take place almost automatically. The application
of duality is discussed for several planned neutrino experi-
ments, see e.g. [42], and duality ideas have been applied in
Ref. [43] to nucleon/nuclear duality in neutrino scattering.
There is also interest in duality in parity violation experi-
ments [44], and with regard to generalized parton distribu-
tions [13,45]. A very local version of duality—assuming
that it holds for just one resonance—has been used in
Refs. [26,27] to extract information on structure functions
at xBj ! 1 in the scaling limit from form factor data. These
ideas were also applied to neutrino-nucleon scattering [27].
Duality ideas might also be useful for pion photoproduc-
tion [46]. Duality is a major point in the 12 GeV upgrade of
Continuous Electron Beam Accelerator Facility (CEBAF)
at Jefferson Lab [10].

In this paper, we investigate duality in inclusive, inelas-
tic electron scattering. New experimental data from
Jefferson Lab and Deutsches Elektronen Synchrotron
(DESY) have impressively confirmed that quark-
hadron duality is valid down to rather low four-momentum
transfers, and for many observables: duality in F2 was
confirmed to hold down to Q2 � 0:5 GeV2 [2], and very
recently, the longitudinal structure function FL and the
purely transverse F1 were separated, and found to exhibit
duality for Q2 > 1 GeV2 [3]. Experimental evidence for
duality in spin observables has been reported for Ap1 from
Hermes [7] and from Jefferson Lab [5] for the first moment
of gn1 . While this is exciting all by itself, these data have
inspired experimentalists to apply duality to the extraction
of information on the deep inelastic region in kinematics
that are not readily accessible. Duality allows us to connect
the perturbative regime of quarks and gluons with the
strongly nonperturbative resonance regime. The earliest
example discussed was the extraction of the elastic nucleon
form factor from the deep inelastic scaling curve [47]. In
Ref. [48], higher twist contributions were inferred from the
resonance data.

These two kinematical regions have traditionally been
separated, as it was believed that the physics of quarks and
-1  2005 The American Physical Society
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gluons had little connection to the collective phenomena of
resonances. At low invariant masses W of the final state in
an �e; e0� reaction on the nucleon, one observes many
resonance bumps in the cross section, and W < 2 GeV is
traditionally referred to as the resonance region. For higher
invariant masses, W > 2 GeV, the cross section becomes
smooth and exhibits Bjorken scaling, and this region is
referred to as the deep inelastic region. Note that this strict
division of kinematics was introduced historically, even
though nonresonant processes are present for low W, and
resonances with larger mass may contribute for high W.
The demarcation line of W � 2 GeV is plotted in the
xBj-Q2 plane in Fig. 1.

One consequence of this traditional subdivision is that
large amounts of data withW < 2 GeV were cut from deep
inelastic analyses of data, leading to a paucity of data at
very high Bjorken xBj. The region of large xBj, xBj ! 1, is
referred to as the (deep) valence region, and is the subject
of much interest. In particular, one would like to study the
valence quark spin distribution of the nucleon. This can be
achieved by measuring the polarization asymmetry A1 of
the proton and neutron. For xBj ! 1, many, and widely
different predictions, exist for the polarization asymmetry
of the neutron, running the gamut from 0, predicted in
unbroken SU(6), to 1, predicted in pQCD, and everything
in between, see [49,50] for good reviews of the situation. In
the chiral soliton model, there are even predictions of
negative values [51].

The experimental data available for An1 at high xBj was
rather scarce and afflicted with very large error bars for
xBj > 0:4 before the advent of the recent Jefferson Lab data
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FIG. 1. Plot of the xBj and Q2 kinematic plane. This kinematic
plot shows the deep inelastic regime and the resonance regime.
The solid line corresponds to an invariant mass of the final state
of W � 2 GeV. Every point above the line lies in the resonance
region, W < 2 GeV, and every point below the line lies in the
deep inelastic region W > 2 GeV. The invariant mass of the final
state, W, is related to the four-momentum transfer Q2 and
Bjorken xBj by W2 � M2 �Q2
�1=xBj� � 1�, where M is the
nucleon mass.
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[52]. They also extended only up to xBj � 0:6 [53–56].
This is due not only to the fact that polarization experi-
ments are always more difficult to perform than unpolar-
ized measurements, but mainly due to the fact that in order
to achieve xBj ! 1 for the deep inelastic regime, one has to
use very high four-momentum transfersQ2, see Fig. 1. This
drastically reduces the cross section, as the cross section is
proportional to the Mott cross section, which in turn is
proportional to 1=Q4. Thus, accessing one and the same xBj
in the resonance region and in the deep inelastic regime
leads to much lower count rates in the deep inelastic
regime. For example, a measurement at xBj � 0:8 can be
performed at Q2 � 2 GeV2 in the resonance region, or at
Q2 	 15 GeV2 in the deep inelastic region. The count rate
in the deep inelastic region will be lowered by more than a
factor of 50 compared to the resonance region measure-
ment. This makes taking data in the deep inelastic regime
for large xBj extremely difficult. A recent Jefferson Lab
experiment improved the situation by measuring in the
deep inelastic regime, up to xBj 	 0:6 with very reasonable
error bars, thus decreasing the uncertainty by an order of
magnitude compared to older data [50,52]. Still, the ex-
perimental exploration of An1 at really large xBj ! 1 has not
been feasible yet, thus making it the prime application for
duality. Even with the planned 12 GeV upgrade of
Jefferson Lab, data in the deep inelastic regime will be
accessible only up to xBj � 0:75 [10].

As the kinematics plot shows, large values of xBj can be
accessed at low Q2 in the resonance regime. A measure-
ment of An1 —or any other observable of interest—in the
resonance region can then be averaged, and will yield the
same information as a direct measurement in the deep
inelastic region, provided that duality holds. Using this
approach, An1 could be measured up to xBj � 0:9, by taking
data in the Delta resonance region [57].

Another interesting application of duality that was re-
cently discussed is the application of duality to the EMC
effect [6]. Even though the EMC effect has been mapped
out for a large kinematic region, data at very high xBj and
for lighter nuclei are scarce. The data base could be sig-
nificantly expanded by the application of duality to lepton
scattering from nuclei.

Before we can embark on this new experimental ap-
proach, we need a good, solid understanding of how well
duality holds, and where it holds. Ideally, one would come
up with a certain accuracy of the duality procedure, which
then could be quoted as a systematic error for the extrac-
tion of An1 or other observables in the relevant region. Here,
we need more theoretical input and guidance. As we
currently do not understand quark-hadron duality from first
principles, modeling is our best tool to obtain the answers
necessary for applying duality to extract An1 .

