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Ground state in a spin-one color superconductor
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Color superconductors in which quarks of the same flavor form Cooper pairs are investigated. These
Cooper pairs carry total spin one. A systematic group-theoretical classification of possible phases in a
spin-one color superconductor is presented, revealing parallels and differences to the theory of superfluid
3He. General expressions for the gap parameter, the critical temperature, and the pressure are derived and
evaluated for several spin-one phases, with special emphasis on the angular structure of the gap equation.
It is shown that the (transverse) color-spin-locked phase is expected to be the ground state.
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I. INTRODUCTION

It is well known that certain metals and alloys exhibit a
superconducting phase below a critical temperature Tc. In
this phase, electrons in the vicinity of the Fermi surface
form Cooper pairs which leads to a gap � in the quasipar-
ticle excitation spectrum [1]. An attractive interaction be-
tween the electrons is provided by the exchange of virtual
phonons, and the electromagnetic gauge group U�1�em is
spontaneously broken. A similar mechanism occurs in
sufficiently cold and dense quark matter [2]. In this case,
the attractive color-antitriplet channel is responsible for the
formation of quark Cooper pairs. Because of the intrinsic
properties of quarks (color, flavor, electric charge), many
pairing patterns seem to be theoretically possible. In other
words, besides the electromagnetic gauge group, also the
color gauge group SU�3�c, the flavor group SU�Nf�f, and
the baryon number conservation group U�1�B may be
broken completely or to a certain residual subgroup. In
recent years there have been interesting works studying the
ground state of cold and dense quark matter, i.e., it has
been investigated which color-superconducting phase is
favored for certain ranges of the quark chemical potential
	. This question is also of phenomenological interest,
since matter in the interior of neutron stars can reach
densities up to an order of magnitude larger than the
nuclear ground state density while the temperature can be
of the order of keV. Therefore, the core of a neutron star
can be expected to be a color superconductor and the
question arises of which of the color-superconducting
phases it consists.

For very large densities, where the quark masses of the
u, d, and s quarks can be considered degenerate since they
are much smaller than the chemical potential, the ground
state is the so-called color-flavor-locked (CFL) phase [3].
In this phase, quarks of all flavors and all colors form
Cooper pairs, breaking spontaneously SU�3�c � SU�3�f �
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U�1�em �U�1�B to a subgroup SU�3�c�f �U�1�c�em. At
smaller densities the situation is more complicated, be-
cause the strange mass cannot be neglected. Furthermore,
the conditions of  equilibrium and electric charge neutral-
ity impose restrictive conditions on the system. The sim-
plest solution seems to be a pairing of only u and d quarks
[2], the so-called 2SC phase. In this phase, quarks of one
color remain unpaired, and the symmetry breaking pat-
tern is SU�3�c � SU�2�f �U�1�em �U�1�B ! SU�2�c �
SU�2�f �U�1�c�em �U�1�em�B. In both CFL and 2SC
phases the Fermi momenta of the quark flavors participat-
ing in pairing are assumed to be equal. This is a necessary
condition for the conventional BCS pairing mechanism,
since in both cases quarks of different flavors form Cooper
pairs. However, for moderate densities, this assumption is
not valid. Therefore, the ground state is neither the (pure)
CFL nor the (pure) 2SC state. Several other possibilities
have been discussed. In principle, besides a transition to
the normal-conducting state, there are two classes of alter-
natives, both yielding color-superconducting states. In the
first class, the difference in Fermi momenta is nonzero but
small enough to still allow for pairing of quarks of different
flavors. The second class accounts for cases in which
quarks of the same flavor pair.

Let us first mention some options for the first class. First,
there might be a phase in which the Cooper pairs carry
nonzero total momentum. In this case, the system exhibits
a crystalline structure due to a spatially varying energy gap
[4]. This kind of superconductivity is called Larkin-
Ovchinnikov-Fulde-Ferrell (LOFF) phase and was first
discussed in solid-state physics [5], where a difference in
the electron Fermi momenta is induced by an external
magnetic field. Second, there are studies about the ‘‘gap-
less’’ 2SC [6] and CFL [7] phases. In these phases, at least
a part of the quasiparticle excitations are ungapped,
although the gap parameter is nonzero. This feature obvi-
ously can have enormous physical consequences, for in-
stance for the specific heat and the neutrino emissivity
which both affect the cooling of a neutron star with a
core in a gapless color-superconducting phase. Other pos-
sible phases are derived from the CFL phase and contain
-1  2005 The American Physical Society
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kaon and/or eta condensates [8]. Moreover, besides a dis-
placement (LOFF phase), also a deformation of the Fermi
surface has been discussed [9].

In this paper, we discuss the possibility of the second
class, namely, systems in which quarks of the same flavor
form Cooper pairs [2,10–12]. The simplest situation for
this kind of color superconductivity is a system of only one
quark flavor. More realistic scenarios are two- or three-
flavor systems where each quark flavor separately forms
Cooper pairs. Another possibility is a system where u and
d quarks form a (gapless) 2SC superconductor while the s
quarks pair separately.

Since the attractive interaction of quarks is provided in
the antisymmetric color-antitriplet channel, the spin chan-
nel must be symmetric in order to ensure the overall
antisymmetry of the Cooper pair wave function. Con-
sequently, Cooper pairs consisting of quarks of the same
flavor cannot carry total spin zero but must condense in the
spin-one channel, J � 1, where J � L� S is the total spin
of the Cooper pair, consisting of their angular momentum
L and their spin S. This ‘‘two-triplet condensation’’ (color
and spin triplets) renders the structure of the order parame-
ter a complex 3 � 3 matrix. This is in contrast to the 2SC
case, where, due to condensation in the color-antitriplet,
flavor and spin singlet channels, the order parameter is a
complex 3-vector. In the CFL case, the order parameter is
also a 3 � 3 matrix, originating from the color and flavor
antitriplets.

Another system with this structure of the order parame-
ter is superfluid 3He [13,14]. In this nonrelativistic system,
angular momentum L and spin S are separate quantum
numbers, both giving rise to a triplet structure of the
condensate. In other words, a Cooper pair of 3He atoms
carries angular momentum one and spin one. Without
external magnetic fields, two phases of superfluid 3He are
experimentally known, the A and B phases. The A phase is
given by the order parameter structure �ij � �i3��j1 �
i�j2�, where the index i refers to spin and the index j to
angular momentum. This order parameter spontaneously
breaks SO�3�S � SO�3�L �U�1�N to U�1�S �U�1�L�N ,
where SO�3�S and SO�3�L are the spin and angular mo-
mentum groups, respectively, and U�1�N is the particle
number conservation group. The B phase, which covers
the largest region of the phase diagram, is given by �ij �

�ij, locking angular momentum with spin. Here, the resid-
ual group is SO�3�S�L. While the gap function ��k̂� is
isotropic in the B phase, it is anisotropic in the A phase.
The condensation energy (density) �p of the superfluid
states is given by the angular average of the square of the
gap [14],

�p � 1
2N�0�h�

2�k̂�ik̂; (1)

where N�0� is the density of states at the Fermi surface and
h	ik̂ 


R
d
k=4�. In weak coupling and at zero tempera-

ture, the ratio of the condensation energies of the A phase
054016
and the B phase is [cf. Eqs. (3.72) and (3.75) of Ref. [14]]

�pA

�pB
’ 0:88: (2)

Therefore, weak-coupling theory predicts the B phase to be
the favored state.

It is the main goal of this paper to determine the favored
state in a spin-one color superconductor. The paper is
organized as follows: In Sec. II, we discuss possible sym-
metry breaking patterns in a spin-one color superconduc-
tor. In general, the group G � SU�3�c � SU�2�J�
U�1�em �U�1�B is spontaneously broken to a residual
group H, where SU�2�J is the (relativistic) spin group. A
systematic list of order parameter matrices � and the
corresponding residual groups is presented, based on the
simple group-theoretical condition that � be invariant
under transformations of H. Four phases with large resid-
ual groups are picked for further investigation in the next
sections, namely, the polar, planar, A, and CSL (color-spin-
locked) phases.

After establishing the formalism in Sec. III A, Sec. III B
is devoted to solving the gap equation for the general case
of one or two nonzero (constant or angular-dependent)
energy gaps. The results are the gap functions for zero
temperature, T � 0, at the Fermi surface

�r�k̂� �
��������
�k;r

q
�0; (3)

where the angular dependence is contained in the quanti-
ties �k;r 
 �r�k̂�. The gap function occurs in the excitation
spectrum of the quasiparticles,

�k;r �
���������������������������������������
�k		�2 � �k;r�

2
0

q
: (4)

Let us briefly recall the situation of isotropic gap functions,
�k;r 
 �r. It has been shown that, in this case and with r �
1; 2, the gap parameter is given by [11,15–19]

�0 � 2~bb00e
	de	"	 exp

�
	

�
2 �g

�
; (5)

where

�g 

g

3
���
2

p
�
; ~b 
 256�4

�
2

Nfg2

�
5=2
;

b00 
 exp
�
	
�2 � 4

8

�
;

(6)

with the strong coupling constant g. The exponent d is zero
in all spin-zero phases and nonzero for J � 1. The expo-
nent " is defined as

" 
 ln��a1
1 �

a2
2 �1=2; (7)

where the numbers a1 and a2 have to be determined for
each phase separately. They fulfill the condition

a1 � a2 � 1: (8)
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The notation e	" instead of ��a1
1 �

a2
2 �	1=2 will turn out to be

convenient for the generalization to the case of anisotropic
gap functions.

In the case of the 2SC phase, there is only one gapped
quasiparticle excitation branch, a1 � �1 � 1, a2 � �2 �
0, and hence

�2SC
0 � 2~bb00	 exp

�
	

�
2 �g

�
; (9)

whereas in the CFL phase, there are two different gaps,
a1 � 1=3, a2 � 2=3, �1 � 4, �2 � 1, which leads to
�CFL

0 � 2	1=3�2SC
0 .

In Sec. III C, we compute the transition temperature Tc
for the transition from the normal-conducting to the super-
conducting state. As for the gap, this is a generalization of
the cases with constant (angular-independent) gaps, for
which the transition temperature is given by [19]

Tc
�0

�
e%

�
e" ’ 0:57e" ; (10)

where % ’ 0:577 is the Euler-Mascheroni constant. It has
been one of the main conclusions of Ref. [19] that this
expression shows the violation of the well-known BCS
relation Tc=�0 ’ 0:57 in the case of a two-gap structure,
i.e., �1;2, a1;2 � 0. (Also in the case of the gapless 2SC
phase, this relation is violated [6].)

As in the case of 3He, one expects the preferred phase to
have the largest condensation energy cf. Eq. (1). We spec-
ify this statement in Sec. III D with a general derivation of
the pressure in an arbitrary color-superconducting phase.

In Sec. IV, we determine the excitation spectrum, the gap
functions, the critical temperature, and the pressure for
the polar, planar, A, and CSL phases. For each phase we
consider three special cases, termed ‘‘longitudinal,’’
‘‘mixed,’’ and ‘‘transverse.’’ These three cases arise from
the following property of spin-one phases: Contrary to a
spin-zero color superconductor, where only quarks of the
same chirality form Cooper pairs (RR and LL pairs), in a
spin-one color superconductor also pairing of quarks with
opposite chirality (RL and LR pairs) is possible [11,12,19].
In general, the order parameter contains a linear combina-
tion of both kinds of condensates. We focus on the cases of
pure RR=LL condensates (longitudinal), a special admix-
ture of RR=LL and RL=LR condensates (mixed), and pure
RL=LR condensates (transverse). Consequently, in total
12 phases are studied.

In Sec. V we summarize the results and give an outlook
for possible consequences in neutron stars with color-
superconducting cores.

Our convention for the metric tensor is g	' �
diagf1;	1;	1;	1g. Our units are �h � c � kB � 1.
Four-vectors are denoted by capital letters, K 
 K	 �

�k0;k�, and k 
 jkj, while k̂ 
 k=k. We work in
the imaginary-time formalism, i.e., T=V

P
K 


T
P

n

R
d3k=�2��3, where n labels the Matsubara frequen-
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cies !n 
 ik0. For bosons, !n � 2n�T, for fermions,
!n � �2n� 1��T.
II. PATTERNS OF SYMMETRY BREAKING

In this section, we discuss possible symmetry breaking
patterns in a spin-one color superconductor. In other words,
we present a systematic classification of theoretically pos-
sible superconducting phases. In the case of a one-flavor,
spin-one color superconductor, the relevant original sym-
metry group of the system is

G � G1 �G2 �G3; (11)

where

G1 � SU�3�c; G2 � SU�2�J; G3 � U�1�em:

(12)

Note that the global group U�1�B, accounting for baryon
number conservation, has the same generator as the local
symmetry group U�1�em. This is not true in a system with
Nf > 1, when at least two quark flavors differ in their
electric charge. In particular, in the CFL phase (Nf � 3),
this leads to the fact that the system is not an electromag-
netic superconductor but a superfluid [the breakdown of
U�1�B gives rise to a Goldstone boson]. For Nf � 1, how-
ever, these two phenomena are coupled, i.e., a superflow is
equivalent to a supercurrent.

The order parameter � is an element of a representation
of G. In the following, we use the term order parameter
somewhat sloppily for the pure matrix structure �. For a
spin-one color superconductor, the relevant representation
of G is the tensor product of the antisymmetric color
antitriplet ��3�ac and the symmetric spin triplet �3�sJ,

� 2 ��3�ac � �3�sJ: (13)

Therefore, � is, as in the case of superfluid 3He, a complex
3 � 3 matrix. There is no nontrivial contribution from the
flavor structure since we consider systems with only one
quark flavor. The group G is spontaneously broken down to
a residual (proper) subgroup H � G. This means that any
transformation g 2 H leaves the order parameter invariant,

g��� � �: (14)

In the following, we investigate this invariance condition in
order to determine all possible order parameters � and the
corresponding residual groups H. The method we use in
this section is motivated by the analogous one for the case
of superfluid 3He [14].

