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Evaluating the gapless color-flavor locked phase
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In neutral cold quark matter that is sufficiently dense that the strange quark mass Ms is unimportant,
all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all
fermionic quasiparticles have a gap. We recently argued that the next phase down in density (as a
function of decreasing quark chemical potential � or increasing strange quark mass Ms) is the new
‘‘gapless CFL’’ (gCFL) phase in which only seven quasiparticles have a gap, while there are gapless
quasiparticles described by two dispersion relations at three momenta. There is a continuous quantum
phase transition from CFL to gCFL quark matter at M2

s=� � 2�, with � the gap parameter. Gapless
CFL, like CFL, leaves unbroken a linear combination ~Q of electric and color charges, but it is a ~Q
conductor with gapless ~Q-charged quasiparticles and a nonzero electron density. In this paper, we
evaluate the gapless CFL phase, in several senses. We present the details underlying our earlier work
which showed how this phase arises. We display all nine quasiparticle dispersion relations in full detail.
Using a general pairing ansatz that only neglects effects that are known to be small, we perform a
comparison of the free energies of the gCFL, CFL, two-flavor (2SC), gapless 2SC, and two-flavor up-
strange phases. We conclude that as density drops, making the CFL phase less favored, the gCFL phase
is the next spatially uniform quark matter phase to occur. A mixed phase made of colored components
would have lower free energy if color were a global symmetry, but in QCD such a mixed phase is
penalized severely.
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I. INTRODUCTION

Because QCD is asymptotically free, we expect that
matter at sufficiently high densities and/or temperatures
will consist of almost-free quarks and gluons. However,
over the past few years it has become clear that there is a
rich and varied landscape of phases lying between these
asymptotic regimes and the familiar hadronic phase at
low temperature and density. In the region where the
temperature is low and the density is high enough that
hadrons are crushed into quark matter, there is a whole
family of ‘‘color superconducting’’ phases [1]. The es-
sence of color superconductivity is quark pairing, driven
by the BCS mechanism, which operates when there exists
an attractive interaction between fermions at a Fermi
surface. The QCD quark-quark interaction is strong, and
is attractive in many channels, so we expect cold dense
quark matter to generically exhibit color superconductiv-
ity. Moreover, quarks, unlike electrons, have color and
flavor as well as spin degrees of freedom, so many differ-
ent patterns of pairing are possible. This leads us to
expect a rich phase structure in matter beyond nuclear
density.

Color superconducting quark matter may well occur
naturally in the universe, in the cold dense cores of com-
pact (‘‘neutron’’) stars, where densities are above nuclear
density, and temperatures are of the order of tens of keV.
In future low-energy heavy ion colliders, such as the
Compressed Baryonic Matter Experiment at the future
05=71(5)=054009(19)$23.00 054009
accelerator facility at GSI Darmstadt [2], it could con-
ceivably be possible to create color superconducting quark
matter (or perhaps hot dense matter that is in the quark-
gluon plasma phase but which exhibits fluctuations that
are precursors of color superconductivity [3]).

It is by now well established that at asymptotic den-
sities, where the up, down and strange quarks can be
treated on an equal footing and the potentially disruptive
strange quark mass can be neglected, quark matter is in
the color-flavor locked (CFL) phase, in which quarks of
all three colors and all three flavors form Cooper pairs
[4]. However, just as the Relativistic Heavy Ion Collider at
Brookhaven National Laboratory is teaching us about the
properties of the hot but far from asymptotically hot
quark-gluon plasma [5], we should expect that if neutron
star cores are made of color superconducting quark mat-
ter, they may not reach the densities at which CFL pre-
dominates. In this paper, as in Ref. [6], we ask what form
of color superconducting quark matter is the ‘‘next phase
down in density.’’ That is, we imagine beginning in the
CFL phase at asymptotic density, reducing the density,
and assume that CFL pairing is disrupted by the heavi-
ness of the strange quark before color superconducting
quark matter is superseded by the hadronic phase. Upon
making this assumption, we ask what form the disruption
takes and what are the properties of the resulting phase of
dense, but not asymptotically dense, matter.

To describe quark matter as may exist in the cores of
compact stars, we consider quark chemical potentials �
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of order 500 MeV at most. The strange quark mass Ms
must then be included: it is expected to be density depen-
dent, lying between the current mass �100 MeV and the
vacuum constituent quark mass �500 MeV. In bulk mat-
ter, as is relevant for compact stars where we are inter-
ested in kilometer-scale volumes, we must furthermore
require electromagnetic and color neutrality [7,8] (possi-
bly via mixing of oppositely charged phases) and allow
for equilibration under the weak interaction. All these
factors work to pull apart the Fermi momenta of the
different quark species, imposing an energy cost on the
cross-species pairing that characterizes color-flavor lock-
ing. At the highest densities we expect CFL pairing, but
as the density decreases the combination of nonzero Ms
and the constraints of neutrality put greater and greater
stress on cross-species pairing, and we expect transitions
to other pairing patterns.