Currently, theorists tackle this problem by modeling
duality in two different ways: one branch starts out from
the nonrelativistic constituent quark model, with some
-2
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relativistic corrections, to describe duality [11,12,17–19],
the other branch starts the modeling with a relativistic one-
body equation [13,14,20–22,28–30]. The former branch
makes contact with the phenomenology. It was started by
the pioneering work of Close and Isgur [11], where the
authors investigated how a summation over the appropriate
sets of nucleon resonances leads to parton model results for
the structure function ratios in the SU(6) symmetric quark
model. This work was recently expanded [12] to include
the effects of SU(6) spin-flavor symmetry breaking. In
Refs. [17–19], the authors considered the first five low-
lying resonances, and performed a careful analysis of the
onset of duality for F2 and g1. Our results belong to the
latter branch. The goal of these modeling efforts is ob-
vious: to gain an understanding of quark-hadron duality
and the conditions under which it holds, by capturing just
the essential physical conditions of this rather complex
phenomenon. We imposed these basic requirements for a
model: we require a relativistic description of confined
valence quarks, and we treat the hadrons in the infinitely
narrow resonance approximation.

This paper is the fourth in a series of papers, in which we
have modeled duality with increasing complexity. All
models that we have presented so far have reproduced
the features of duality in a qualitative manner. We started
out with an all scalar model [28], and gradually improved
the model until all the particles had proper spin [30]. In
Ref. [30], we focused on the model results for the unpo-
larized responses. For the first time, we investigated the
dependence of our results on the type of potential we
employed. In the present paper, we focus on the spin
observables: the responses RT0 and RTL0 that are accessible
only with spin, the spin structure functions g1 and g2, and
the polarization asymmetries A1 and A2.

This paper is organized as follows: in Sec. II, we briefly
state the properties of the model, then, in Sec. III, we
discuss some of the formalism for polarized inclusive
electron scattering. In Sec. IV we discuss our numerical
results for the various spin observables for the bound-free
and the bound-bound transitions. We end with a brief
summary of our results and an outlook.
II. THE MODEL

We use the same model as in Ref. [30]. For the conve-
nience of the reader, we present the key ingredients of our
model here.

Our model consists of a constituent quark bound to an
infinitely heavy diquark and is represented by the Dirac
Hamiltonian

Ĥ � � � p̂� �
m� Vs�r�� � Vv�r�; (1)

where the scalar potential is a linear confining potential
given by

Vs�r� � br; b � 0:18 GeV2: (2)
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We have used the constituent quark mass in this paper, as
our main interest is the study of quark-hadron duality,
which sets in at rather low Q2, experimentally Q2 �
0:5 GeV2 is enough. In this kinematic region, the appro-
priate degree of freedom is the constituent quark, which
has acquired mass through spontaneous chiral symmetry
breaking. We have used a value for the quark mass of
m � 258:46 MeV—obtained previously in a fit to heavy
mesons [58]. However, nothing hinges on using that par-
ticular value: we changed our quark mass tom � 10 MeV,
in order to have a value reminiscent of a current quark
mass, and repeated our calculations. It turns out that, while
scaling does set in a little faster, there are no qualitative
changes in the results.

In our model, the vector potential is provided by a vector
color Coulomb potential. Calculations will be presented
where the vector color Coulomb potential is absent, that is
Vv�r� � 0, where the vector potential is the simple static
Coulomb potential

Vv�r� � Vc�r� � �
4

3

�s
r

(3)

with �s � 0:181 and where the color Coulomb potential is
corrected to allow for the running coupling constant in a
manner similar to that used by Godfrey and Isgur [59]. The
vector potential then has the form

Vv�r� � Vcr�r�

� �
4

3r

"
�c

1� e� �0

 

1� e�
��
b
p
r��0�= 

�
X2
i�1

�i erf�"ir�

#
;

(4)

where

�c � 0:118; �0 � 0:04;  � 0:01;

�1 � 0:239; �2 � 0:271; "1 � 0:746 GeV;

"2 � 5:40 GeV: (5)

Note that we use different scalar and vector potentials, in
contrast to Refs. [21,22], where Vs � Vv is used to sim-
plify the calculations.

We assume that only the light quark carries a charge, and
we choose unit charge for the light quark for simplicity.
III. SPIN OBSERVABLES

In this section, we briefly review the formalism for
calculating responses for targets with arbitrary polarization
axes, and connect the definitions of the polarization asym-
metries A1; A2 and the spin structure functions g1; g2 to the
responses.

The hadronic tensor for targets with an arbitrary polar-
ization axis in ŝ direction is

W#$ �
X
m;m00

!#$
mm00

�
1

2
m00

��������1

2
�1� ~' � ŝ�

��������12m
�

(6)

with
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!#$
mm00 �

X
n0l0j0m0

�
10

1

2
m
��������J#yjn0l0j0m0ihn0l0j0m0jJ$

��������10
1

2
m00

�
(7)

where J is the electromagnetic current operator. The
ground state’s z component of j is denoted m instead of
mj for brevity. Components of the hadronic tensor can be
combined to give

WL � W00; WT � W�� �W��;

WTT � 2<�W���; WTL � �2<�W0� �W0��;

WTL0 � �2<�W0� �W0��; WT0 � W�� �W��:

(8)
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The cross section for electron helicity h and target polar-
ization axis ŝ can be expressed in terms of the hadronic
tensor and the leptonic coefficients vK;K �
L; T; TT; TL; T0; TL0 as

d'
dE0d�0

� 'M�vLWL � vTWT � vTLWTL � vTTWTT

� h
vTL0WTL0 � vT0WT0 �� (9)

where 'Mott is the Mott cross section, q is the three-
momentum transfer from the electron to the target, $ is
the energy transfer and Q2 � q2 � $2, and h denotes the
electron helicity. The leptonic coefficients are given by
[60]
vL �
Q4

q4
; vT �

Q2

2q2
� tan2

/
2
; vT0 �

�������������������������
Q2

q2
� tan2

/
2

s
tan
/
2
; vTL0 � �

1���
2
p

Q2

q2
tan
/
2
: (10)

For arbitrary target spin, all six combinations of the hadronic tensor are nonzero. However, for spin 1=2 targets, only four
combinations contribute: L, T, TL0 and T0. Inserting the results for the current matrix elements, and exploiting selection
rules and symmetry relations between various current matrix elements, one finds for our case

WL �
1

2

X
m

X
n0l0j0

��������hn0l0j0mjJ0
��������10 12m

���������2

1� sz��1�

1=2�m�;