First, one has to specify how G acts on the order pa-
rameter in Eq. (14). To this end, we write an arbitrary group
element g 2 G as (in this section, no confusion with the
strong coupling constant g is possible)

g � �g1; g2; g3�; (15)

where
-3
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g1 � exp�	iamT
T
m�; g2 � exp�ibnJn�;

g3 � exp�2ic1�;
(16)

with real coefficients am (m � 1; . . . ; 8), bn (n � 1; 2; 3),
and c. The Gell-Mann matrices Tm generate the group
SU�3�c, and we have taken into account that the color
representation is an antitriplet. The matrices Jn are the
generators of the spin group SU�2�J, �Jn�ij � 	i�nij. For
the generator of U�1� we choose 2 � 1, where 1 is the 3 �
3 unit matrix. The factor 2 accounts for the diquark nature
of the order parameter.

Let us now introduce a basis Ji � /j (i; j � 1; 2; 3) for
the representation given in Eq. (13). For the basis elements
of ��3�ac we choose the antisymmetric 3 � 3 matrices Ji, as
introduced above as generators of the spin group. The basis
of �3�sJ is given by the 3-vector /j, which will be specified
in Sec. IV cf. Eq. (120). Thus, we have to consider the
action of G on

M k 
 Ji�ij/j: (17)

We have

g�Mk� � g3g
ik
1 Jk�ijg

j‘
2 /‘: (18)

Therefore, the matrix � transforms as

g��ij� � g3g
ki
1 �k‘g

‘j
2 : (19)

Then, using Eqs. (16), the infinitesimal transformations of
� by G are given by

g��� ’ � 	 amTm� � bn�Jn � 2c�; (20)

where Tm� as well as �Jn are matrix products. The
invariance condition for the order parameter (14) is thus
equivalent to

	amTm� � bn�Jn � 2c� � 0: (21)

This matrix equation can be written as a system of nine
equations for the nine complex entries �11; . . . ;�33 of the
matrix �. In principle, one can find all possible symmetry
breaking patterns and corresponding order parameters by
setting the determinant of the coefficient matrix to zero.
Then, each possibility to render the determinant zero yields
a set of conditions for the coefficients am, bn, c, and it can
be checked if these conditions correspond to a residual
subgroup H. But since this is much too complicated, we
proceed via investigating possible subgroups explicitly. In
the following, we focus only on the continuous subgroups
of G.

Let us start with subgroups H that contain the smallest
possible continuous group, U�1�, i.e.,

H � U�1� �H0; (22)

where H0 is a direct product of Lie groups. The residual
U�1� must be generated by a 3 � 3 matrix U which is a
linear combination of the generators of G, i.e., in general,
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U � amTm � bnJn � 2c1: (23)

Let us restrict ourselves to linear combinations that involve
one generator of each group G1, G2, G3, for instance

U � a8T8 � b3J3 � 2c1: (24)

With Eq. (24), the invariance condition

eiU��� � � (25)

results in a system of nine equations, which can be dis-
cussed explicitly. This is done in Appendix A. We find ten
different order parameters, eight of them depending on two
or more parameters �1;�2; . . . , which physically corre-
sponds to more than one gap function. With the normal-
ization

T r���y� � 1; (26)

the calculation in Appendix A yields also two matrices �
that do not depend on any free parameter (which corre-
sponds to only one gap function). In analogy to 3He, let us
call the phases defined by this kind of order parameter inert
[14]. All experimentally known states of superfluid 3He
belong to this class of order parameters. Mathematically
speaking, these matrices play a special role due to a
theorem (‘‘Michel’s Theorem’’) [14,20], which ensures
that these order parameters correspond to a stationary point
of any G-invariant functional of � (for instance the effec-
tive potential). This is the reason why we also focus on
these order parameters in the explicit calculations of the
physical properties, see Sec. IV.

One order parameter, found with the ansatz (24) and
corresponding to an inert phase, is

� �

0 0 0
0 0 0
0 0 1

0
@

1
A; (27)

defining the polar phase. It has its analogue in 3He [14],
where the order parameter matrix is identical. For the case
of a color superconductor, certain aspects of the polar
phase have already been discussed in Refs. [12,19,21,22].
For the corresponding residual group H see Fig. 1, where
we list all order parameters. More details, especially the
explicit forms of the generators of H, are given in
Appendix A. The second-order parameter giving rise to
an inert phase is

� �
1���
2

p
0 0 0
0 0 0
1 i 0

0
@

1
A: (28)

This order parameter leads to the A phase [12,14].
In order to find all possible (inert) order parameters, it is

necessary to consider at least one more combination for the
residual U�1� in Eq. (22), namely

U � a2T2 � b3J3 � 2c1: (29)
-4



order
parameter

SU(2)

0  0  0
0  0  0
0  0  1

1  0  0
0  1  0
0  0  0

1  0  0
0  1  0
0  0  1

SU(2)

SU(2)

U(1)

U(1)

0  0  0
0  0  0
1  i   0

U(1)

U(1)

U(1)

U(1) U(1)

U(1)

U(1)

0  0  ∆
∆0  0  

0  0  ∆

1

2

3

0  0  0

0  0  
0  0  

∆
∆2

1

0

i
i
i

0
0

∆   ∆  

∆   ∆  

1
∆   ∆  2

3 3

2

1

∆  ∆  ∆
0  0  0

∆  ∆  ∆1 2

4 5 6

3

i
i

0  0  0

0
0

∆   ∆  
∆   ∆  2

1 1

2

0  0  0
0  0  0

∆  ∆  ∆1 2 3

∆   ∆  0
i
i

∆0  0  

01 1

2 2

3

0  0  
0  0  

∆   ∆  i 0
∆
∆1

3 3

2

∆   ∆  

,

phase

A

polar

planar

broken to
SU(3) x SU(2)J x

U(1)SU(2) x x

U(1) x

x x U(1)

x

x

U(1) x

U(1)

U(1)

c U(1)em

CSL

P

P

P

P

P

P

P7 , P8

6

5

4

3

2

1

FIG. 1. Symmetry breaking patterns and order parameters for a spin-one color superconductor. The original symmetry group (first
line) is given by the color gauge group SU�3�c (blank background), the spin group SU�2�J (gray background), and the electromagnetic
gauge group U�1�em (hatched background). The backgrounds of the residual groups illustrate the symmetry breaking pattern. For
instance, the blank SU�2� occurring in the residual group of the polar phase is generated solely by generators of the original SU�3�c
while the blank/hatched U�1� in the same line is generated by a linear combination of the generators of the original SU�2�J and U�1�em
groups. For the explicit expression of these generators, see text.
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The reason why T2 plays a special role is that we used the
generator J3 of the spin group, which is proportional to T2.
Consequently, we expect to find additional residual groups
that connect the color group with the spin group [meaning
054016
a residual U�1� generated by a combination of a color and a
spin generator]. The calculations with this generator are
completely analogous to the ones with the ansatz (24).
Therefore, we present the result without elaborating on
-5
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the details. The ansatz (29) yields one inert order parameter
that is different from the above ones, namely

� �
1���
2

p
1 0 0
0 1 0
0 0 0

0
@

1
A: (30)

This order parameter corresponds to the planar phase
[12,14]. The residual group is H � U�1� �U�1�, with
generators

U � 2T2 � J3; V � T8 �
1

4
���
3

p 1: (31)

Let us now turn to possible groups H that do not contain
any U�1� but solely consist of higher-dimensional Lie
groups, say

H � SU�2� �H0: (32)

Let U1, U2, U3 be the generators of the residual SU�2�.
They are linear combinations of the generators of G,

Ui � aimTm � binJn � 2ci1; i � 1; 2; 3: (33)

Since they must fulfill the SU�2� commutation relations,

�Ji; Jj� � i�ijkJk; i; j; k � 3; (34)

they must not contain the generator of G3 � U�1�, the unit
matrix, i.e., c1 � c2 � c3 � 0 . Therefore, there are three
possibilities. First, each Ui is a combination of color and
spin generators. Second and third, each Ui is composed
solely of color or spin generators, respectively. The sim-
plest options to realize these cases are

Ui � T0
i � Ji; (35a)

Ui � T0
i ; (35b)

Ui � Ji; (35c)

where �T0
1; T

0
2; T

0
3� is either given by �T1; T2; T3� or

�2T7;	2T5; 2T2�, which both fulfill the required commu-
tation relations. Using the options (35a)–(35c), let us first
show that H0 in Eq. (32) cannot be a second SU�2�. To this
end, assume that H0 � SU�2� with generators V1, V2, V3,
which have the same form as the generators Ui in Eqs. (35).
Then, since the Lie algebra of H is a direct sum of the
constituent Lie algebras, we have to require

�Ui; Vj� � 0: (36)

This condition reduces all options to one, namely

Ui � T0
i ; Vi � Ji (37)
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(or vice versa). However, now the invariance equation for
the order parameter yields

�Ji � 0; (38)

for all i � 1; 2; 3, which does not allow for a nonzero order
parameter �. Therefore, H0 � SU�2� is forbidden. Since
the cases with H0 � U�1� and H0 � U�1� �U�1� were
already covered in the above discussion, the only possibil-
ity that is left is H0 � 1 and thus H � SU�2�.

The generators in Eq. (35c) can immediately be ex-
cluded since they also lead to Eq. (38). The same argument
excludes case (35b) with �T0

1; T
0
2; T

0
3� � �2T7;	2T5; 2T2�.

Case (35b) with �T0
1; T

0
2; T

0
3� � �T1; T2; T3� leads to two

order parameters already considered above, namely, the
polar phase, Eq. (27), and the A phase, Eq. (28). In
case (35a), only �T0

1; T
0
2; T

0
3� � �2T7;	2T5; 2T2� is pos-

sible. With

Ui� � 	T0
i� � �Ji � 0; (39)

one finds

� �
1���
3

p
1 0 0
0 1 0
0 0 1

0
@

1
A: (40)

Indeed, it can be checked with Eq. (21) that this order
parameter leads to

a1 � a3 � a4 � a6 � a8 � c � 0; a2 � 2b3;

a5 � 	2b2; a7 � 2b1;
(41)

which corresponds to H � SU�2�, consisting of joint rota-
tions in color and spin space. This is the CSL phase,
discussed for a spin-one color superconductor in
Refs. [2,12,19,21,22]. It is the analogue of the B phase in
superfluid 3He.

Finally, we give an argument why an even larger sub-
group, i.e., an SU�3�, cannot occur in the residual group H.
Assume that there are eight generators W1; . . . ;W8 of this
SU�3�. Then, as for the SU�2� subgroup above, there can be
no contribution to W1; . . . ; W8 from the G3 generator due to
the SU�3� commutation relations for the generators,

�Wi;Wj� � ifijkWk; i; j; k � 8; (42)

where fijk are the SU�3� structure constants. Also,Wi � Ti
is excluded because in this case the invariance condition
yields T8� � 0 and thus � � 0. Therefore, at least one of
the spin generators has to be included. For instance, choose
W8 � T8 � b3J3. Then, from the commutation relation
�W4; W5� �W8 we conclude that also J1 and J2 must be
included via W4 � T4 � b1J1 and W5 � T5 � b2J2. But
now the three equations W4� � W5� � W8� � 0 lead to
� � 0. Therefore, we conclude that there is no residual
group H that contains an SU�3�. For a more rigorous proof
-6
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one has to take into account more complicated linear
combinations of the original generators.

In Fig. 1, we summarize our results in a list of all
superconducting phases that we have found in the above
discussion. It should be mentioned that this list is not
complete, since for the generators of the residual U�1�’s
we have restricted ourselves to two special forms given in
Eqs. (24) and (29). Therefore, there are certainly more (at
least noninert) order parameters that lead to an allowed
symmetry breaking. The inert states are listed in the first
four lines. Each of these four states has its analogue in
superfluid 3He. Note that the A1 phase, which is experi-
mentally observed in 3He in the presence of an external
magnetic field, does not lead to an allowed symmetry
breaking in the case of a spin-one color superconductor
[12]. To see this, one inserts the order parameter of the A1

phase,

� �
1

2

1 i 0
	i 1 0
0 0 0

0
@

1
A; (43)

into Eq. (21). One obtains

a1 � a3 � b1 � b2 � 0; a4 � a7; a5 � a6;

1

2
a2 �

1

2
���
3

p a8 	 b3 	 2c � 0: (44)

These seven conditions suggest that dimH � 12 	 7 � 5
and thus H � SU�2� �U�1� �U�1�. However, there is no
possibility to construct three generators from the above
conditions that fulfill the SU�2� commutation relations. For
instance, assume that two of these generators are given by
U1 � T4 � T7 and U2 � T5 � T6. Then, with Eq. (42),
�U1; U2� � T3. But since a3 � 0, the third generator U3

cannot be proportional to T3. Consequently, there is no A1

phase in a spin-one color superconductor.
Below the four inert states we list the eight noninert

states which have been found in Appendix A and which we
term P1; . . . ; P8. Note that one of these noninert phases,P1,
has a larger residual symmetry group than the planar and
CSL phases.

There are several properties of the spin-one phases
which can easily be read off from Fig. 1. First, consider
the spin group SU�2�J. This symmetry accounts for the
rotational symmetry in real space of the normal-conducting
phase [in the case of the spin-one representation, one can
equivalently consider SO�3�J instead of SU�2�J]. The list
shows that spatial symmetry is broken in each case. For
instance, in the polar phase, SU�2�J is broken to its sub-
group U�1�J. Therefore, the superconducting phase is in-
variant under rotations around one fixed axis in real space.
In most of the other cases, the breaking of the spatial
rotation symmetry is more subtle: For instance in the
planar phase, the superconducting state is invariant under
a special joint rotation in color and real space. The most
interesting breakdown of spatial symmetries is present in
054016
the CSL phase. Here, any rotation in real space leaves the
system invariant as long as one simultaneously performs
the same rotation in fundamental color space which is
spanned by the three directions red, green, and blue.