WT �
1

2

X
m

X
n0l0j0

1� sz��1�1=2�m�

	��������hn0l0j0m� 1jJ�
��������10 12m

���������2
�

��������hn0l0j0m� 1jJ�
��������10 12m

���������2


;

WT0 �
1

2

X
m

X
n0l0j0

1� sz��1�1=2�m�

	��������hn0l0j0m� 1jJ�
��������10 12m

���������2
�

��������hn0l0j0m� 1jJ�
��������10 12m

���������2


; WTT � 0;

WTL � 0; WTL0 � �2sx
X
n0l0j0
<

��
10

1

2

1

2

��������Jy0
��������n0l0j0 12

��
n0l0j0

1

2

��������J�
��������10 12� 1

2

��
: (11)

Explicitly carrying out the summation over the initial spin m for the T0 and TL0 combinations, and substituting for the
hadronic tensor combinations in the expression for the cross section Eq. (9), we find:

d'
dE0d�0

� 'M

"
vL

1

2

X
m

X
n0l0j0
jJ0�m�j2 � vT

1

2

X
m

X
n0l0j0

jJ��m�j2 � jJ��m�j2�

� h

(
�2sxvTL0

X
n0l0j0
<

	
J0;y

�
1

2

�
J�

�
�
1

2

�

� vT0sz

X
n0l0j0

	��������J�
�
1

2

���������2
�

��������J�
�
�

1

2

���������2

)#

(12)
where we abbreviated the current matrix elements as
J#�m� for hn0l0j0mjJ#j10 1

2mi. Now we can relate this cross
section to the definition of the polarization observables.
The polarization asymmetry Ak is defined as the ratio of the
difference and sum of the cross sections for longitudinally
polarized electrons and target polarization parallel or anti-
parallel to the beam, see e.g. [61,62]:

Ak �
	
d'

!
 

dE0d�0
�

d'
!
!

dE0d�0


�	
d'

!
 

dE0d�0
�

d'
!
!

dE0d�0



:

(13)
The upper superscript denotes the direction of the electron
polarization, the lower superscript indicates the direction
of the target polarization. The relevant cross sections are
obtained by using h � 1 in each case and ŝ and �ŝ for the
target polarizations parallel and antiparallel to the beam.
Using the conventional coordinate system, this means that
the target is polarized in the x� z plane, see e.g. [61,62]. In
this case, ŝ � �sin�; 0; cos��, where � is the angle be-
tween transferred momentum ~q and beam momentum ~k:
cos� � �Q2 � 2Ebeam$�=2Ebeamq. Substituting and rear-
ranging now yield:
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Ak �
vT0sz

vT � vL
RL
RT

0BBB@
�

P
n0l0j0

jJ��12�j

2 � jJ��� 1
2�j

2�

RT

� 2
sx
sz

vTL0

vT0

P
n0l0j0
<
J0;y�12�J

��� 1
2��

RT

1CCCA: (14)

Now, we compare this expression to the definition of the
polarization asymmetries A1; A2. For the convenience of
the reader, we quote the standard definitions [61,62]:

Ak � D�A1 � 3A2� (15)

with the depolarization factor D

D �
1� �1� y�5

1� 5R
(16)

where y � $=Ebeam and R � 'L='T � W2=W1
1�
�$2=Q2�� � 1, and

3 �
5"y

1� 5�1� y�
(17)

with the magnitude of the virtual photon’s longitudinal
polarization, 5 � 
1� 2�q2=Q2�tan2�/e=2���1, and " �
2MxBj=

������
Q2

p
. Note that the y defined here is not the y

variable used in the next section. Thus, we can read off
the expressions for the polarization asymmetries in terms
of response functions from Eq. (14) as

A1 � �
RT0

RT
; A2 � �

1���
2
p

Q
q
RTL0

RT
(18)

where we used the symmetry of the current matrix ele-
ments and the definitions for the responses [60]:

RL �
X
i;f

jJ0j2; RT �
X
i;f

�jJ�j2 � jJ�j2�;

RT0 �
X
i;f

�jJ�j2 � jJ�j2�;

RTL0 � �2
X
i;f

<
J0;y�J� � J���:

(19)

The symbol
P
i;f indicates the average over initial states

and the sum over final states. The spin structure functions
can be found as functions of the responses using the
relation between polarization asymmetries and spin struc-
ture functions:

A1 �
g1 � "

2g2
F1

; A2 � "
g1 � g2
F1

(20)

with the unpolarized structure function F1 � MW1 �
1
2MRT . We find:
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g1 � �
1

2
M
$2

q2

�
RT0 �

1���
2
p

Q2

q$
RTL0

�
;

g2 �
1

2
M
$2

q2

�
RT0 �

1���
2
p

$
q
RTL0

�
:

(21)

Summarizing our expressions for the polarization observ-
ables in terms of response functions, we have

A1 � �
RT0

RT
; A2 � �

1���
2
p

Q
q
RTL0

RT
;

g1 � �
1

2
M
$2

q2

�
RT0 �

1���
2
p

Q2

q$
RTL0

�
;

g2 �
1

2
M
$2

q2

�
RT0 �

1���
2
p

$
q
RTL0

�
:

(22)

For completeness, we also quote the expressions for the
unpolarized structure functions W1 and W2 in terms of the
responses:

W1�Q
2; $� �

1

2
RT�q; $� (23)

and

W2�Q
2; $� �

Q4

q4
RL�q; $� �

Q2

2q2
RT�q; $�: (24)

We focused on the longitudinal and transverse response
functions in our last paper [30], and we now focus on the
true spin observables, which we can now calculate, as
quark spin is included in our present model.

The Dirac wave functions and energy eigenvalues are
obtained by integrating the Dirac equation using the
Runge-Kutta-Feldberg technique and solutions are ob-
tained for energies up to 12 GeV with the radial quantum
number of n � 200 and j7j � 70.

In our model, we excite the bound quark from the
ground state to higher energy states, and do not allow it
to decay. We refer to this process as the bound-bound
transition (previously, in Ref. [30], we referred to it as final
state interaction). Thus, we do not include any particle
production in our model, and are strictly quantum-
mechanical in this sense. We do not have any gluons in
our model, either, which means that we do not encounter
any radiative corrections. Since the response functions
consist of a sum of delta functions, we choose to smear
out the response functions by folding with a narrow
Gaussian for purposes of visualization. The smeared re-
sponse functions are then given by

RK�q; $� �
1����
8
p

5

Z 1
�1

d$0e�
�$�$
0�2=52�Runsmeared

K �q; $0�;

(25)

where K stands for L, T, T0 or TL0.
Before presenting numerical results, we would like to

remind our readers that, while the present model is more
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realistic than its predecessors, its results should not be
compared quantitatively to inclusive electron scattering
from a nucleon. Because of the assumption of an infinitely
heavy antiquark (or diquark) to which the light quark is
bound, our calculation most resembles inclusive electron
scattering from a B meson, which has never been mea-
sured. The goal of our work is to gain a qualitative under-
standing of duality, and the current simplification is no
impediment to this.