Next, let us read off some properties concerning the
color symmetry. It is obvious that in none of the cases
the full color symmetry is preserved. In this sense, it is
justified to call each phase a color superconductor. In three
of the cases, there is a residual color subgroup SU�2�,
namely, in the polar phase, the A phase, and the P1 phase.
Mathematically speaking, this residual group originates
from the fact that the order parameter has only nonzero
elements in its third row. Therefore, the third direction in
fundamental color space is preferred. Physically, this
means that the Cooper pairs carry color charge antiblue,
or, in other words, only red and green quarks form Cooper
pairs. Of course, the choice of the antiblue direction is
convention; more generally speaking, quarks of one color
remain unpaired. Remember that this is also true for the
2SC phase.

A spontaneously broken gauge symmetry gives rise to
massive gauge bosons. In the case of a color superconduc-
tor, these masses are the magnetic screening masses of the
gluons. Therefore, in the cases where there is a residual
color subgroup SU�2�, we expect a Meissner effect for five
of the eight gluons. Three of the gluons, however, namely,
those corresponding to the generators T1, T2, T3, do not
attain a Meissner mass. This is also obvious from the fact
that these gluons do not see the (anti)blue color charge
which is carried by the Cooper pairs. Also with respect to
the breakdown of the color symmetry, the CSL phase is
exceptional. Although there is a residual SU�2�, where
three of the color generators are involved, we expect all
eight gluons to attain a Meissner mass. To this end, note
that this residual SU�2� is a global symmetry and therefore
all dimensions of the gauge group have to be considered as
broken. This is analogous to the CFL phase, which also
exhibits a color Meissner effect for all eight gluons [23].
For a more detailed and quantitative discussion of the color
Meissner effect, see Ref. [22].

In order to discuss the question whether the color super-
conductors in Fig. 1 are also electromagnetic superconduc-
tors, one has to consider the hatched backgrounds in the
residual groups. From ordinary superconductors, we know
that U�1�em is spontaneously broken below the critical
temperature. Therefore, a simple conclusion is that all
states in the list without a hatched background occurring
in the residual group are electromagnetic superconductors.
Obviously, this is the case for the CSL phase and for one of
the noninert states, namely, the P6 phase. The electromag-
netic Meissner effect in the CSL and polar phases has been
discussed in detail in Refs. [21,22]. In particular, it has
been shown that also the polar phase exhibits an electro-
magnetic Meissner effect in the case of a many-flavor
system, where at least two of the quark flavors have non-
equal electric charges.
-7
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III. GAPS, TRANSITION TEMPERATURE, AND
PRESSURE

In this section, we derive general expressions for the
gaps (Sec. III B), the transition temperature (Sec. III C),
and the pressure (Sec. III D), valid for all color-
superconducting phases we consider. In Sec. IV we evalu-
ate these expressions for several spin-one color
superconductors.

A. Notations and definitions

The starting point is the effective action !, which yields
the gap equation as well as the effective potential Veff 


	 T
V ! and the pressure p, which is the negative of the

effective potential at its stationary point, p � 	Veff .
The effective action ! can be derived from the QCD

partition function using the Cornwall-Jackiw-Tomboulis
(CJT) formalism [24]. The resulting functional can be
written as [25–27]

!�DG;DF� � 	1
2 Tr lnD	1

G 	 1
2 Tr��	1

0 DG 	 1�

� 1
2 Tr lnD	1

F � 1
2 Tr�S	1

0 DF 	 1�

� !2�DG;DF�: (45)

Here, DG (�0) and DF (S0) are the full (tree-level) gluon
and fermion propagators, respectively. All propagators are
defined in Nambu-Gor’kov space. We account for the
doubling of degrees of freedom in this basis by introducing
the factor 1=2. The traces run over Nambu-Gor’kov, Dirac,
flavor, color, and momentum space, and !2�DG;DF� de-
notes the sum of all two-particle irreducible diagrams. In
the following, we will consider the two-loop approxima-
tion of this sum which, for the fermionic degrees of free-
dom, is equivalent to taking into account only one diagram
(the ‘‘sunset’’ diagram [27]). The stationarity conditions
for !�DG;DF� yield Dyson-Schwinger equations for the
inverse gluon and fermion propagators,

�	1 � �	1
0 � #; (46a)

S	1 � S	1
0 � $: (46b)

Here, the pair of propagators ��;S� is the stationary point
of the effective potential and we defined the gluon and
fermion self-energies as

# 
 	2
�!2

�DG

���������DG;DF����;S�
;

$ 
 2
�!2

�DF

���������DG;DF����;S�
:

(47)

The free inverse fermion propagator is

S 	1
0 �

�G�
0 �

	1 0
0 �G	

0 �
	1

� �
; (48)

where �G�
0 �

	1 and �G	
0 �

	1 are the free inverse propagators
for massless quarks and massless charge-conjugate quarks
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in the presence of a chemical potential 	,

�G�
0 �

	1 � %	K	 �	%0: (49)

In order to find the full propagators, one has to solve the
Dyson-Schwinger equations, Eq. (46a), self-consistently.
To this end, we denote the entries of the fermion self-
energy in Nambu-Gor’kov space by

$ 

$� %	

%� $	

� �
; (50)

and invert Eq. (46b) formally [28], which yields the full
quark propagator in the form

S �
G� &	

&� G	

� �
; (51)

where the fermion propagators for quasiparticles and
charge-conjugate quasiparticles are

G� � f�G�
0 �

	1 � $� 	 %���G�
0 �

	1 � $��	1%�g	1;

(52)

and the so-called anomalous propagators, typically non-
zero for a superconducting system, are given by

&� � 	��G�
0 �

	1 � $��	1%�G�: (53)

In the two-loop approximation of !2, the quark self-energy
$�K� in momentum space is

$�K� � 	g2 T
V

X
Q

!	
a S�Q�!'

b�
ab
	'�K 	Q�; (54)

where

!	
a 


%	Ta 0
0 	%	TT

a

� �
; (55)

with the Gell-Mann matrices Ta, a � 1; . . . ; 8. Because of
the Nambu-Gor’kov structure, Eq. (54) is actually a set of
four equations. With Eqs. (50) and (51), the off-diagonal
(21)-component leads to the gap equation

%��K� � g2 T
V

X
Q

%	TT
a&��Q�%'Tb�

ab
	'�K 	Q�: (56)

The quantities %��K� are matrices in flavor, color, and
Dirac space and functions of the quark four-momentum K.
Both quantities are related via

%	 � %0�%
��y%0: (57)

Following Ref. [19], we term the matrix %��K� gap matrix
and use, for condensation in the even-parity channel and in
the ultrarelativistic limit, the ansatz

%��K� �
X
e��

�e�K�Mk'e
k: (58)

The Dirac matrices 'e
k 
 �1 � e%0� � k̂�=2, where e �

�, are projectors onto positive and negative energy states,
and �e�K� is the gap function. The quantity Mk is a
-8
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matrix in color, flavor, and Dirac space. It is defined by
the order parameter and thus determines the color-
superconducting phase. For the explicit form of Mk in
the case of a spin-one color superconductor, see Eq. (120).
We can always choose Mk such that it commutes with the
energy projectors,

�Mk;'e
k� � 0: (59)

The diagonal elements of the quark self-energy can be
approximated as [17,18]

$� � $	 ’ %0 �g2k0 ln
M2

k2
0

; (60)

where M2 � �3�=4�m2
g; the zero-temperature gluon mass

parameter (squared) is m2
g � Nfg2	2=�6�2�.

Using Eqs. (52), (58), and (60), we find for the fermion
propagators

G� � ��G�
0 �

	1 � $��
X
e;r

P�
k;r'

�e
k

1

�k0=Z�k0��
2 	 ��ek;r�

2 ;

(61)

where

Z�k0� 


�
1 � �g2 ln

M2

k2
0

�
	1

(62)

is the wave function renormalization factor introduced in
Ref. [28]. In Eq. (61) we introduced two sets of projectors,
P�

k;r and P	
k;r; they project onto the eigenspaces of the

matrices

L�
k 
 %0M

y
kMk%0 and L	

k 
 MkM
y
k; (63)

respectively, i.e., if the number of different eigenvalues �k;r
is n, the projectors are [29]

P �
k;r �

Yn
s�r

L�
k 	 �k;s

�k;r 	 �k;s
: (64)

In the case of spin-zero color superconductors (2SC and
CFL), L�

k and L	
k are identical. But this is not true for all

spin-one phases as we shall see in Sec. IV. However, in all
phases we consider, L�

k and L	
k have the same spectrum.

Consequently,

L�
k �

X
r

�k;rP�
k;r: (65)

We denote the degeneracy of the eigenvalue �k;r by

nr 
 Tr�P�
k;r�: (66)

In general, the eigenvalues �k;r depend on the direction of
the quark momentum k̂ (they do not depend on the modu-
lus k). They enter the quasiparticle excitation energies
introduced in Eq. (61),

�ek;r 

����������������������������������������������
�ek		�2 � �k;rj�ej

2
q

: (67)
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Consequently, the spectrum of the matrices L�
k determines

the structure of the quasiparticle excitations. In all phases
we consider, there are at most three different eigenvalues,
and at most two different nonzero eigenvalues �k;r. A zero
eigenvalue corresponds to an ungapped excitation branch.
This is for instance the case in the 2SC phase, where the
ungapped blue quarks give rise to a zero eigenvalue �2 �
0, while �1 � 1. Two different nonzero eigenvalues corre-
spond to two excitation branches with different gaps, well
known from the CFL phase, where there is a quasiparticle
singlet with gap 2� (�1 � 4 with degeneracy 1) and a
quasiparticle octet with gap � (�2 � 1 with degeneracy 8).
In the case of the spin-one phases, the eigenvalues carry the
potential angular dependence of the energy gap. In the
following we assume that there is no additional angular
dependence in the functions �e. Moreover, since we ne-
glect the antiparticle gap, �	 ’ 0, we may denote the
particle gap by � 
 ��. We assume this function to be
real, j�j2 � �2, and denote the value of this function at the
Fermi surface by �0. With these assumptions and notations
we can define the root-mean square (quadratic mean) of the
function

��������
�k;r

p
�0 as

� r 

��������������
h�k;rik̂

q
�0: (68)

Furthermore, for the following it is convenient to define the
normalized eigenvalue

�̂ k;r 

�k;r

h�k;rik̂
: (69)

We make use of these definitions in the final results cf.
Eqs. (98), (103), and (118).

Finally, we determine the anomalous propagator &�.
Inserting the expression for the propagator G�, Eq. (61),
into the definition (53) and using the form of the gap matrix
%� given in Eq. (58), we obtain

&��K� � 	
X
e;r

%0Mk%0P
�
k;r'

	e
k

�e�K�

�k0=Z�k0��
2 	 ��ek;r�

2 :

(70)
B. Solution of the gap equation for an anisotropic gap

In this section, we solve the gap equation for the general
case of an anisotropic gap function. Formally, with the
definitions of the previous section, this means that we
allow for angular-dependent eigenvalues �k;r. Starting
from the gap equation (56) for the gap matrix %��K�, we
obtain a gap equation for the function �e�K� by inserting
Eqs. (58) and (70) into Eq. (56), multiplying both sides
with My

k'e
k, and taking the trace over color, flavor, and

Dirac space. Moreover, we use the gluon propagator in the
hard-dense-loop approximation, which is permissible to
subleading order [30]. We denote quasiparticle energies
by �q;s 
 ��q;s, because, due to �	 ’ 0, the quasiantipar-
-9
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ticle energies do not occur in the gap equation. Since the
effect of the wave function renormalization factor Z�k0� for
the gap is known [17,18] and does not affect the angular
structure of the equation, we omit it for simplicity. The
resulting factor b00, see Eq. (6) can easily be reinserted into
the final result. We arrive at

��K� � g2 T
V

X
Q

X
s

��Q�

q2
0 	 �2

q;s
�	'�K 	Q�T s

	'�k;q�;

(71)

where, following Ref. [19], we have defined

T s
	'�k;q� 
 	

Tr�%	T
T
a %0Mq%0P

�
q;s'

	
q %'TaM

y
k'�

k �

Tr�MkM
y
k'�

k �
:

(72)

With P 
 K 	Q, the gluon propagator in pure Coulomb
gauge is given by

�00�P� � �‘�P�; �0i�P� � 0;

�ij�P� � ��ij 	 p̂ip̂j��t�P�:
(73)

For the definition of the longitudinal and transverse gluon
propagators �‘;t see for instance Ref. [11]. With the (nega-
tive) transverse projection of the tensor T s

	'�k;q�,

T s
t �k;q� 
 	��ij 	 p̂ip̂j�T s

ij�k;q�; (74)

we obtain after performing the Matsubara sum (for details
see Ref. [11]), and after taking the thermodynamic limit,
V ! 1,

�k;r �
g2

4

Z d3q

�2��3
X
s

�q;s

�q;s
tanh

��q;s
2T

�

� �F‘�p�T
s
00�k;q� � Ft�p; �q;s; �k;r�T

s
t �k;q��;

(75)

where

F‘�p� 

2

p2 � 3m2
g

(76)

arises from static electric gluons, while

Ft�p; �q;s; �k;r� 

2

p2 *�p	M� � *�M	 p�

�

�
p4

p6 �M4��q;s � �k;r�2

�
p4

p6 �M4��q;s 	 �k;r�
2

�
(77)

originates from nonstatic and almost static magnetic glu-
ons. In Eq. (75) we have abbreviated �k;r 
 ���k;r;k� and
�q;s 
 ���q;s;q�. At this point, the angular integral d
q

on the right-hand side of Eq. (75) seems to be too compli-
cated, since, besides the square of the gluon 3-momentum
054016
p2 � k2 � q2 	 2q � k and the functions T s
00, T s

t , also
the excitation energies �q;s depend on the direction of q.
The solution to this problem is to multiply both sides of the
equation with

‘k 
 Tr�MkM
y
k'�

k � �
1

2

X
r

nr�k;r; (78)

and take the angular average over k̂ of the whole equation.
The right-hand side of Eq. (78) is obtained with the help of
Eqs. (63), (65), and (66), and the following identities:

1
2 Tr�P�

k;r� � Tr�P�
k;r'

e
k� � Tr�P	

k;r'
e
k�: (79)

They will become obvious in Sec. IV, where we discuss the
specific phases in detail. The only nontrivial phase with
respect to these identities is the A phase, where P�

k;r �

P	
k;r. In this case, one uses Eqs. (B13) from Appendix B to

prove these relations.
We arrive at

h‘kik̂�k;r �
g2

4

Z d3q

�2��3
X
s

�q;s‘q
�q;s

tanh
��q;s
2T

�

�

�
F‘�p�

‘k
‘q

T s
00�k;q�

� Ft�p; �q;s; �k;r�
‘k
‘q

T s
t �k;q�

�
k̂
; (80)

where we pulled the factor ‘q out of the k̂ integral on the
right-hand side of the equation. This turns out to be con-
venient for the calculation. On the left-hand side we have
made use of the assumption that the function �k;r does not
depend on the direction of k. We shall see below that this
assumption is consistent with our final result.

Now the angular integral over k̂ has to be performed for
each phase separately. In Appendix C we present this
calculation explicitly for the transverse polar, planar, and
A phases, and in Appendix D it is presented for arbitrary
longitudinal phases. However, we can give a general result
similar to the method introduced in Ref. [19]. For the
angular integral we use a frame with z0 axis parallel to q.
However, besides the fixed direction given by q, in all
nontrivial cases there is another preferred direction in the
system, namely, the one that is picked by the order pa-
rameter. This has to be taken into account for the integral
and is explained in detail in Appendices C and D. We
neglect the k̂ dependence in �k;r occurring in the function
Ft. Within this approximation, the functions F‘, Ft do not
depend on the azimuthal angle ’0, they only enter the k̂
integral through the polar angle <0. The <0 integral can be
transformed into an integral over p. This p integral is
performed using the formalism presented in Ref. [19]. To
subleading order, we may set k ’ q ’ 	, which allows us,
for all phases we consider, to write the result of the
azimuthal integral in the following power series of p:
-10
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1

2�

Z 2�

0
d’0 ‘k

‘q
T s

00�k;q� ’ as

�
=‘

0 � =‘
2

p2

	2 � =‘
4

p4

	4

�
;

(81a)

1

2�

Z 2�

0
d’0 ‘k

‘q
T s

t �k;q� ’ as

�
=t

0 � =t
2

p2

	2 � =t
4

p4

	4

�
:

(81b)

The coefficients as are chosen such that they add up to one
cf. Eq. (8). In all cases we consider, we find

as �
ns�q;sP
r
nr�q;r

; (82)

and there are at most two nonzero coefficients a1, a2. In
general, the coefficients as and =‘;t depend on the polar
angle < of the vector q̂ ( cos< � q̂ � ez). However, in most
of the cases we consider, they are constant. The only phase
with angular-dependent coefficients =‘;t is the mixed polar
phase, while the only phase with angular-dependent coef-
ficients as is the transverse A phase.

With =‘
0 � =t

0 � 2=3, which holds for all phases we
consider, we arrive at (for details of the p integral, see
Ref. [19])

h‘kik̂�k;r �
Z d
q

4�
‘q �g2

Z �

0
d�q		�

X
s

as
�q;s

�q;s

1

2

� ln
� ~b2	2e	2d

j�2
q;s 	 �2

k;rj

�
; (83)

with ~b as defined in Eq. (6). The value of d can be
determined from the coefficients in Eqs. (81),

d � 	
6

=t
0

�=‘
2 � =t

2 � 2�=‘
4 � =t

4��: (84)

Consequently, the result of the k̂ integral in the gap equa-
tion can be obtained by computing the coefficients of the
power series in p, since the p integral is generic for all
phases. This result is very similar to that of Ref. [19],
where the q integral on the right-hand side of the gap
equation could be performed directly because of the trivial
angular structure. In the present, more general, case, how-
ever, the q integral still has to be done. In Eq. (83), this
integral has been divided into its angular part and the
integral over the modulus q, which can be restricted to
an integral over a small region of size 2� around the Fermi
surface, where � is much larger than the gap but much
smaller than the chemical potential. This integral can now
be done in the usual way, keeping the angular dependence
in the excitation energy �q;s. We briefly repeat this calcu-
lation, which leads to Eq. (91), more details for the case of
two different gaps can be found in Ref. [19]. With the
approximation [16]
054016
1

2
ln
� ~b2	2e	2d

j�2
q;s 	 �2

k;rj

�
’ *��q;s 	 �k;r� ln

�~b	e	d

�q;s

�

� *��k;r 	 �q;s� ln
�~b	e	d

�k;r

�
(85)

and the new variables

xr 
 �g ln
�

2~b	e	d

k		� �k;r

�
; ys 
 �g ln

�
2~b	e	d

q		� �q;s

�
;

(86)

to subleading order the gap equation (83) transforms into

h‘kik̂��xr� �
Z d
q

4�
‘q
X
s

as

�
xr

Z x�s

xr
dys tanh

�
��ys�
2T

�
��ys�

�
Z xr

x0

dysys tanh
�
��ys�
2T

�
��ys�

�
; (87)

where we defined

x�s 
 �g ln
�
2~b	e	d��������
�q;s

p
�0

�
; x0 
 �g ln

�~b	e	d

�

�
; (88)

with �0 
 ��x�1� ’ ��x�2�. In the case of an isotropic gap,
�0 is the value of the gap at the Fermi surface. Note that
Eq. (87) corresponds to Eq. (79) of Ref. [19]. The differ-
ence to that equation, besides the angular integral, arises
from the simplification we made above by omitting the
wave function renormalization factor.

While Eq. (83) in principle is a set of two equations, one
for each excitation branch, labeled by the index r, we see
from Eq. (87), that, after the change of variables and
neglecting subsubleading contributions, one equation for
the variable xr is left. We can write this single equation for
the renamed variable x in the form

h‘kik̂��x� �
Z d
q

4�
‘q

�
x
Z x�2

x
dy tanh

�
��y�
2T

�
��y�

�
Z x

x0

dyy tanh
�
��y�
2T

�
��y�

	 a1x
Z x�2

x�1

dy tanh
�
��y�
2T

�
��y�

�
: (89)

The solution of this gap equation for T � 0 is found in the
usual way. Differentiating twice with respect to x yields a
second-order differential equation. The two constants of
the general solution are determined with the help of
Eq. (89) and its first derivative at the point x � x�2. One
obtains

��x� � �0�cos�x�2 	 x� � a1�x�2 	 x�1� sin�x
�
2 	 x��: (90)

An exchange of the indices 1 and 2 in this solution yields
the same final result for �0. In order to determine �0, one
inserts the solution (90) into Eq. (89) and evaluates the
equation at the point x � x�2. Then, the integrals on the
-11
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right-hand side of the equation are trivial. Using
sin�@	 � � sin@ cos	 cos@ sin and cos�@	 � �
cos@ cos� sin@ sin and the approximations sinx0 ’
x0, cosx0 ’ 1 [note that x0 is parametrically of order
O� �g�], we obtain

0 �
Z d
q

4�
‘q�cosx�2 � a1�x

�
2 	 x�1� sinx

�
2�; (91)

where h‘kik̂ � h‘qiq̂ has been subtracted on both sides of
the equation. With the definition for x�2 in Eq. (88) and the
approximations

cosx�2 ’ cos
�

�g ln
�
2~b	
�0

��

� �g�ln
��������
�q;2

q
� d� sin

�
�g ln

�
2~b	
�0

��
; (92a)

sinx�2 ’ sin
�

�g ln
�
2~b	
�0

��

	 �g�ln
��������
�q;2

q
� d� cos

�
�g ln

�
2~b	
�0

��
; (92b)

we find (using a1 � a2 � 1)

0 � cos
�

�g ln
�
2~b	
�0

��
� �g�" � d� sin

�
�g ln

�
2~b	
�0

��
: (93)

We use the abbreviations

" 

h‘q"iq̂
h‘qiq̂

; d 

h‘qdiq̂
h‘qiq̂

; (94)

with " � ln��a1
q;1�

a2
q;2�

1=2, as defined in Eq. (7) for isotropic

gaps. With Eqs. (78) and (82), we can write " in the
following simple form:

" �
1

2

hn1�q;1 ln�q;1 � n2�q;2 ln�q;2iq̂
hn1�q;1 � n2�q;2iq̂

: (95)

This expression shows that " can be determined solely
from the spectrum of the matrix L�

q cf. Eqs. (63), (65),
and (66).

From Eq. (93) we deduce that, to subleading order
(reinserting the factor b00),

�0 � 2~bb00e
	de	"	 exp

�
	

�
2 �g

�
: (96)

This result, which is the main result of this paper, is the
generalization of Eq. (5). It says that, in the case of
anisotropic gaps and/or an angular-dependent value of d,
one has to replace the exponents d ! d, " ! " . It turns out
that in most of the cases we consider, d is a constant
number. Only in the mixed polar phase, see Sec. IV, d �

d. However, the modification of the other exponent, " ,
plays an important and nontrivial role, especially for the
determination of the ground state.
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In order to compare the result with the corresponding
one in the theory of superfluid 3He, we consider the special
case of only one gapped (but anisotropic) excitation
branch, �q;2 � a2 � 0. In this case,

e	" !
1��������������

h�q;1iq̂
q exp

�
	

1

2
h�̂q;1 ln�̂q;1iq̂

�
; (97)

and the quadratic mean of the gap is given by

� 1 � 2~bb00e
	d	 exp

�
	

�
2 �g

�
exp

�
	

1

2
h�̂q;1 ln�̂q;1iq̂

�
:

(98)

In this special case, the exponent involving the angular
dependence of the gap is exactly the same as in 3He cf.
Eq. (3.63) of Ref. [14].

C. The critical temperature

In order to determine the critical temperature Tc, we
proceed similar to the above calculation of the gap:
Starting from the gap equation (89), we apply the method
presented in Ref. [19] before doing the d
q integral. The
basic assumption is that the shape of the gap function does
not change with temperature, i.e., we employ the following
factorization of the temperature-dependent gap function:

��x; T� ’ ��T�
��x; 0�
�0

; (99)

where ��T� 
 ��x�2; T� is the value of the gap at the Fermi
surface at temperature T, and ��x; 0� is the zero-
temperature gap function ��x� computed in the last sec-
tion. This ansatz, inserted into Eq. (89), yields at the Fermi
surface

h‘kik̂ �
Z d
q

4�
‘q

�Z x/

x0

dyy tanh
�
��y�
2T

�
��y; 0�
�0

�
Z x�2

x/
dyy tanh

�
��y�
2T

�
��y; 0�
�0

	 a1x
Z x�2

x�1

dy tanh
�
��y�
2T

�
��y; 0�
�0

�
; (100)

where the second integral in Eq. (89) has been divided into
two integrals: One running from x0 to x/, with x/ 
 x�2 	
�g ln�2/�, / � 1, and one running from x/ to x�2. In
Ref. [19] it is shown how the integrals in the curly brackets
on the right-hand side of Eq. (100) are evaluated. The result
is

0 �
Z d
q

4�
‘q ln

�
e%�0

�Tc

����������������
�a1
q;1�

a2
q;2

q �
: (101)

This leads to

Tc
�0

�
e%

�
e" : (102)
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Note that, although the ratio Tc=�0 depends on the con-
stant " , the absolute value for Tc does not, since the factor
e	" of the gap �0 cancels the factor e" on the right-hand
side of Eq. (102). Consequently, in units of the critical
temperature in the 2SC phase, T2SC

c , the critical tempera-
ture only depends on the constant d, Tc=T2SC

c � e	d.
We recover as a special case the result for two isotropic

gaps, Eq. (10). For the case of only one gapped excitation
branch, and using Eq. (97), the ratio between the critical
temperature and the quadratic mean of the gap at the Fermi
surface for T � 0 reads

Tc
�1

�
e%

�
exp

�
1

2
h�̂q;1 ln�̂q;1iq̂

�
: (103)

Consequently, we find a nontrivial modification of the BCS
relation Tc � 0:57�0 also in the case of a single, but
anisotropic gap. Obviously, the BCS relation is recovered
from Eq. (103) for the case of a constant gap, since in this
case �̂q;1 � 1. Note that the result (103) is identical to the
one in the theory of superfluid 3He cf. Eq. (3.63) of
Ref. [14].

D. The pressure

The starting point for the calculation of the pressure is
the effective action, Eq. (45). In the two-loop approxima-
tion, we can write

!2��;S� �
1
4 Tr�$S�: (104)

Then, making use of the Dyson-Schwinger equation (46b),
the fermionic part of the effective potential at the stationary
point can be written as

!�S� � 1
2 Tr lnS	1 	 1

4 Tr�1 	 S	1
0 S�: (105)

In order to evaluate the first term on the right-hand side of
this equation, we use the identity Tr lnS	1 � ln detS	1

and the fact that for arbitrary matrices A, B, C, and an
invertible matrix D,

det
�
A B
C D

�
� det�AD	BD	1CD�: (106)

Then, making use of S	1 � S	1
0 � $ and Eqs. (48) and

(50), the trace over Nambu-Gor’kov space yields

1
2 Tr lnS	1 � 1

2 Tr lnf��G�
0 �

	1 � $����G	
0 �

	1 � $	�

	 %	��G	
0 �

	1 � $	�	1%���G	
0 �

	1

� $	�g: (107)

In order to proceed, we set Z�k0� ’ 1 in the fermion
propagator G� cf. its definition in Eq. (61). Using the
identity

�G�
0 �

	1�G�
0 �

	1 �
X
e

�k2
0 	 �		 ek�2�'�e

k ; (108)

we find
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1

2
Tr lnS	1 �

1

2
Tr ln

X
e

�k2
0 	 �		 ek�2 	�2

eL�
k �'

	e
k

�
1

2

X
e;r

X
K

Tr�P�
k;r'

	e
k � ln�k2

0 	 ��ek;r�
2�:

(109)

After performing the Matsubara sum, this expression reads

1

2
Tr lnS	1 �

1

2

V
T

X
e;r

Z d3k

�2��3
Tr�P�

k;r'
	e
k �

�

�
�ek;r � 2T ln

�
1 � exp

�
	
�ek;r
T

���
; (110)

where the trace now runs only over color, flavor, and Dirac
space.