As discussed in Ref. [30], the current matrix elements
naturally are functions of the three-momentum transfer q.
Therefore, it is convenient to show our results for fixed
three-momentum transfer q as a function of the y-scaling
variable

y �
���������������������������������
�$� E0�

2 �m2
q

� q: (26)

The physics are not affected by presenting our results in
this fashion. In fact, later on we will explicitly compare our
results plotted for fixed q and y to our results plotted for
fixed four-momentum transfer Q2 and the appropriate
x-scaling variable.

In the following, we will present analytic and numerical
results for the bound-free and bound-bound transitions, and
we investigate if duality holds or not. The conditions that
need to be fulfilled to see duality are scaling of the bound-
bound transition and bound-free transition to the same
scaling curve, and oscillation of the bound-bound results
at low momentum transfer around the scaling curve. We
are going to check if our model results qualitatively repro-
duce the signature of duality as seen in the electron scat-
tering data.

In each case, we will investigate the approach to scaling
for the different observables, the scaling curves them-
selves, and the behavior at low momentum transfers.
IV. NUMERICAL RESULTS

Now, we turn to the numerical results of our model
calculations. Within our model, we calculate two different
processes: the bound-bound transition and the bound-free
transition of the light quark. The bound-free transition
(referred to as plane wave impulse approximation in
Ref. [30]) is the analog to perturbative QCD. The bound
quark is knocked into the continuum by the absorption of
the virtual photon.

We discuss the bound-free transition first, employing
just the linear confining potential. We investigate the scal-
ing results and the onset of scaling for the bound-free
transition. Next, in Sec. IV C, we show our results for the
bound-bound transition and the linear confining potential.
There, we focus on the onset of scaling and the low-q
duality. Then, we take a look at the role of the ground-
state p-wave contribution in Sec. IV D. Finally, we inves-
tigate the effect of employing a static Coulomb and a
running Coulomb potential in Sec. IV E.
054019
A. y scaling for the bound-free transition

For the bound-free transition, we can reach arbitrarily
high energy transfers without any numerical complica-
tions, as we do not have to solve for any high energy bound
states in the final state. Moreover, we can determine the
analytic expressions for the responses, and thus for all
other observables, for q! 1 at fixed y. As the responses
RL and RT , which can be accessed in unpolarized scatter-
ing, enter some spin observables, we quote all four re-
sponses for the reader’s convenience [30]:

RL�q; y� �
1

1682q

Z y�2q

jyj
dpp

� ������������������������������
�y� q�2 �m2

q
n0v�p�

�mns�p� �
y2 � 2qy� p2

2p
nsv�p�

�
(27)

RT�q; y� �
1

882q

Z y�2q

jyj
dpp

� ������������������������������
�y� q�2 �m2

q
n0v�p�

�mns�p� �
y2 � 2qy� 2q2 � p2

2q

�
y2 � 2qy� p2

2pq
nsv�p�

�
; (28)

RT0 �q; y� � �
1

882q

Z y�2q

jyj
dpp

�

�

������������������������������
�y� q�2 �m2

q

�m�n��p� � pn
s
v�p��

�
�y2 � 2yq� p2

2pq

�
2

�
������������������������������
�y� q�2 �m2

q
ns�p� �mn

0
v�p�

�
y2 � 2yq� p2

2p
nsv�p�

�
; (29)

and

RTL0 �q;y� �

���
2
p

882q

Z y�2q

jyj
dpp

�
q
2

	
1�

�
�y2� 2yq�p2

2pq

�
2



�n��p��qns�p�

�
y2� 2yq�p2

2pq

mnsv�p��pns�p��

�
: (30)

In the limit of large q, the bound-free response functions
become

lim
q!1

RL�q; y� �
1

1682

Z 1
jyj
dpp

�
n0v�p� �

y
p
nsv�p�

�
(31)

lim
q!1

RT�q; y� �
1

882

Z 1
jyj
dpp

�
n0v�p� �

y
p
nsv�p�

�
; (32)
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FIG. 2 (color online). The asymptotic behavior for q! 1 and
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1- 0 1
)VeG( y

1-

5.0-

0

5.0

1

V
ar

io
us

 S
pi

n 
O

bs
er

va
bl

es

1g
2g
1A

laitnetop raenil
eerf-dnuob

FIG. 3 (color online). The asymptotic behavior for q! 1 and
fixed y of the spin structure functions g1 and g2 and the
polarization asymmetry A1 for the bound-free transition. We
show g1 (solid line), g2 (dotted line), and A1 (dashed line).
Note that A2 vanishes in this limit.

MODELING QUARK-HADRON DUALITY IN . . . PHYSICAL REVIEW D 71, 054019 (2005)
lim
q!1

RT0 �q; y� � �
1

882

Z 1
jyj
dpp

�
y2

p2 n��p� � ns�p�

�
y
p
nsv�p�

�
; (33)

and

lim
q!1

RTL0 �q; y� �

���
2
p

882

Z 1
jyj
dpp

��
1�

y2

p2

�
1

2
n��p�

� ns�p�
�
: (34)

These response functions therefore scale in y.
The vector and scalar momentum density distributions

nv�p� and ns�p� are defined in terms of the ground-state
wave function

"1012m
�p� �

 ���
1012
�p�Ym

012
��p�

 ���
1012
�p�Ym

112
��p�

0@ 1A (35)

as

nv�p� �
	
n0v�p�;

p

jpj
nsv�p�



(36)

with

n0v�p� �
1

28

 ���2

1012
�p� �  ���2

1012
�p�� (37)

and

nsv�p� �
1

8
 ���
1012
�p� ���

1012
�p�; (38)

and

ns�p� �
1

28

 ���2

1012
�p� �  ���2

1012
�p��; (39)

moreover,

n��p� �
1

8

 ���2

1012
�p��: (40)

The asymptotic responses for the bound-free transition
are shown in Fig. 2. The two purely transverse responses,
RT and RT0 , have opposite signs but similar peak positions
at slightly negative y values and peak heights. The longi-
tudinal response RL is the smallest of the four responses,
and the only one to peak at a slightly positive y. The
transverse-longitudinal interference response is the largest
response, and peaks at y � 0. This response is symmetric
around y � 0 as it contains only terms proportional to y0

and y2, but no contributions linear in y.
The similar size and shape of RT and RT0 , together with

their opposite signs, leads to a value of the polarization
asymmetry A1 � ��RT0=RT� close to 1, see Fig. 3. We
show A1 only for y values for which the responses have
appreciable values, i.e., for�1< y< 0:6. While we could
calculate A1 in a region where the responses are tiny, the
054019
results would be meaningless. Our result is close to the
pQCD prediction of 1 for A1 in the limit of x! 1. For large
Q2, large negative values of y—much bigger than
y � �1 GeV—correspond to x � 1.