The Nambu-Gor’kov trace for the second term on the
right-hand side of Eq. (105) is easily performed with the
definitions (48) and (51). Note that the anomalous propa-
gators &�, occurring in the full quark propagator S, do not
enter the result. One obtains

1

4
Tr�1 	 S	1

0 S� � 	
1

4

X
e;r

X
K

Tr�P�
k;r'

e
k � P	

k;r'
	e
k �

�
�k;r�2

e

k2
0 	 ��ek;r�

2 ; (111)

which becomes, after performing the Matsubara sum,

1

4
Tr�1 	 S	1

0 S� �
1

4

V
T

X
e;r

Z d3k

�2��3

� Tr�P�
k;r'

e
k � P	

k;r'
	e
k �

�
�k;r�2

e��ek;r; k�

2�k;r
tanh

�ek;r
2T

: (112)

Using Eq. (79), the final result for the pressure p �

	Veff �
T
V !, obtained by putting together Eqs. (110) and

(112), is

p�
1

4

X
e;r

Z d3k

�2��3
Tr�P�

k;r�

�
�ek;r� 2T ln

�
1� exp

�
	
�ek;r
T

��

	
�k;r�

2
e��

e
k;r; k�

2�ek;r
tanh

�ek;r
2T

�
: (113)

In the following, we restrict ourselves to the zero-
temperature case, T � 0. Furthermore, we neglect the
antiparticle gap and thus denote � 
 ��, as above. In
this case, Eq. (113) becomes

p �
1

4

X
r

Z d3k

�2��3
nr

�
��k;r � �	k;r 	

�k;r�2
k;r

2��k;r

�
: (114)

In order to evaluate the integral over the absolute value of
the quark momentum, we assume the gap function to be
constant in a small region around the Fermi surface of size
-13
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2�, �k;r � �0, and zero elsewhere. Moreover, we use the
integrals

Z �

0
dA

� ������������������
A2 ��2

0

q
	

1

2

�2
0������������������

A2 ��2
0

q
�
�

1

2
�

������������������
�2 ��2

0

q

�
1

2
�2 �

1

4
�2

0 �O
�
�4

0

�2

�
;

(115)

and
Z 1

0
dkk2���k0 � �	k0 	 2k� �

1

6
	4; (116)

where the vacuum energy 2k has been subtracted and
�ek0 
 jk	 e	j. Neglecting terms of order O��4

0�, we find

p �
	4

48�2

X
r

nr � �p; (117)

where we denote the difference of the superconducting
phase to that of the normal phase by

�p �
	2

16�2

X
r

nr�
2
r : (118)

As expected from physical intuition and from the theory of
3He cf. Eq. (1), the favored phase is determined by the
largest condensation energy �p, which is proportional to
the sum of the angular averages of the squares of the gap,
weighted with the corresponding degeneracies nr of the

excitation branches. (Note that, since �r �
��������������
h�k;rik̂

q
�0 is

the quadratic mean of the gap, �2
r � h�k;rik̂�

2
0 is the

angular average of the square of the gap, not the square
of the angular average, as the notation might suggest.)

As a special case, one finds for the 2SC phase, counting
Dirac, color, and flavor degrees of freedom,

�p2SC �
	2��2SC

0 �2Nf

2�2 : (119)

This is in accordance with Ref. [31], when one identifies
the pressure with the negative value of the effective poten-
tial at the global minimum.

IV. DISCUSSION OF THE POLAR, PLANAR, A,
AND CSL PHASES

In this section, we use the general results of the previous
sections for a discussion of the physical properties of
certain phases in a spin-one color superconductor. In par-
ticular, we determine the ground state at zero temperature.
We focus on the four ‘‘inert’’ phases presented in Sec. II,
the polar, planar, A, and CSL phases, see Fig. 1.

The common structure of all spin-one phases is given by
the matrix Mk, that determines the color and Dirac struc-
ture of the gap matrix %��K�, Eq. (58). The most general
form of this matrix has been introduced in Eq. (17).
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Specifying the spin-triplet structure /j, we write the matrix
as

M k �
X3
i;j�1

Ji�ij�@k̂j � %?;j�k��: (120)

The first term in angular brackets, proportional to the jth
component of the fermion momentum unit vector k̂j, de-
scribes pairing of quarks with the same chirality, since it
commutes with the chirality projector P r;‘ � �1 � %5�=2.
The second one, proportional to

%?;j�k̂� 
 %j 	 k̂j� � k̂; j � 1; 2; 3; (121)

corresponds to pairing of quarks of opposite chirality, since
commuting this term with the chirality projector flips the
sign of chirality. In the above ansatz for the gap matrix we
allow for a general linear combination of these two terms,
determined by the real coefficients @ and  with

@2 � 2 � 1: (122)

In Refs. [11,19] the special cases �@;� � �1; 0� and
�@;� � �0; 1� were termed longitudinal and transverse
gaps, respectively. We shall also use these terms in the
following. (In Ref. [12], the LL and RR gaps correspond to
the longitudinal and the LR and RL gaps to the transverse
gaps.) The reason why both cases can be studied separately
is that a purely longitudinal gap matrix on the right-hand
side of the gap equation does not induce a transverse gap on
the left-hand side and vice versa. More precisely, inserting
the matrix Mk from Eq. (120) with  � 0 into the anoma-
lous propagator from Eq. (70), and the result into the right-
hand side of the gap equation (56), we realize that the Dirac
structure still commutes with %5 and thus preserves chi-
rality. The analogous argument holds for the transverse
gap, @ � 0. For the case of an equal admixture of longi-
tudinal and transverse gaps, i.e., @ �  � 1=

���
2

p
, let us use

the term mixed gap. For the physical results, we focus
exclusively on the longitudinal, mixed, and transverse
gaps.

We summarize the relevant quantities for the different
phases in Tables I, II, III, and IV. The physically important
results are collected in Tables V, VI, and VII and Fig. 2.

Let us first comment on Tables I, II, III, and IV. For the
planar and A phases, we use the abbreviations

A1=2 
 �@2 	 2�k̂2
1=2 � 2; (123a)

B 
 �@2 	 2�k̂1k̂2; (123b)

Z 
 f@�k̂2%?;1�k̂� 	 k̂1%?;2�k̂��

	 �%?;1�k̂�%?;2�k̂� 	 k̂1k̂2�g: (123c)

The quantities A1=2, B, and Z are diagonal in color space.
But while A1=2 and B are scalars, Z is a nontrivial 4 � 4
matrix in Dirac space. One can verify the relation
-14



TABLE II. Relevant quantities for the planar phase.

Mk � J1�@k̂1 � %?;1�k̂�� � J2�@k̂2 � %?;2�k̂��
L�
k � J2

1A1 � J2
2A2 � fJ1; J2gB� �J1; J2�Z

�k;1 � @2sin2<� 2�1 � cos2<� �n1 � 8�, �k;2 � 0 �n2 � 4�
P�

k;1 � L�
k =�k;1, P�

k;2 � 1 	 L�
k =�k;1

Longitudinal Mixed Transverse

�k;r �nr� sin2< (8), 0 (4) 1 (8), 0 (4) 1 � cos2< (8), 0 (4)
ar 1, 0 1, 0 1, 0
d 6 21=4 9=2
" ln2 	 5=6 0 ln

���
2

p
	 7=12 � �=8

TABLE I. Relevant quantities for the polar phase.

Mk � J3�@k̂3 � %?;3�k̂��
L�
k � J2

3�
2 � �@2 	 2�cos2<�

�k;1 � 2 � �@2 	 2�cos2< �n1 � 8�, �k;2 � 0 �n2 � 4�
P�

k;1 � J2
3 , P�

k;2 � 1 	 J2
3

Longitudinal Mixed Transverse

�k;r �nr� cos2< (8), 0 (4) 1=2 (8), 0 (4) sin2< (8), 0 (4)
ar 1, 0 1, 0 1, 0
d 6 5 9=2
" 	1=3 	 ln

���
2

p
ln2 	 5=6
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Z2 � B2 	 A1A2: (124)

Moreover, in the table for the planar phase, we denote the
anticommutator by f	;	g. The angle <, used in Tables I,
II, and III is the angle between the quark momentum k and
the z axis. The indices a; b � 3 in the second line of
Table IV are color indices.

The specific form of the matrices Mk is obtained by
inserting the respective order parameters � cf. Fig. 1, into
the definition (120). The matrices L�

k are given by the
definition (63). The calculation of their eigenvalues �k;r
and corresponding degeneracies nr is presented in
Appendix B for the planar and A phases. The same method
can be applied to the other phases, see for instance
Refs. [19,29]. After determining the eigenvalues, the cor-
responding projectors are obtained with the help of
TABLE III. Relevant qua

Mk � J3f@�k̂1 �

L�
k �

�k;1=2 � @2sin2<� 2�1 � cos2<� � 2
p

P�
k;1 �

1
2 J

2
3�1 � �i=

�����������������������
A1A2 	 B2

p
�Z�, P

Longitudinal Mixed

�k;r �nr� sin2< (8), 0 (4) 2 (4), 0 (8)
ar 1, 0 1, 0
d 6 21=4
" ln2 	 5=6 ln

���
2

p
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Eq. (64). All these quantities, Mk, L�
k , �k;r, nr, and

P�
k;r, are computed for arbitrary linear combinations of

longitudinal and transverse gaps and are given in the first
four lines of Tables I, II, III, and IV. The last four lines of
these tables are devoted to the special cases of pure longi-
tudinal and transverse gaps and the mixed gap. First, we
present the eigenvalues �k;r with the corresponding degen-
eracies, immediately deduced from the general ones. Then,
we compute the quantities ar, see Eqs. (81), and d, see
Eqs. (84) and (94). The calculation of these quantities is
more or less straightforward, but may turn out to be
lengthy. It involves performing the color and Dirac traces
in the quantities T s

00�k;q� and T s
t �k;q� as well as the

angular integration over k̂, see Eq. (80). For the most
complicated cases, the transverse polar, planar, and A
ntities for the A phase.

ik̂2� � �%?;1�k̂� � i%?;2�k̂��g
J2

3��A1 � A2� � 2iZ�����������������������������������������
@2sin2<� 2cos2< �n1 � n2 � 4�, �k;3 � 0 �n3 � 4�
�
k;2 �

1
2 J

2
3�1 � �i=

�����������������������
A1A2 	 B2

p
�Z�, P�

k;3 � 1 	 J2
3

Transverse

�1 � j cos<j�2 (4), �1 	 j cos<j�2 (4), 0 (4)
1=2 � j cos<j=�1 � cos2<�, 1=2 	 j cos<j=�1 � cos2<�, 0

9=2
ln2 	 1=3
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TABLE IV. Relevant quantities for the CSL phase.

Mk � J � �@k̂� �?�k̂��
�L�

k �ab � �@2 � 22��ab 	 �@k̂b � %?;b�k̂���@k̂a 	 %?;a�k̂��

�k;1=2 �
1
2@

2 � 22 � 1
2@

���������������������
@2 � 82

p
�n1 � n2 � 4�, �k;3 � @2 �n3 � 4�

P�
k;r �

Q3
s�r�L

�
k 	 �k;s�=��k;r 	 �k;s�

Longitudinal Mixed Transverse

�k;r �nr� 1 (8), 0 (4) 2 (4), 1=2 (8) 2 (8), 0 (4)
ar 1, 0 2=3, 1=3 1, 0
d 6 5 9=2
" 0 ln

���������
21=3

p
ln

���
2

p

TABLE V. Gap functions
��������
�k;r

p
�0 in units of the 2SC gap. Figure 2 illustrates this table

schematically.
��������
�k;r

p
�0=�

2SC
0 Longitudinal Mixed Transverse

Polar j cos<je1=3e	6 e	5 j sin<j 1
2 e

5=6e	9=2

Planar j sin<j 1
2 e

5=6e	6 e	21=4
���������������������
1 � cos2<

p
1��
2

p e7=12	�=8e	9=2

A j sin<j 1
2 e

5=6e	6 e	21=4 �1 � j cos<j� 1
2 e

1=3e	9=2

CSL e	6 2�	1�3�=6e	5 e	9=2

TABLE VI. The critical temperature Tc in units of the critical temperature for the 2SC phase.

Tc=T2SC
c Longitudinal Mixed Transverse

Polar e	6 e	5 e	9=2

Planar e	6 e	21=4 e	9=2

A e	6 e	21=4 e	9=2

CSL e	6 e	5 e	9=2

TABLE VII. Zero-temperature pressure �p (condensation energy) in units of the 2SC pres-
sure. The results are illustrated in Fig. 2.

�p=�p2SC Longitudinal Mixed Transverse

Polar 1
3 e

2=3e	12 ’ 0:65e	12 e	10 1
6 e

5=3e	9 ’ 0:88e	9

Planar 1
6 e

5=3e	12 ’ 0:88e	12 e	21=2 2
3 e

7=6	�=4e	9 ’ 0:98e	9

A 1
6 e

5=3e	12 ’ 0:88e	12 1
2 e

	21=2 1
3 e

2=3e	9 ’ 0:65e	9

CSL e	12 3 � 2	4=3e	10 e	9
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phases, we present details of the calculation in
Appendix C. Furthermore, in Appendix D it is shown
that d � d � 6 is a universal result for all longitudinal
phases. A special case is the mixed polar phase, which is
the only case where d turns out to be angular dependent,
d � 3�3 � cos2<�=2. This result has already been obtained
in Refs. [19,29]. However, it has not been realized that d �
5, and not d, enters the value of the gap �0. Finally, the
constant " is straightforwardly obtained by using Eqs. (7)
and (94).

Let us now turn to the physically important results,
Tables V, VI, and VII and Fig. 2. In Table V we present
054016
the (angular-dependent) gap functions for zero temperature
at the Fermi surface, as they occur in the quasiparticle
energies, Eq. (67). They involve the square root of the
eigenvalue �k;r and the factors e	d and e	" , as shown in
the solution of the gap equation cf. Eq. (96). The results
are easily computed using the results of the previous tables.
The magnitude of the gaps are reduced compared to
the gaps in the spin-zero phases by factors of
the order e	6 ’ 2:4 � 10	3 through e	9=2 ’ 1:1 � 10	2.
Consequently, assuming the spin-zero gaps to be of the
order of 10 MeV, the spin-one gaps are of the order of 10–
100 keV.
-16
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The angular structure of the gap functions, given in
Table V, is illustrated in Fig. 2. In this figure, the magnitude
of the gap at the Fermi surface is shown as a function of the
polar angle <. None of the functions depends on the
azimuthal angle ’, i.e., all figures are symmetric with
respect to rotations around the z axis. First note that the
gaps in the CSL phase are isotropic. Nevertheless, there is a
hidden anisotropy also in this phase, since the residual
symmetry is not the group of rotations in real space but
the group of joint rotations in color and real space. Thus,
analogous to the B phase in 3He one might call this phase
‘‘pseudoisotropic.’’ Other analogies to 3He can be found,
particularly in the first column of the figure, representing
the longitudinal gaps. All structures correspond to their
analogues in 3He. This is plausible, because the respective
gap matrices do not involve the nontrivial Dirac part
�?�k̂�, and thus can, in this respect, be considered as the
nonrelativistic limit. Note that the longitudinal polar phase
has a nodal line at the equator of the Fermi sphere, while
the longitudinal planar and A phases have nodal points at
the north and south pole of the Fermi sphere. All longitu-
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dinal phases have one gapped and one ungapped excitation
branch with degeneracies 8 and 4, respectively, cf.
Appendix D. Note that the degeneracies add up to 12, since
the matrix L�

k is a 12 � 12 matrix, involving antiparticle
degrees of freedom. Nevertheless, the physical degenera-
cies of the gapped branches have to be reduced by a factor
2 compared to Fig. 2, since the antiparticle gaps are negli-
gibly small.

All phases shown in the second and third columns of the
figure have no analogues in 3He, because �?�k̂� gives rise
to a nontrivial Dirac structure. The mixed gaps all are
isotropic. The transverse gaps, however, exhibit nontrivial
angular structures. The transverse polar phase has point
nodes, similar to the longitudinal planar and A phases. The
transverse planar phase has an anisotropic gap, however,
the gap vanishes nowhere. The transverse A phase has one
ungapped excitation and two different gapped ones, each
with a nontrivial angular structure. One of these structures
has no nodes but minima at the equator of the Fermi sphere,
while the other has point nodes at the north and the south
pole.
-17
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The critical temperatures, presented in Table VI, are
obtained from Eq. (102). As remarked below that equation,
the absolute value of Tc depends only on the factor e	d.
Therefore, the results of Table VI are easy to interpret. The
constant d assumes the value d � 6 for all longitudinal
gaps, which therefore all have the same transition tempera-
ture, being of the order of 10 keV (again applying �2SC

0 ’
10 MeV). Since the mixed phases have different values for
d, their transition temperatures differ, ranging in the order
30–40 keV. The transverse phases have the largest tran-
sition temperature, Tc ’ 60 keV.

The most important physical results of this paper can be
found in Table VII, and, schematically, in Fig. 2, since they
answer the question of the preferred state in a spin-one
color superconductor at zero temperature. Crucial to this
question is the factor e	" in the gap function, which is
strongly affected by the nontrivial angular structures in the
gap equation, which was not realized in Ref. [29], where a
simple approximation for the angular integral had been
used. The first obvious result, already indicated by the
results of Ref. [12] and independent of the constant " , is
that the pressure of all transverse phases is larger than that
of the mixed phases, which, in turn, is larger than that of
the longitudinal phases. Therefore, the most interesting and
relevant phases are the transverse ones. Nevertheless, let us
mention that in the results for the longitudinal phases we
recover Eq. (2), i.e., the ratio between the condensation
energies of the longitudinal A and CSL phases is identical
to the corresponding one of the A and B phases in 3He. For
the transverse phases, the result cannot be anticipated from
the theory of 3He. We find that the condensation energy of
the phases with nodal lines or points of the gap, i.e., the
polar and A phases, is smaller than that of the phases
without nodes. However, note that the polar phase has a
larger condensation energy than the A phase, although it
has more excitation branches with nodes in the gap func-
tion (eight compared to four). The two phases without
zeros in the gap function, i.e., the planar and CSL phases,
differ only by 2% in their condensation energy. The iso-
tropic transverse CSL phase has the largest condensation
energy.

Note that electric charge neutrality of the system does
not affect the results, since we are considering a one-flavor
system. This, of course, is in contrast to the systems where
quarks of different flavors form Cooper pairs. In these
systems, for instance in the (gapless) 2SC and CFL phases,
charge neutrality plays an important role regarding the
question of the ground state. The effect of the condition
of color charge neutrality for a one-flavor system is less
trivial. In the polar and A phases, Cooper pairs carry color
charge antiblue, i.e., only red and green quarks condense
while the blue quarks remain unpaired. This pattern is
known from the 2SC phase. It leads to a nonvanishing
expectation value of the gluon field A	

8 [32], which ensures
color neutrality of the system. This is equivalent to intro-
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ducing a color chemical potential 	8 [6] which discrim-
inates between the chemical potentials for paired and
unpaired quarks. In the planar phase, Cooper pairs are
formed by red/blue and green/blue quarks, i.e., they carry
color charge antigreen or antired. Also in this case, one
expects the color chemical potential for red and green
quarks to differ from that for the blue quarks because of
the residual color group SU�2�. Consequently, quarks of
different chemical potentials form Cooper pairs. In both
cases, the condition of color neutrality might reduce the
pressure. In contrast, the CSL phase automatically fulfills
color neutrality, since there are equal numbers of Cooper
pairs with colors antired, antigreen, and antiblue.
Therefore, the result that the transverse CSL phase has
the largest pressure is insensitive with respect to electric
and color neutrality conditions.
V. SUMMARY AND OUTLOOK

In this paper, we have investigated the possible color-
superconducting phases in cold and dense quark matter,
where quarks of the same flavor form Cooper pairs, which
leads to Cooper pairs with total spin one. It has been argued
that these phases might be relevant in the interior of
neutron stars, since a mismatch of Fermi surfaces, if too
large, forbids pairing of quarks of different flavors. Since
the structure of the order parameter of the spin-one phases
corresponds to a complex 3 � 3 matrix, a priori a multi-
tude of phases seems to be possible. It has been the main
goal of this paper to pick the order parameter that leads to
the phase with the largest pressure, indicating that it is the
favored spin-one color superconductor. In principle, this
task is comparable to the three-flavor case, where the CFL
phase turns out to be the favored one. However, in that
case, the argument that favors the CFL phase is more or
less obvious and plausible, since it is the only possible
phase in which all quasiparticles attain a gap in their
excitation spectrum. The present paper shows that for the
spin-one phases the argument is more subtle, since, in
particular, it involves the angular structures of the gap
functions. Angular-dependent gap functions are known
from condensed-matter systems, for instance from super-
fluid 3He. We have shown that a certain class of spin-one
phases, named longitudinal phases (where quarks of the
same chirality form Cooper pairs), reproduces some fea-
tures of the phases in 3He, namely, the angular structure
and the relative condensation energies of the several
phases. However, most of the investigated phases, and, in
particular, the preferred transverse phases (where quarks
of opposite chirality form Cooper pairs), have no ana-
logues in 3He.

The specific technical and physical results of the paper
can be summarized as follows. In the systematic classifi-
cation of order parameters, based on group-theoretical
arguments, we have found four phases with uniquely de-
fined order parameter matrices. These phases, the polar,
-18
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planar, A, and CSL phases, all break color and rotational
symmetries. From the theory of 3He we transfer the con-
clusion that these order parameters correspond to the inert
phases, although the different group structure in principle
demands for a more careful investigation of this statement.
Nevertheless, we have picked the above mentioned four
phases for a more detailed discussion. Before evaluating
these phases specifically, we have presented a general
solution of the QCD gap equation. This treatment general-
izes the one presented in Ref. [19]. The main conclusion is
that an angular dependence of the gap function gives rise to
a nontrivial factor e	" in the expression for the zero-
temperature gap. The explicit result of the gap is

�0 � 2~bb00e
	de	"	 exp

�
	

�
2 �g

�
: (125)

It generalizes Eq. (5) by the replacements

" ! " 

h‘q"iq̂
h‘qiq̂

; d ! d 

h‘qdiq̂
h‘qiq̂

: (126)

The quantity ‘q is (half of) the sum of the eigenvalues �k;r
of the matrix L�

k cf. Eq. (78). These eigenvalues contain
the angular structure of the gaps. According to Eq. (95), "
can be determined solely from the quasiparticle spectrum.
The physical meaning of the replacement " ! " can be
illustrated as follows. Consider an isotropic gap function,
�, and an anisotropic one, say j sin<j�, where < is the
angle between the quark momentum and one fixed spatial
axis. One would immediately conclude that the condensa-
tion energy of the former one is larger, since the latter
assumes its maximum value � only for < � �=2, while it
is reduced for all other angles. However, we have found
that the latter one actually is equipped with the above
mentioned factor, i.e., it reads j sin<je	"�. If e	" > 1,
the question of the preferred phase is nontrivial and de-
pends on the special value of " . The general result pre-
sented here reproduces the special cases of one or two
isotropic gaps.

Furthermore, we have computed a general expression
for the critical temperature,

Tc
�0

�
e%

�
e" : (127)

This equation shows that the BCS relation Tc=�0 ’ 0:57 is
not only violated in the cases of a two-gap structure and a
gapless color superconductor. It is also violated in the case
of a single gapped excitation branch if the corresponding
gap is anisotropic. In this case, the ratio between the
critical temperature and the quadratic mean � of the gap
is given by Eq. (103), which is exactly the same result as
for 3He.

Finally, a general expression of the pressure at zero
temperature has been derived starting from the effective
action, which can be obtained from the QCD partition
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function using the CJT formalism. In particular, the pres-
sure contains the condensation energy (density), which is
the difference of the pressure in the superconducting phase
compared to the normal-conducting phase,

�p �
	2

16�2

X
r

nr�
2
r : (128)

Physically, this result is plausible. It is equivalent to count-
ing the gapped branches and weight them with the angular
average of the square of the corresponding gaps. Again, our
general result reproduces the well-known results for the
spin-zero gaps.

These general results for the gap, the critical tempera-
ture, and the pressure have been applied to the above
mentioned four spin-one phases. The genuinely new results
concern all phases with nontrivial angular structure. These
are the longitudinal and transverse polar, planar, and A
phases, while the pseudoisotropic CSL phase already has
been discussed in Refs. [12,19]. It has been shown that
several of the phases exhibit nodal points or lines of the
gap, similar to 3He and several high-Tc superconductors in
condensed-matter physics [33]. The magnitude of the gap
is dominated by the factor e	d which varies from e	6 for
longitudinal gaps to e	9=2 for transverse gaps. These fac-
tors have already been found in Refs. [12,17]. The conse-
quence is that the spin-one gaps are smaller by 2–3 orders
of magnitude than the spin-zero gaps, which renders them
of the order of 10–100 keV. These numbers are not
changed essentially by the factor e	" which, in all cases,
is of order one. Nevertheless, this factor is decisive for the
question of the favored phase, which can be found among
the transverse phases. Since the pressure of all transverse
phases contains the factor e	9 and since the number of the
gapped excitation branches in all transverse phases equals
8, the preferred phase is determined by the specific factors
originating from the angular structure. The result is that the
transverse CSL phase has the largest pressure. This phase
has an isotropic energy gap, contrary to all other transverse
phases. It has been discussed that this result remains un-
changed under the condition of overall color charge
neutrality.

Let us finally add some remarks regarding astrophysical
consequences. As a first result, we note that the existence
of a spin-one color superconductor in the interior of a
neutron star is not ruled out by the temperatures, which,
in the case of old neutron stars, is in the range of keV. In
order to find consequences of a spin-one color-
superconducting core for the observables of the neutron
star, it seems to be very promising to study the interplay of
the superconductor with the magnetic field of the star. In
Refs. [21,22] it has been discussed in detail that the mixed
polar as well as the mixed CSL phase exhibit an electro-
magnetic Meissner effect, contrary to the spin-zero phases.
From these results one concludes that it is very likely that
also the other spin-one phases expel electromagnetic fields,
-19
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although an explicit calculation has not yet been done. For
the transverse CSL phase, this statement is obvious due to
its symmetry breaking pattern. It might be interesting to
investigate whether the angular structure, in particular, the
nodal points or lines, leads to anisotropies regarding exter-
nal magnetic fields, for instance to angular-dependent
penetration depths. Furthermore, external magnetic fields
should be included into the discussion of the favored phase.
As we know from 3He, above a certain threshold for the
external magnetic field, the B phase is no longer the ground
state of the system. Instead, the anisotropic A phase be-
comes favored. Therefore, it remains a physically impor-
tant project for the future to investigate if the CSL phase is
still preferred in the presence of a magnetic field.

Another measurable property of a neutron star which is
likely to be affected by a color-superconducting core is its
temperature, or, more precisely, its cooling curve (tempera-
ture as a function of time) [34]. Recently, it has been
argued, that, unlike a spin-zero color superconductor, a
spin-one color superconductor could explain the observed
cooling curves [35]. The main ingredient of this conclusion
has been the magnitude of the gap, i.e., the keV gap
compared to the MeV gap of the 2SC or CFL phases.
The physical mechanism behind this cooling curve is the
emission of neutrinos, which dominates the cooling of the
star after the first few seconds after its creation. Since one
of the involved processes of neutrino emission is the Urca
process, which requires the breaking of a Cooper pair, it
might be interesting to take into account not only the effect
of the magnitude but also of the nodal structure of the gap.
Moreover, the nodes of the gap function would certainly
affect the specific heat of the system. Note for instance that
in the A phase of 3He (which has the same nodal structure
as the longitudinal A phase in a spin-one color supercon-
ductor), the specific heat depends on temperature accord-
ing to a power law, while in the B phase the temperature
dependence of the specific heat shows an exponential
behavior. Similar effects can be expected for a spin-one
color superconductor and have to be included into a careful
discussion of the cooling behavior of a neutron star.
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APPENDIX A: ORDER PARAMETERS
CORRESPONDING TO RESIDUAL GROUPS

H � U�1� �H0

In this appendix, we evaluate the invariance equa-
tion (25). This means that we determine all possible resid-
ual subgroups of the form H � U�1� �H0 and the
corresponding order parameters, using Eq. (24) as an an-
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satz for the generator for the residual U�1�. The invariance
condition can be written as a system of nine equations,

�
	

a8
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���
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p � 2c
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�11 � ib3�12 � 0; (A1a)
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�
�33 � 0: (A1i)

The corresponding coefficient matrix A exhibits a block
structure and the determinant thus factorizes into four
subdeterminants. Therefore, we have to consider the equa-
tion

0 � detA � detA1 detA2 detA3 detA4; (A2)

where

detA1 �

��
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; (A3b)

detA3 �
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a8���
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p � 2c
�

2
	 b2

3; (A3c)

detA4 �
a8���
3

p � 2c: (A3d)

Now, one can systematically list all possibilities that yield
a zero determinant of the coefficient matrix and thus allow
for a nonzero order parameter.
(1) d
-20
etA1 � 0.
Here we distinguish between the cases (i) where the
two terms in the angular brackets of Eq. (A3a)
cancel each other and (ii) where they separately
vanish.