The asymptotic values of the spin structure functions g1
and g2 are also shown in Fig. 3. The spin structure func-
tions have peaks at small, negative y values. They have
opposite signs. Of the two functions, g2 has the slightly
larger peak value. Note that the asymptotic value of A2 is
zero.

B. Approach to scaling in the bound-free transition

Now, after showing the asymptotic values, we will con-
sider the approach to scaling in the bound-free transition.
Previously, we have studied the approach to scaling of the
unpolarized longitudinal and transverse response functions
[30]. There, we found that the onset of scaling is not
-7
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influenced very much by the spin of the target particle. The
two response functions RT0 and RTL0 are accessible only
with polarized beams and targets. It is interesting to check
if they scale just like their unpolarized counterparts.

The scaling behavior of the transverse-primed response
RT0 for the bound-free transition is shown in Fig. 4. The
lower panel shows the response for several q values up to
10 GeV. With increasing momentum transfer, the peak of
the response moves to more negative values of y, and
increases in height. The width of the response also in-
creases. The change in the response when going from q �
2 GeV to q � 4 GeV is significant, and the difference
between the q � 4 GeV and q � 6 GeV results is notice-
able. Increasing q leads to very small changes, visible
mainly at the peak and the large, negative y flank. The
top panel, displaying the response for various higher values
of q and the asymptotic value discussed above, shows that
the response has converged to the asymptotic value roughly
at q � 40 GeV.

The transverse-longitudinal primed response RTL0 for
the bound-free transition is shown in Fig. 5. The figure
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FIG. 4 (color online). The transverse-primed response function
RT0 is plotted versus y for several low (bottom panel) and high
(top panel) values of the three-momentum transfer q. The results
shown have been calculated for the bound-free transition, using
the linear potential.
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shows the response for lower values of the three-
momentum transfer q. While there are small changes,
amounting to a small shift of the entire response towards
the negative y values, one can see that this response scales
much faster than RT0 . We do not include another panel with
RTL0 calculated for higher q values, as the curves all
coincide.

From this, we can see that the transverse-primed re-
sponse RT0 shows a scaling behavior very similar to RT
(as discussed in Ref. [30]), and that the only interference
response that is accessible in inclusive electron scattering,
RTL0 , exhibits the earliest onset of scaling.

Now, we will consider the y-scaling behavior of the spin
structure functions. The spin structure functions are simply
combinations of the spin-dependent responses multiplied
with some kinematic factors, see Sec. III. We have already
seen how the relevant responses, RT0 and RTL0 , scale.
Taking a look at the kinematic coefficients shows us that
the onset of y scaling will be determined by the q values at
which the kinematic factors reach their asymptotic values.
For the convenience of the reader, we recall Eq. (22) here:

g1 � �
1

2
M
$2

q2

�
RT0 �

1���
2
p

Q2

q$
RTL0

�

� �
1

2
M
$2

q2
RT0 �

1

2
���
2
p M

$Q2

q3
RTL0
g2 �
1

2
M
$2

q2

�
RT0 �

1���
2
p

$
q
RTL0

�

�
1

2
M
$2

q2
RT0 �

1

2
���
2
p M

$3

q3
RTL0 :

The asymptotic values of the kinematic factors multi-
plying the responses are, for fixed y and large q,
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FIG. 5 (color online). The transverse-primed response function
RTL0 is plotted versus y for several values of the three-
momentum transfer q. The results shown have been calculated
for the bound-free transition, using the linear potential.
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$2

q2
! 1�

1

q
2�y� E0� ! 1;

$Q2

q3
!

1

q
2�E0 � y� ! 0;

$3

q3
! 1�

1

q
3�y� E0� ! 1

(41)

leading to the asymptotic values of the spin structure
functions:

g1 ! �
1

2
MRT0 ; g2 !

1

2
M
�
RT0 �

1���
2
p RTL0

�
: (42)

From Eq. (41), one can see that the relevant scale for the
onset of scaling is given by the ground-state energy E0. All
responses peak roughly in the region y � 0, so that the
three-momenta q necessary to reach the asymptotic values
are determined by E0 alone. The spin structure function g1
for the bound-free transition is shown in Fig. 6. The lower
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FIG. 6 (color online). The spin structure function g1 is plotted
versus y for several low (bottom panel) and high (top panel)
values of the three-momentum transfer q. The results shown
have been calculated for the bound-free transition, using the
linear potential.
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panel shows the spin structure function for several q values
up to 10 GeV. One can see clearly that g1 changes signifi-
cantly for each increase in q, and that convergence has not
set in at q � 10 GeV. This behavior is due to the slow
approach of the kinematic factors in g1 to their asymptotic
values. The responses themselves scale much faster, and
are very close to their asymptotic values at q � 10 GeV,
whereas the spin structure function g1 is off its asymptotic
value by almost 50%. Results for g2 at lower (bottom
panel) and higher (top panel) three-momentum transfers
are shown in Fig. 7. Just like g2, it approaches its scaling
limits only at high momentum transfers.

The polarization asymmetries A1 and A2 are ratios of
response functions, and may therefore show a different
scaling behavior than the responses themselves. As we
have seen that the two purely transverse responses, RT
and RT0 , have a very similar approach to scaling, one
may expect to see an even more rapid scaling of A1, the
ratio of the two transverse responses. The results for A1 are
shown in the top panel of Fig. 8. As A1 is a pure ratio of two
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FIG. 7 (color online). The spin structure function g2 is plotted
versus y for several low (bottom panel) and high (top panel)
values of the three-momentum transfer q. The results shown
have been calculated for the bound-free transition, using the
linear potential.
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responses that scale at reasonable values of q, without any
kinematic factors, we can expect A1 to scale fast. Indeed,
one clearly sees that in the region of �0:5< y< 0, where
the responses are largest, A1 scales almost immediately.
Only the q � 2 GeV curve differs very slightly from all the
other curves, including the asymptotic value, in this y
interval. Outside of that region, where the responses have
less strength, the scaling takes a bit longer. In all cases, q �
10 GeV is very close to the asymptotic value.