(i) a8, c arbitrary, b3 � 	a8=�2
���
3

p
� � 2c.

Inserting these conditions for the coefficients
into Eqs. (A1), one obtains for the order
parameter matrix
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� �
1

N

�1 i�1 0
�2 i�2 0
0 0 0

0
@

1
A; (A4)

where the factor 1=N with N � �2j�1j
2 �

2j�2j
2�1=2 accounts for the normalization

(26). In this case, the order parameter con-
tains two independent parameters �1 and �2.
From this form of the order parameter, we
can now determine the group H0 in Eq. (22).
Inserting � into Eq. (21) and using the fact
that the parameters �1, �2 are independent of
each other, one obtains the conditions

a1 � . . . � a7 � b1 � b2 � 0;

1

2
���
3

p a8 � b3 	 2c � 0:
(A5)

Consequently,

H � U�1� �U�1�; (A6)

since a vanishing coefficient in Eq. (A5)
translates to a ‘‘broken dimension’’ of G.
For instance, a1 � 0 means that T1 does not
occur in the generators of H, etc. The dimen-
sions of the residual Lie group can be counted
with the help of the number of the conditions
for the coefficients. Since dimG � dimG1 �
dimG2 � dimG3 � 8 � 3 � 1 � 12, and the
number of conditions in Eqs. (A5) is 10, we
conclude dimH � 2, which is in agreement
with Eq. (A6). Or, in other words, there is an
additional U�1�, i.e., H0 � U�1� in Eq. (22)
because the equation relating the three coef-
ficients a8, b3, c allows for two linearly in-
dependent generators U and V which are
linear combinations of the generators T8, J3,
1. Note that U and V are not uniquely deter-
mined. One possible choice is

U � T8 	
1

2
���
3

p J3; V � 2J3 � 1: (A7)

Different order parameters are obtained from
two subcases:
First, one can impose the additional relation
c � 	a8=�2

���
3

p
� between the two coefficients

that have been arbitrary above. Then, b3 �
	a8

���
3

p
=2. These two conditions yield

� �
1

N

�1 i�1 0
�2 i�2 0
0 0 �3

0
@

1
A; (A8)

where N � �2j�1j
2 � 2j�2j

2 � j�3j
2�1=2. In

this case, Eq. (21) leads to 11 conditions for
054016-21
the coefficients am, bn, c, which leaves a
subgroup

H � U�1�; (A9)

generated by a linear combination of gener-
ators of all three original subgroups G1, G2,
G3,

U � T8 	

���
3

p

2
J3 	

1

2
���
3

p 1: (A10)

Second, one can set one of the coefficients a8,
c to zero. The condition c � 0 does not yield
a new case. But a8 � 0, and consequently
b3 � 2c, has to be treated separately. In this
case, Eqs. (A1) yield

� �
1

N

�1 i�1 0
�2 i�2 0
�3 i�3 0

0
@

1
A; (A11)

where N � �2j�1j
2 � 2j�2j

2 � 2j�3j
2�1=2.

The residual group is given by

H � U�1�; (A12)

generated by

U � 2J3 � 1: (A13)

(ii) c � a8=�4
���
3

p
�, b3 � 0.

Here, one obtains

� �
1

N

�1 �2 �3

�4 �5 �6

0 0 0

0
@

1
A; (A14)

where N � �
P6

i�1 j�ij
2�1=2. Again, the resid-

ual group is one-dimensional,

H � U�1�; (A15)

generated by

U � T8 �
1

4
���
3

p 1: (A16)
(2) d
etA2 � 0.
This determinant vanishes in the following cases:

(i) b3 arbitrary, c � a8=�4
���
3

p
�.

With Eqs. (A1), one obtains

� �
1

N

0 0 �1

0 0 �2

0 0 0

0
@

1
A; (A17)

where N � �j�1j
2 � j�2j

2�1=2. Inserting �
into Eq. (21) yields
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a1 � . . . � a7 � b1 � b2 � 0;

c �
1

4
���
3

p a8:
(A18)

As for the order parameter (A4), the residual
group is given by

H � U�1� �U�1�: (A19)

However, the corresponding generators differ
from those in Eqs. (A7),

U � T8 �
1

4
���
3

p 1; V � J3: (A20)

(ii) b3 arbitrary, a8 � c � 0.
In this case,

� �
1

N

0 0 �1

0 0 �2

0 0 �3

0
@

1
A; (A21)

where N � �j�1j
2 � j�2j

2 � j�3j
2�1=2. The

residual group is

H � U�1�; (A22)

which is a subgroup of the spin group G2 �
SU�2�J, since it is generated by

U � J3: (A23)
(3) d
etA3 � 0.
(i) a8, c arbitrary, b3 � a8=

���
3

p
� 2c.

In this case, we find with Eqs. (A1),

� �
1���
2

p
0 0 0
0 0 0
1 i 0

0
@

1
A: (A24)

This matrix differs from all previously dis-
cussed order parameters in that it is uniquely
determined. It corresponds to the A phase.
Here, as in all cases above, we omitted a
possible phase factor which could multiply
� without violating the normalization.
Inserting � into Eqs. (21) yields the follow-
ing relations:

a4 � . . . � a7 � b1 � b2 � 0;

1���
3

p a8 	 b3 � 2c � 0:
(A25)

Consequently, besides the relation between
a8, b3, and c, there are only six additional
conditions. Thus, the dimension of the resid-
ual group is 12 	 7 � 5. We obtain

H � SU�2� �U�1� �U�1�; (A26)
054016-22
where SU�2� is generated by T1, T2, T3, and
thus is a subgroup of the color gauge group
G1 � SU�3�c. For the generators of the two
U�1�’s one can choose

U � T8 	
1

2
���
3

p 1; V � J3 � 1: (A27)

As in case 1(i), there is a subcase that pro-
duces an additional order parameter. Namely,
if we require the condition c � a8=�4

���
3

p
�,

which yields b3 �
���
3

p
a8=2, we obtain
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�1 i�1 0

0
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1
A; (A28)

where N � �2j�1j
2 � j�2j

2 � j�3j
2�1=2.

From Eqs. (A1) we conclude that all other
coefficients vanish. Consequently,

H � U�1�; (A29)

with the generator

U � T8 �
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3

p

2
J3 �

1

4
���
3

p 1: (A30)

(ii) b3 � 0, c � 	a8=�2
���
3

p
�.

With Eqs. (A1) one obtains

� �
1

N

0 0 0
0 0 0
�1 �2 �3

0
@

1
A; (A31)

where N is defined as in Eq. (A21). From
Eq. (21) we conclude in this case

a4 � . . . � a7 � b1 � b2 � b3 � 0;

c � 	
a8

2
���
3

p :

(A32)

Hence, the residual group is

H � SU�2� �U�1�; (A33)

generated by T1, T2, T3, and

U � T8 	
1

2
���
3

p 1: (A34)
(4) d
etA4 � 0.
There are two cases in which detA4 � 0:

(i) b3 arbitrary, c � 	a8=�2
���
3

p
�.

These relations lead to

� �

0 0 0
0 0 0
0 0 1

0
@

1
A; (A35)
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As in the A phase, Eq. (A24), the order
parameter is uniquely determined. It de-
scribes the polar phase. Inserting the order
parameter of the polar phase into the invari-
ance condition, Eq. (21), yields

a4 � . . . � a7 � b1 � b2 � 0;

c � 	
1

2
���
3

p a8:
(A36)

Therefore, the residual group is

H � SU�2� �U�1� �U�1� (A37)

with the generators T1, T2, T3, and

U � T8 	
1

2
���
3

p 1; V � J3: (A38)

Thus, the symmetry breaking pattern in the
polar phase is similar to that in the A phase cf.
(A27). But while in the A phase both residual
U�1�’s are combinations of the original sym-
metries, in the polar phase, one of them is a
subgroup of G2 � SU�2�J.

(ii) b3 arbitrary, a8 � c � 0.
This case is identical to case 2(ii).
APPENDIX B: EIGENVALUES OF L�
k IN THE

PLANAR AND A PHASES

1. Planar phase

In order to compute the eigenvalues of the matrix L�
k �

L	
k , given in Table II, we use Eq. (124) and the (anti)-

commutation properties of the color matrices �Ji�jk �
	i�ijk to obtain �L�

k �
2 � �A1 � A2�L

�
k . Therefore,

�L�
k �

n � �A1 � A2�
n	1L�

k : (B1)

This simple relation for the nth power of L�
k can be used to

find the roots of the equation

det��	 L�
k � � 0; (B2)

which yield the eigenvalues � of L�
k . Since

det��	 L�
k � 
 exp�Tr ln��	 L�

k ��; (B3)

we consider the trace of the logarithm of �	 L�
k ,

T r ln��	 L�
k � � ln�Tr1� Tr ln

�
1	

L�
k

�

�

� ln�Tr1	
X1
n�1

1

n
�	n Tr�L�

k �
n: (B4)

The second term on the right-hand side can be evaluated
using Eq. (B1). With TrL�

k � 8�A1 � A2� one obtains

det��	 L�
k � � �4��	 �A1 � A2��

8; (B5)

which yields the eigenvalues A1 � A2 and 0 with degener-
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acies 8 and 4, respectively. With the definition (123a), this
confirms the entries for �k;r in Table II.

2. A phase

In order to derive an expression for the nth power of the
matrix L�

k , given in Table III, we note that

�L�
k �

2 � 2�A1 � A2�L�
k 	 ��A1 	 A2�

2 � 4B2�J2
3 ; (B6)

where Eq. (124) has been used. Since A1=2 and B are
scalars and J2

3L
�
k � L�

k , we have

�L�
k �

n � anL�
k � bnJ2

3 ; (B7)

with real coefficients an, bn. Applying Eq. (B6), one
derives the following recursion relations for these coeffi-
cients:

an�1 � 2�A1 � A2�an � bn;

bn�1 � 	��A1 	 A2�
2 � 4B2�an:

(B8)

With the ansatz of a power series, an � pn, one obtains a
quadratic equation for p, which has the two solutions

p1=2 � A1 � A2 � 2
�����������������������
A1A2 	 B2

q
: (B9)

Therefore, an is a linear combination of the nth powers of
these solutions, an � =1pn

1 � =2pn
2 . The coefficients =1,

=2 can be determined from a1 � 1, a2 � 2�A1 � A2�. One
finds

an �
1

4

1�����������������������
A1A2 	 B2

p �pn
1 	 pn

2�;

bn � 	
1

4

�A1 	 A2�
2 � 4B2�����������������������

A1A2 	 B2
p �pn	1

1 	 pn	1
2 �:

(B10)

With TrL�
k � 8�A1 � A2� this yields

det��	 L�
k � � �4��	 p1�

4��	 p2�
4: (B11)

Consequently, both L�
k and L	

k have the eigenvalues 0, p1,
and p2, each with degeneracy 4, which confirms the cor-
responding entries in Table III.

Finally, we consider the projectors P�
k;r corresponding

to the eigenvalues �. With

P�
k;1=2 �

L�
k �L

�
k 	 �2=1�

�1=2��1=2 	 �2=1�
; P�

k;3 � 1	P�
k;1 	P�

k;2;

(B12)

one obtains

P�
k;1 �

1

2
J2

3

�
1 �

i�����������������������
A1A2 	 B2

p Z
�
; (B13a)

P�
k;2 �

1

2
J2

3

�
1 �

i�����������������������
A1A2 	 B2

p Z
�
; (B13b)

P�
k;3 � 1 	 J2

3 : (B13c)
-23
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Since TrZ � Tr�'e
kZ� � 0, Eq. (79) is obviously fulfilled

also in the A phase.

APPENDIX C: TRACES AND ANGULAR
INTEGRALS FOR THE TRANSVERSE PHASES

In this appendix, we present the technical details of the
solution of the gap equation for the transverse polar, planar,
and A phases. The transverse CSL phase is trivial with
respect to the angular structure and has already been dis-
cussed in Ref. [19]. We compute the color and Dirac traces
and perform the k̂ integration of Eq. (80) in order to
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determine the coefficients as and =‘;t introduced in
Eqs. (81). These coefficients yield the constant d cf.
Eq. (84).