The approach to scaling of the polarization asymmetry
A2 is shown in the bottom panel of Fig. 8. Note that A2 ! 0
for q! 1 and fixed y, because the kinematic factor Qq goes
to zero in this limit and the responses scale in y. Thus, the
approach to scaling of A2 will mainly be determined by the
kinematic factor Qq . So, even though both RTL0 and RT scale
at reasonable values of q, the scaling of A2 is delayed. The
differences between the curves for increasing q values
decrease, but the result for q � 10 GeV is still far away
from the asymptotic value of 0. Just as for the spin structure
054019
functions, the kinematic factor that is present determines
the very slow onset of scaling.

In summary, we observe that the response functions
reach values very close to their asymptotic values around
q � 10 GeV, and scale at the latest at q � 40 GeV. The
response RTL0 is the fastest scaling response, and the
response RT0 is the response that scales most slowly. The
spin structure functions and the polarization asymmetry A2

scale only for much higher momentum transfers, due to the
kinematic factors in their definitions. The polarization
asymmetry A1, on the other hand, is the observable for
which we observe scaling at the lowest momentum
transfers.

Note that the scaling behavior of the discussed observ-
ables does not change when we use an ‘‘x-type’’ scaling
variable, as in our previous papers [28,29]. This is demon-

strated in Fig. 9, where we show g1 as a function of u �
1
2m �

������������������
$2 �Q2

p
� $�
1�

������������������������������
1� �4m2=Q2�

p
�, for fixed Q2.

Note that u goes to u1 � �Mtargtet=m�xBj for large Q2, its
properties have been discussed previously [28,29]. This is
the appropriate scaling variable for use with fixed Q2 even
at low Q2.

We have generated the plot by starting out with our
results as functions of q and y, then calculated the corre-
sponding values of the four-momentum transferQ2 and the
scaling variable u. The results were then sorted into Q2

bins. This is why there are no continuous lines in the figure,
just single data points.

One can see clearly that the scaling behavior of g1 is
independent of the variables chosen: just as seen in Fig. 6
for fixed q and the variable y, at low Q2, g1 starts out
negative, then changes sign, and takes a very long time to
scale. Even between the points for Q2 � 16 GeV2 and
Q2 � 20 GeV2, there is a significant difference. Thus, we
see that u scaling is just as slow for g1 (and g2 and A2) as y
scaling. The scaling behavior does not change at all with
the use of different scaling variables.
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C. Scaling and low q duality in the bound-bound
transition

Now we proceed to discuss the behavior of the re-
sponses, spin structure functions, and polarization asym-
metries for final states consisting solely of resonances. We
refer to this case as the ‘‘bound-bound’’ transition. The
wave functions for the excited states have to be obtained by
solving the Dirac equation numerically. Because of the
involved nature of the numerics, the highest accessible
momentum transfer is q � 10 GeV. Work on extending
our calculations up to 30 GeV using a WKB approximation
will be reported elsewhere. Here, we focus on the approach
to scaling and on duality at low q.

We start again by considering the two polarized re-
sponses. We show RT0 in the top panel of Fig. 10. The
resonance bumps at lower q values give way to smooth
curves formed by many, closely spaced resonances. The
graph shows that there is still a small difference between
the results for q � 8 GeV and q � 10 GeV, we have not
yet reached the scaling value. This is to be expected, as the
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FIG. 10 (color online). The transverse-primed response func-
tion RT0 (top panel) and the transverse-longitudinal primed
response function RTL0 (bottom panel) are plotted versus y for
several values of the three-momentum transfer q. The results
shown have been calculated for the bound-bound transition,
using the linear potential.
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bound-free transition scales only at higher q values for this
response. In general, the more complicated interplay of the
various final state resonances leads to slower scaling for the
bound-bound transition. The resonances oscillate around
the smooth curves for higher momenta q on the positive y
flank, but are a bit below the smooth curves at the negative
y flank. We see a very similar behavior for RTL0 , in the
bottom panel of Fig. 10.

For A1, the bound-bound transition results, shown in
Fig. 11 scale very quickly in the region of the response
peaks, �0:5< y< 0. This is consistent with the scaling
behavior of A1 as observed in the bound-free transition,
and stems from the definition of A1 as ratio of two fast-
scaling responses. It is interesting to note that the reso-
nance bumps that are visible at q � 2 GeV have vanished
almost completely at q � 4 GeV, even though they are
clearly present at q � 4 GeV for the transverse and
transverse-primed responses, whose ratio forms A1. This
exemplifies the very quick onset of scaling for this observ-
able, which we can observe even in the region of low
momentum transfer q.

Our current model gives at best a very qualitative insight
on the workings of duality for proton targets, as it is most
closely related to electron scattering off a heavy-light
meson, i.e., a B meson. Nevertheless, our results seem to
be very encouraging as far as the prospects of applying
quark-hadron duality to extracting deep inelastic informa-
tion on A1 from data in the resonance region are concerned.

The polarization asymmetry A2, which contains a kine-
matic factor multiplying the ratio of two responses, is
shown in Fig. 12. In contrast to A1, A2 changes significantly
with changing momentum transfer, and approaches its
scaling value of zero only slowly. As mentioned when
discussing the bound-free transition results for A2 in the
previous section, the behavior of this polarization asym-
metry is mainly determined by the kinematic factor, not by
the ratio of the responses.
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FIG. 11 (color online). The polarization asymmetry A1 is
plotted versus y for several values of the three-momentum
transfer q. The results shown have been calculated for the
bound-bound transition, using the linear potential.
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The same scenario—large variation for changes in mo-
mentum transfer q and slow approach to the scaling val-
ues—is repeated for the spin structure functions g1 and g2,
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FIG. 13 (color online). The spin structure functions g1 (top
panel) and g2 (bottom panel) are plotted versus y for several
values of the three-momentum transfer q. The results shown
have been calculated for the bound-bound transition, using the
linear potential.
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shown in Fig. 13. As for A2, their behavior is determined by
the slowly scaling kinematic factors, not by the fast-scaling
responses. For the lowest considered momentum transfer,
g1 even has a different sign, compared to the higher mo-
mentum transfer results.