Let us define the following traces over Dirac space:

Qmn
	' 
 Tr�%	%?;m�q̂�'	

q %'%?;n�k̂�'�
k �; (C1a)

Rmn
	' 
 Tr�%	%?;m�q̂�%0%5� � q̂'	

q %'%?;n�k̂�'�
k �:

(C1b)

We shall make use of the following results:
Qmn
00 � 	�mn�1 � q̂ � k̂� � k̂mk̂n � q̂mq̂n 	 q̂mk̂nq̂ � k̂� q̂nk̂m; (C2a)

��ij 	 p̂ip̂j�Qmn
ij � 2�	p̂mp̂n � q̂nk̂m 	 q̂ � k̂��mn 	 p̂mp̂n� � p̂m�k̂n 	 q̂n�p̂ � k̂

	 p̂n�k̂m 	 q̂m�p̂ � q̂� ��mn 	 q̂mk̂n�p̂ � q̂ p̂ �k̂�; (C2b)

R12
00 	R21

00 � i�q̂3 � k̂3��1 � q̂ � k̂�; (C2c)

��ij 	 p̂ip̂j��R12
ij 	R21

ij � � 	2if�1 	 �p̂ � k̂�2�q̂3 � �1 	 �p̂ � q̂�2�k̂3 	 �1 	 q̂ � k̂��p̂ � k̂� p̂ � q̂�p̂3g: (C2d)
1. Transverse polar phase

Using the matrix Mk from Table I with �@;� � �0; 1�,
we find

T r�MkM
y
k'�

k � � 4�1 	 k̂2
3�; (C3)

and thus

T 1
00�k;q� �

1

3�1 	 k̂2
3�
�1 � q̂ � k̂	 q̂3k̂3�1 	 q̂ � k̂�

	 k̂2
3 	 q̂2

3�; (C4)

where the color trace Tr�TT
a J3TaJ3� � 	4=3 has been

used. Analogously, we find

T 1
t �k;q� �

2

3�1 	 k̂2
3�
�	q̂3k̂3 � q̂ � k̂� p̂2

3�1 	 q̂ � k̂�

	 p̂3�q̂3 	 k̂3��p̂ � q̂	 p̂ � k̂�

	 �1 	 q̂3k̂3�p̂ � q̂ p̂ �k̂�: (C5)

In order to obtain these results, Eqs. (C2a) and (C2b) with
m � n � 3 have been employed. As expected, the un-
gapped excitation branch does not contribute to the gap
equation, T 2

00�k;q� � T 2
t �k;q� � 0, and thus a1 � 1,

a2 � 0.
Next, the angular integral d
k has to be performed. To

this end, we use the following frame (cf. left diagram in
Fig. 3): The order parameter in the polar phase picks a
special direction in real space. By convention, we choose
this direction to be parallel to the z axis. Now there is
another fixed direction, q̂, which we can choose to be in the
xz plane, q̂ � �sin<; 0; cos<�, where < is the polar angle. In
order to perform the d
k integral, we use a frame with z0
axis parallel to q̂. The original frame can be transformed
into the new one with a rotation R�<� around the y axis,

R�<� �
cos< 0 	 sin<

0 1 0
sin< 0 cos<

0
@

1
A: (C6)

In the new frame, we have q̂0 � �0; 0; 1� and k̂0 �
�sin<0 cos’0; sin<0 sin’0; cos<0�. Therefore, before per-
forming the d
k integral, we write k̂ as

k̂ � R	1�<�k̂0 �

cos< sin<0 cos’0 � sin< cos<0

sin<0 sin’0

	 sin< sin<0 cos’0 � cos< cos<0

0
@

1
A:

(C7)

This new frame is particularly convenient, since the new
polar angle <0 is the angle between q̂ and k̂, cos<0 � q̂ � k̂.
Therefore, the integration over <0 can be transformed into
an integral over p via cos<0 � �k2 � q2 	 p2�=�2kq�,
where p is the modulus of p � k	 q. Note that the
function F‘ on the right-hand side of Eq. (80) does not
depend on the azimuthal angle ’0 but only on p, and the
function Ft only depends on p and <, but not on ’0 either
(neglecting the k̂ dependence in �k;r). Consequently, we
have to multiply T 1

00 and T 1
t , given in Eqs. (C4) and (C5),

respectively, with the factor ‘k=‘q � �1 	 k̂2
3�=�1 	 q̂2

3�,
write the results in terms of the new coordinates and
integrate over ’0. After setting k ’ q ’ 	, which is per-
missible to subleading order, the result yields the coeffi-
cients = in Eq. (81). Then, the result of the p integral is
obtained by Eq. (84), following Ref. [19].

The explicit results of this procedure are as follows.
With
-24
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FIG. 3. Rotation of the coordinate system �x; y; z� ! �x0; y0; z0� for the k̂ integration in the cases of the transverse polar and planar
phases.
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1

2�

Z 2�

0
d’0k̂i � q̂iq̂ � k̂; (C8a)

1

2�

Z 2�

0
d’0k̂2

i � q̂2
i �q̂ � k̂�2 �

1

2
�1 	 q̂2

i ��1 	 �q̂ � k̂�2�;

(C8b)

we obtain

1

2�

Z 2�

0
d’0 ‘k

‘q
T 1

00�k;q� ’
1

2�

Z 2�

0
d’0 ‘k

‘q
T 1

t �k;q�

’
2

3
	

1

3

p2

	2 �
1

24

p4

	4 ;

(C9)

where the approximation k ’ q ’ 	 has been implemented
via the replacements q̂ � k̂ ! 1 	 p2=�2	2�, p̂ � k̂ � 	p̂ �
q̂ ! p=�2	�. Now, we immediately compute d � 9=2, as
listed in Table I.
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2. Transverse planar phase

In this case, we find from Table II

T r�MkM
y
k'�

k � � 4�1 � k̂2
3�: (C10)

Furthermore,

P�
q;1 �

1

1 � q̂2
3

�J2
1�1 	 q̂2

1� � J2
2�1 	 q̂2

2� 	 fJ1; J2gq̂1q̂2

� J3q̂3%0%5� � q̂�; (C11)

where we have applied the identity

%?;1�q̂�%?;2�q̂� 	 q̂1q̂2 � iq̂3%0%5� � q̂: (C12)

With the help of Eqs. (C10) and (C11) and the definitions
(72) and (74), we compute the quantities T s

00�k;q� and
T s

t �k;q�. As in the polar phase, we find T 2
00�k;q� �

T 2
t �k;q� � 0, hence a1 � 1, a2 � 0. For the gapped

branch, s � 1, one obtains after taking the trace over color
space,
T 1
	'�k;q� � 	

�q̂2
1 	 q̂2

3 	 2�Q11
	' � �q̂2

2 	 q̂2
3 	 2�Q22

	' � q̂1q̂2�Q
12
	' �Q21

	'� � iq̂3�R
12
	' 	R21

	'�

6�1 � k̂2
3��1 � q̂2

3�
; (C13)
where the tensors Q and R are defined in Eqs. (C1). In
order to perform the traces over Dirac space, one makes
use of the identities (C2). We do not present the explicit
results for T 1

00�k;q� and T 1
t �k;q� since they are too

lengthy. In order to perform the angular integration, we
proceed in a similar way as discussed above for the trans-
verse polar phase. The difference is that in the planar phase
the order parameter does not point into a special direction,
but is located in the xy plane. Without loss of generality, we
can assume q̂ to be also in the xy plane, q̂ �
�cos’; sin’; 0� (cf. right diagram in Fig. 3). Note that this
choice, in particular q̂3 � 0, immediately shows that the
term proportional to %5 on the right-hand side of Eq. (C11)
yields no contribution to the integral. Again, we rotate the
frame such that the z0 axis is parallel to q̂. This can be done
with two successive rotations R1 and R2�’�: First, we
rotate the original frame by �=2 around the y axis,

R1 �

0 0 	1
0 1 0
1 0 0

0
@

1
A: (C14)

Then, we rotate by ’ around the new x0 axis,
-25
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R2�’� �
1 0 0
0 cos’ 	 sin’
0 sin’ cos’

0
@

1
A: (C15)

As above, in the new frame, q̂0 � �0; 0; 1� and k̂0 �
�sin<0 cos’0; sin<0 sin’0; cos<0�, and hence

k̂ � R	1
1 R	1

2 �’�k̂0

�

	 sin<0 sin’0 sin’� cos<0 cos’

sin<0 sin’0 cos’� cos<0 sin’

	 sin<0 cos’0

0
BB@

1
CCA: (C16)

With ‘k=‘q � �1 � k̂2
3�=�1 � q̂2

3� and the approximation
k ’ q ’ 	, we obtain

1

2�

Z 2�

0
d’0 ‘k

‘q
T 1

00�k;q� ’
1

2�

Z 2�

0
d’0 ‘k

‘q
T 1

t �k;q�

’
2

3
	

1

3

p2

	2 �
1

24

p4

	4 :

(C17)

From these results we conclude d � 9=2.
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3. Transverse A phase

In the transverse A phase, we have
T r�MkM
y
k'�

k � � 4�1 � k̂2
3�: (C18)
The projectors corresponding to the gapped excitations,
P�

q;1=2 in Eqs. (B13), are
P �
q;1=2 �

1

2
J2

3

�
1 �

i
jq̂3j

�%?;1�q̂�%?;2�q̂� 	 q̂1q̂2�

�

�
1

2
J2

3

�
1 �

q̂3

jq̂3j
%0%5� � q̂

�
; (C19)
where Eq. (C12) has been used. Inserting this projector and
the respective quantities from Table III into Eq. (72), one
obtains after taking the trace over color space,
T 1=2
	' �k;q� �

Trf%	�%?;1�q̂� � i%?;2�q̂���1 � q̂3

jq̂3j
%0%5� � q̂�'	

q %'�%?;1�k̂� 	 i%?;2�k̂��'�
k g

6�1 � k̂2
3�

; (C20)
and T 3
	'�k;q� � 0. Again, the results for the quantities

T 1;2
00 �k;q� and T 1;2

t �k;q�, corresponding to the gapped
branches, are complicated functions of k̂ and q̂, and we
do not present their explicit forms.

As in the transverse planar phase, the order parameter
for the transverse A phase points into a direction perpen-
dicular to the z axis. However, in order to perform the
angular integral over ’0, we cannot make use of the same
choice of the frame, because the assumption of q̂ being in
the xy plane, i.e., q̂3 � 0, would lead to a division by zero
according to Eq. (C20). Instead, we allow for the most
general form, q̂ � �sin< cos’; sin< sin’; cos<�. In this
case, the rotation of the original frame into the one with
z0 axis parallel to q̂ is given by
R�<;’� �
cos< cos’ cos< sin’ 	 sin<
	 sin’ cos’ 0

sin< cos’ sin< sin’ cos<

0
@

1
A: (C21)

Consequently, the d
k integral has to be performed with

k̂ � R	1�<; ’�k̂0 �

cos’ cos< sin<0 cos’0 	 sin’ sin<0 sin’0 � cos’ sin< cos<0

sin’ cos< sin<0 cos’0 � cos’ sin<0 sin’0 � sin’ sin< cos<0

	 sin< sin<0 cos’0 � cos< cos<0

0
@

1
A; (C22)

where k̂0 � �sin<0 cos’0; sin<0 sin’0; cos<0� has been employed.
With k ’ q ’ 	 one obtains

1

2�

Z 2�

0
d’0 ‘k

‘q
T 1=2

00 �k;q� ’
1

2�

Z 2�

0
d’0 ‘k

‘q
T 1=2

t �k;q� ’
1

2

�
2

3
	

1

3

p2

	2 �
1

24

p4

	4

��
1 � 2

j cos<j

1 � cos2<

�
: (C23)
The term �2j cos<j=�1 � cos2<� on the right-hand side of
this equation gives rise to a difference between the quan-
tities T 1

00;t�k;q� and T 2
00;t�k;q�. The origin of this differ-

ence is the term proportional to %5 on the right-hand side of
Eq. (C19). As a consequence, one cannot choose the co-
efficients as such that they are constants cf. Eqs. (81). The
transverse A phase is the only phase we consider, in which
these coefficients depend on <, the angle between q̂ and the
-26
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z axis. We find

a1 �
1

2
�

j cos<j

1 � cos2<
; a2 �

1

2
	

j cos<j

1 � cos2<
;

a3 � 0:
(C24)

However, the constant d is identical to all other transverse
phases, d � 9=2.

APPENDIX D: PROVING d � 6 FOR ARBITRARY
LONGITUDINAL GAPS

In this appendix, we prove d � 6 for any order parame-
ter (for any 3 � 3 matrix) � in the case of a longitudinal
gap. The longitudinal case is particularly simple since the
Dirac structure of the matrix Mk is trivial.

Let us start with the matrix

M k � vk � J; (D1)

where vk � �vk;1; vk;2; vk;3� is a 3-vector with

vk;i 

X3
j�1

�ijk̂j; i � 1; 2; 3: (D2)

Then,

�L�
k �ij � v2

k�ij 	 v�
k;jvk;i; (D3)

where v2
k 
 v�

k � vk. Now, with �L�
k �

2 � v2
kL

�
k and

TrL�
k � 8v2

k the eigenvalues of L�
k are easily found mak-

ing use of the method shown in Appendix B. One obtains

�k;1 � v2
k �8-fold�; �k;2 � 0 �4-fold�: (D4)

Consequently, the fact that there is one gapped branch with
degeneracy 8 and one ungapped branch with degeneracy 4
is completely general, i.e., it is true for any order parameter
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in the longitudinal case. The corresponding projectors are
given by

�P�
k;1�ij � �ij 	

v�
k;jvk;i

v2
k

; �P�
k;2�ij �

v�
k;jvk;i

v2
k

: (D5)

This leads to

T 1
00�k;q� �

1

3

vq � v
�
k

v2
k

�1 � q̂ � k̂�;

T 1
t �k;q� �

2

3

vq � v
�
k

v2
k

�1 	 p̂ � q̂ p̂ �k̂�;
(D6)

and T 2
00�k;q� � T 2

t �k;q� � 0, hence a1 � 1, a2 � 0.
The angular integration is done as explained for the trans-
verse A phase in the previous appendix, i.e., the rotation
given by Eq. (C21) and the respective expressions for the
vectors k̂ and q̂ are used.

With ‘k=‘q � �k;1=�q;1 � v2
k=v

2
q we obtain

1

2�

Z 2�

0
d’0 ‘k

‘q

vq � v
�
k

v2
k

� q̂ � k̂; (D7)

where Eq. (C8a) has been used. Therefore, we find with
k ’ q ’ 	,

1

2�

Z 2�

0
d’0 ‘k

‘q
T 1

00�k;q� ’
1

2�

Z 2�

0
d’0 ‘k

‘q
T 1

t �k;q�

’
2

3
	

1

2

p2

	2 �
1

12

p4

	4 ; (D8)

which, making use of the definitions (81) and (84), proves
the universal result d � 6 for longitudinal gaps. Since
d � d when d is constant cf. definition (94), we conclude
d � 6.
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