Even though the onset of scaling is slow for A2, g1, and
g2, one still observes that the bound-free results calculated
for a specific momentum transfer q are dual to the bound-
bound results for the same momentum transfer. This be-
havior can be seen in all observables, and we present the
polarization asymmetries and spin structure functions in
Figs. 14 and 15 calculated for the bound-bound and bound-
free transitions at three-momentum transfers: q �
2; 6; 10 GeV. In Fig. 14, one can see that the bound-free
result tracks the average bound-bound result very closely
for the polarization asymmetries. Only for the lowest q
value, q � 2 GeV, does the bound-free curve lie a bit
above the average of the bound-bound curve at high y,
and slightly below the bound-bound average at low y. The
same behavior is observed for the spin structure functions
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FIG. 14 (color online). A comparison of the bound-bound and
bound-free results for the polarization asymmetries A1 (top
panel) and A2 (bottom panel), plotted versus y for three values
of the three-momentum transfer q. The results shown have been
calculated using the linear potential.
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three-momentum transfer q. The results shown have been calcu-
lated using the linear potential.
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plotted in Fig. 15. There, it is interesting to note that while
the bound-free and bound-bound results agree almost per-
fectly in the positive y flank, for the peak region and the
negative y flank, the bound-free results appear slightly
larger.

Our results suggest that the application of duality to
resonance region data for A1 should be quite safe, while
A2, g1, and g2 seem to be observables that are less ame-
nable to such an extraction procedure due to their very slow
scaling.

As far as duality in the spin structure function g1 is
concerned, the available data [8,55,63,64] are not yet con-
clusive, and may imply a different onset of duality for gp1
and gn1 . The Hermes data [8] for gp1 indicate that the onset
of duality takes place at Q2 � 1:8 GeV2. A recent analysis
[5] of Jefferson Lab data [64] for the first moment of gn1
indicates that duality could hold at Q2 as low as 1 GeV2. A
dedicated Jefferson Lab experiment to study duality in
neutron spin structure functions in the resonance region
is currently being analyzed [9]. Dong et al. [17–19] re-
cently used a constituent quark model for the five lowest-
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lying resonances and various parametrizations of scaling
data for a careful theoretical analysis of duality in F2 and
g1 for the proton target. They included target mass correc-
tions and find that duality in g1 is not seen below Q2 �
2 GeV2. Close and Isgur [11], using an SU(6)-symmetric,
constituent quark model, also predicted a slower onset of
duality for g1, and pointed out that duality sets in faster in
this model for gn1 than for gp1 . Dominant magnetic inter-
actions are necessary for the symmetric quark model, and
for the neutron target, this is realized.

Our simple model is, of course, far from describing
actual electron scattering measurements. It is not intended
to provide a quantitative description of data, but to provide
qualitative insights into nature. However, our findings on
the scaling behavior of the polarization asymmetries and
spin structure function might provide more general guid-
ance: what we see is that the onset of scaling is driven
mainly by the kinematic factors multiplying the reasonably
fast-scaling response functions in the definitions Eq. (22)
of the spin structure functions and polarization asymme-
tries. Where the factors are missing, i.e., for A1, conver-
gence is rapid and the prospects for a successful
application of duality are very good. Where the factors
are present, and take a very high momentum to reach their
asymptotic value, e.g., in g1, scaling is very slow and
duality does not hold. This suggests that the validity of
quark-hadron duality in spin observables may be strongly
related to kinematic factors, and less to dynamics. The
faster scaling for gn1 might be explained due to a smaller
longitudinal-transverse interference response RTL0 , see
Eqs. (41) and (42).

However, one has to be cautious as certain features of
nature are not included in our model: it is well known that
the & resonance has an unnaturally small coefficient multi-
plying the leading term and therefore gives rise to pecu-
liarities in the scaling and duality behavior, see [16].

D. The role of the p-wave contribution

One interesting question is which role the p wave in the
ground state plays. We will discuss the role of the ground-
state p-wave contribution for the onset of scaling for the
observables, and for the scaling results themselves.

1. The p wave for the bound-free transition

For the bound-free transition, we can read off from the
momentum distributions in Sec. IVA that, without the
ground-state p wave,

n0v�p� � ns�p� �
1

28
 ���2
1012
�p� and nsv�p� � n��p� � 0:

(43)

Thus, in the scaling limit, we can introduce the response

Rnop �
1

1683

Z 1
jyj
dpp ���2

1012
�p� (44)
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and then write all the bound-free responses in the scaling
limit as

RL �
1

2
Rnop; RT � �RT0 � Rnop;

RTL0 �
���
2
p
Rnop:

(45)

From these equations, one sees that in the scaling limit, the
peak position is now identical for all four responses, and
that the responses differ only by a simple numerical factor.
This leads automatically to A1 � 1 for all values of q and
y. Just like the responses, the spin structure functions g1
and g2 also peak at y � 0 GeV without the p wave in the
ground state. Apart from slight shifts in the peak position,
there are no major changes in the asymptotic forms of the
observables, see Fig. 16. For RL, omission of the p wave
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FIG. 16 (color online). The asymptotic behavior for q! 1
and fixed y of the responses for the bound-free transition,
without the ground-state p wave (top panel). We show RL (solid
line), RT (dotted line), RT0 (dashed line), and RTL0 (dashed-dotted
line). The asymptotic behavior for q! 1 and fixed y of the spin
structure functions g1 and g2 for the bound-free transition,
without the ground-state p wave (bottom panel). We show g1
(solid line) and g2 (dotted line). Note that A2 vanishes in this
limit, and that A1 � 1.
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leads to a slight reduction in peak height. RT also has a
reduced peak height (a reduction of about 10%). In con-
trast, RT0 maintains its peak height. The only response not
to experience any noticeable change is RTL0 , which was
centered around y � 0 GeV to start with, and does not
change its peak height, either.

The omission of the p wave in the ground state simpli-
fies the analytic expressions obtained for the responses,
and one expects that scaling should set in more quickly.
This is observed at low q values for RL and RT . For RT0 and
RTL0 , the presence of the p-wave contribution plays a
negligible role in the scaling behavior. This behavior is
consistent with the fact that the asymptotic forms of RL and
RT are more strongly affected by the omission of the p
wave.

For g1, the results change significantly for low q, see the
top panel of Fig. 17. At q � 2 GeV, the spin structure
function is changing sign at y � 0:1 GeV and becomes
positive. For higher q values, g1 peaks at slightly higher
y values without p wave, and the peak height is somewhat
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FIG. 17 (color online). The spin structure function g1 (top
panel) and the polarization asymmetry A2 (bottom panel) are
shown without the ground-state p wave for several values of the
three-momentum transfer q at fixed y.
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higher, too. The onset of scaling is very slow, independent
of the p-wave contribution.

The onset of scaling is dramatically accelerated for A1

by dropping the p wave, as RT and R0T coincide apart from
an overall sign, and A1 is the ratio of these two responses.
Therefore, A1 scales directly to 1 for even the lowest value
of q, if there is no p wave present.

While A2 is still scaling slowly, it has quite a different
shape now, see the bottom panel of Fig. 17. Instead of
starting at its maximum value at large negative y, and
decreasing to a minimum around y � 0:4 GeV, without
the p wave, it starts out at its minimum value at large
negative y and steadily increases.

2. The p wave for the bound-bound transition

The situation for the bound-bound transition is similar:
for the longitudinal response, we observe small changes in
peak position and peak height due to the omission of the p
wave, just like for the bound-free transition. For the trans-
verse response, we see a more pronounced reduction in
peak height, as well as the already familiar shift in the peak
position. The transverse-longitudinal primed response re-
mains largely unaffected by the omission of the p wave,
while the transverse-primed response has a shifted peak
position, and no reduction in peak height. These observa-
tions are very similar to the observations made above
concerning the effects of the p wave on the asymptotic
shapes of the responses for the bound-free transition.

The polarization asymmetry A1 again takes the value of
1 immediately, as RT and RT0 only differ by a sign. A2

without the ground-state p wave has the same shape for
bound-bound and bound-free transitions, markedly differ-
ent from the shape including the pwave. The spin structure
function g1 behaves similarly for bound-bound and bound-
free transitions, too. We do not present any figures for the
bound-bound results, as they are so similar to the bound-
free transition results shown above.

Strictly speaking, one would have to renormalize the
remaining wave function when switching off the p wave.
However, the effect of this rescaling will be small, and we
omit it here. The goal of this discussion was to learn where
the p wave is important, and where not. Summarizing, the
p wave has the biggest impact on the polarization asym-
metries, where switching off the p wave leads to immedi-
ate scaling for A1 and a different shape for A2, before A2

reaches its asymptotic value of zero. The spin structure
function g1 also shows sensitivity to the p-wave contribu-
tion at low q.

Our results for the role of the p wave in A1 confirm the
results in Ref. [22]. There, the authors noted a distinct
suppression of A1 at low Nachtmann < due to the p waves.
The region of large positive y, where we observe a falloff of
A1 when it is calculated with the complete wave function,
and find a value of 1 when A1 is calculated without the
p-wave contribution, corresponds to the low < region.
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E. Model dependence

In this section, we discuss the influence of the chosen
potential on the results for the observables. In all discussed
cases, we use a scalar linear confining potential. In addi-
tion, we either use no vector potential, a static Coulomb
potential, or a running Coulomb potential as vector poten-
tial, see Sec. II. For brevity, we restrict ourselves to the
bound-bound transition. Previously [30], we found that
there is no qualitative difference between the linear, linear
plus static Coulomb, and linear plus running Coulomb
potential results in the longitudinal and transverse re-
sponses. Peak height and position are different, but the
approach to scaling and the low q oscillatory behavior
are qualitatively the same.

First, we discuss the results for the linear plus static
Coulomb potential in the bound-bound transition. The
responses agree qualitatively with the results for just the
linear potential, with similar shapes, peak heights, peak
-15
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locations, and scaling behavior. The same holds for the
spin structure functions g1 and g2. For the polarization
asymmetry A1, the decrease from values close to 1 is
slightly more pronounced for positive y values, but the
differences are still small.

This somewhat faster falloff of A1 is seen more distinctly
for the linear plus running Coulomb potential, see Fig. 18.
However, the responses and spin structure functions look
very similar for the linear plus running Coulomb potential
and the linear plus static Coulomb potential. A2 has a
slightly different shape for the linear plus running
Coulomb potential, it starts out more flatly at negative y
values than for the linear potential and the linear plus static
Coulomb potential. The onset of convergence, however,
does not seem to be affected noticeably by the potential in
the low q region.

These results for the dependence of the spin observables
on the employed model potential are consistent with the
results found for the behavior of the longitudinal and
transverse response functions: while the results differ
quantitatively, there is no qualitative difference due to the
different potentials, neither in the results for the highest q
valuable attainable for bound-bound transitions in our
model, nor in the convergence of the results.

The polarization asymmetries, as ratios of responses, are
naturally more sensitive than the other observables, but
even they only show a minor influence of the potential.

V. SUMMARY AND OUTLOOK

We have presented results for responses, spin structure
functions and polarization asymmetries, calculated within
a simple model consisting of a light quark bound to an
infinitely heavy antiquark (or a diquark) without charge.
We have investigated the onset of scaling and the scaling
functions themselves in the bound-free transition, where
we are not hampered by the numerical difficulties involved
in calculating the bound-bound transition for energies
larger than 12 GeV. For the bound-bound transition, we
looked at the approach to scaling and the duality at low
momentum transfer q.

We have found that the two polarization responses, RT0
and RTL0 , scale roughly like their unpolarized counterparts,
the longitudinal and transverse responses RL and RT . The
only interference response, RTL0 , scales a bit faster than the
other responses, but the differences in scaling behavior are
small. Duality holds qualitatively for the responses, and for
the polarization asymmetry A1. In fact, A1 scales rapidly,
and judging from our model calculations, is the most
promising observable for the application of duality to
054019
extract deep inelastic scattering information from reso-
nance region data. These results are reminiscent of the
observation that the Ap1 and An1 data show little Q2 depen-
dence [65].

In contrast, scaling sets in very slowly for A2 and the
spin structure functions g1 and g2. This behavior is inde-
pendent of the type of scaling variable chosen: conver-
gence for an x-type scaling variable and largeQ2 is as slow
as for the y-scaling variable and increasing q. We have
traced the reason for the slow onset of scaling back to the
kinematic factors multiplying the responses in the expres-
sions for the spin observables.

Of course, these are results calculated within a simple
model, and the model should not be viewed as an attempt at
a quantitative description of electron scattering off a pro-
ton. In nature, it may turn out that the scaling behavior of
the responses is different, and might compensate in some
way for the slow scaling of the kinematic factors. Still, our
model calculations might provide some useful guidance. It
would be interesting to investigate if the responses can be
separated from the data available at present, and to see if
they indeed scale and exhibit duality as predicted in our
model.

As in Ref. [30], we have performed calculations for
three different potentials. The quantitative differences are
small for almost all observables, and qualitatively, a differ-
ent potential does not seem to change anything. The one
exception is the polarization asymmetry A1, which shows a
sensitivity to the employed potential at high, positive val-
ues of y.

We have also studied the influence of the p wave in the
ground-state wave function on the observables. While most
observables undergo only small shifts in peak position and
small changes in peak height, our results do confirm the
larger influence of the p-wave contribution on A1 at large
positive y values observed in Ref. [22]. However, the other
observables seem to be fairly robust with respect to the p
wave.
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