In this paper we study the first of these transitions, and
work exclusively at zero temperature, which is a reason-
able approximation in the interior of a neutron star that is
054009
more than a few seconds old. (Nonzero temperature adds
interesting new facets to the analysis [9], that we shall
further analyze elsewhere.) We argue that the CFL phase
will first give way, via a continuous phase transition, to a
new phase with gapless fermions that we call gapless CFL
(gCFL). The transition occurs when M2

s=� ’ 2�, where
� is the pairing gap parameter. The gCFL phase has
gapless modes and nonzero electron density. Although it
has the same symmetries as the CFL phase, gapless CFL
matter is a conductor whereas CFL quark matter is a
dielectric insulator.

A. Summary of the CFL phase

To set the stage for our analysis, we briefly summarize
the properties of the CFL phase [4]. If we set all three
quark masses to zero, the diquark condensate in the CFL
phase spontaneously breaks the full symmetry group of
QCD,
�SU�3�color� � SU�3�L � SU�3�R|�������������{z�������������}
	�U�1�Q�

� U�1�B ! SU�3�C�L�R|��������{z��������}
	�U�1� ~Q�

� Z2; (1)
where SU�3�color and electromagnetism U�1�Q are gauged,
and the unbroken SU�3�c�L�R subgroup consists of flavor
rotations of the left and right quarks with equal and
opposite color rotations, and contains an unbroken
gauged ‘‘rotated electromagnetism’’ U�1� ~Q [4,10]. The
CFL phase has the largest possible unbroken symmetry
consistent with diquark condensation, achieved by having
all nine quarks participate equally in the pairing, and this
gives the maximal pairing free energy benefit. Not sur-
prisingly, ab initio calculations valid at asymptotic den-
sities confirm that the CFL phase is the ground state of
QCD in the high density limit [1,11].

In the limit of three massless quarks described above
there are 17 broken symmetry generators in the CFL
phase, 8 of which become longitudinal components of
massive gauge bosons and 9 of which remain as
Goldstone bosons. However, in the real world there are
two light quark flavors, the up (u) and down (d), with
masses & 10 MeV, and a medium-weight flavor, the
strange (s) quark, with mass * 100 MeV. The strange
quark therefore plays a crucial role in the phases of QCD.
In the presence of quark masses, the eight Goldstone
bosons coming from the breaking of chiral symmetries
acquire masses [1,4,12], and furthermore the CFL con-
densate may rotate within the manifold describing these
mesons [13]. In analyzing the response of the CFL phase
to the strange quark mass, we shall be concerned with the
dispersion relations describing its fermionic quasipar-
ticles, as they signal an instability corresponding to the
disruption of pairing itself. In this analysis, we shall
neglect flavor rotations of the CFL condensate, as the
direct effects of such meson condensates on the stability
or instability with respect to pair breaking is minimal.
(Meson condensates would play an important indirect
role if they were charged, but the favored meson con-
densation channels are neutral assuming that the neutrino
density is negligible [13].) The ninth Goldstone boson,
that corresponding to the spontaneous breaking of U�1�B
and hence to superfluidity, remains massless even once
quark masses are taken into account and therefore plays a
crucial role in many low-energy properties of the CFL
phase, for example, in its viscosity [14], specific heat,
neutrino opacity, and neutrino emissivity at low tempera-
tures [15].

B. (Gapless) CFL pairing ansatz

To study the response of the CFL phase to a non-
negligible strange quark mass, we use the pairing ansatz
[4]

h �aC�5 
�
b i � �1���1�ab1 � �2���2�ab2 � �3���3�ab3:

(2)

Here  �a is a quark of color � � �r; g; b� and flavor a �
�u; d; s�; the condensate is a Lorentz scalar, antisymmet-
ric in Dirac indices, antisymmetric in color (the channel
with the strongest attraction between quarks), and con-
sequently antisymmetric in flavor. The gap parameters
�1, �2 and �3 describe down-strange, up-strange
and up-down Cooper pairs, respectively. They describe
a 9 � 9 matrix in color-flavor space that, in the basis
-2
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�ru; gd; bs; rd; gu; rs; bu; gs; bd�, takes the form
� �

0 �3 �2 0 0 0 0 0 0
�3 0 �1 0 0 0 0 0 0
�2 �1 0 0 0 0 0 0 0
0 0 0 0 ��3 0 0 0 0
0 0 0 ��3 0 0 0 0 0
0 0 0 0 0 0 ��2 0 0
0 0 0 0 0 ��2 0 0 0
0 0 0 0 0 0 0 0 ��1

0 0 0 0 0 0 0 ��1 0

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
: (3)
We see that �rd; gu�, �bu; rs� and �gs; bd� quarks pair with
gap parameters �1, �2 and �3 respectively, while the
�ru; gd; bs� quarks pair among each other involving all
the �’s. The most important physics that we are leaving
out by making this ansatz is pairing in which the Cooper
pairs are symmetric in color, and therefore also in flavor.
Diquark condensates of this form break no new symme-
tries, and therefore must arise in the CFL phase [4,16].
However because the QCD interaction is repulsive be-
tween quarks that are symmetric in color these conden-
sates are numerically insignificant [4,9,16]. To find which
phases occur in realistic quark matter, we must take into
account the strange quark mass and equilibration under
the weak interaction, and impose neutrality under the
color and electromagnetic gauge symmetries. The argu-
ments that favor (2) are unaffected by these considera-
tions, but there is no reason for the gap parameters to be
equal once Ms � 0. Much previous work [8,16–20] com-
pared color-flavor-locked (CFL) phase (favored in the
limit Ms ! 0 or �! 1), the two-flavor (2SC) phase
(favored in the limit Ms ! 1), and unpaired quark mat-
ter. We gave a model-independent argument in Ref. [6],
however, that when the CFL phase is disrupted, it cannot
give way to either 2SC or unpaired quark matter. Above a
criticalM2

s=�, we found that the CFL phase is replaced by
a new gapless CFL (gCFL) phase, not by 2SC quark
matter. The defining (and eponymous) properties of the
gapless CFL phase arise in its dispersion relations, not in
its pattern of gap parameters. However, it is useful for
orientation to list the patterns of gap parameters for all
the phases we shall discuss:

�3 ’ �2 � �1 � �CFL CFL (4)

�3 > 0; �1 � �2 � 0 �gapless�2SC (5)

�2 > 0; �1 � �3 � 0 2SCus (6)

�3 > �2 > �1 > 0 gapless CFL: (7)

The two-flavor up-strange (2SCus) phase, which was
introduced in Ref. [8], must be analyzed for completeness
because it and the 2SC phase have the same free energy
when Ms � 0, and to leading order in Ms if their respec-
054009
tive nonzero gap parameters have the same value [8].
However, we shall show in Sec. III E that the 2SCus phase
is never favored, and never gapless.

In the remainder of this paper we construct the free
energies and solve the gap equations for the CFL, gapless
CFL, 2SC, gapless 2SC [21,22], and 2SCus phases in an
Nambu–Jona-Lasinio (NJL) model. We show in detail
how the CFL ! gCFL transition occurs and detail the
properties of the gCFL phase. The gCFL phase is a ~Q
conductor with a nonzero electron density, and these
electrons and the gapless quark quasiparticles make the
low-energy effective theory of the gapless CFL phase
and, consequently, its astrophysical properties qualita-
tively different from that of the CFL phase, even though
its U�1� symmetries are the same. Both gapless quasipar-
ticles have quadratic dispersion relations at the quantum
critical point. For values of M2

s=� above the quantum
critical point, one branch has conventional linear disper-
sion relations while the other branch remains quadratic,
up to tiny corrections. In order to evaluate the range of
M2
s=� above the critical point within which the gCFL

phase remains favored, we construct the 2SC and 2SCus
phases and reproduce the 2SC ! g2SC transition of
Refs. [21,22], here in neutral 3-flavor quark matter, and
show that in this context gCFL has a lower free energy
than (g)2SC(us). We do not complete the study of mixed
phase alternatives, but we do eliminate all the most
straightforward possibilities everywhere in the gCFL
regime in M2

s=� except very close to its upper end, where
gCFL, g2SC and unpaired quark matter have comparable
free energies. At such large values ofM2

s=�, however, our
pairing ansatz is not sufficiently general to describe all
the possibilities, as we discuss in the concluding section
of this paper. Before turning to the model analysis, which
we detail in Sec. II and whose results we present in
Sec. III, we conclude this introduction with a model-
independent discussion of color and electric neutrality
in QCD and with the model-independent argument of
Ref. [6].

C. Color and electric neutrality in QCD

Stable bulk matter must be neutral under all gauged
charges, whether they are spontaneously broken or not.
-3
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Otherwise, the net charge density would create large
electric fields, making the energy nonextensive. In the
case of the electromagnetic gauge symmetry, this simply
requires zero charge density. In the case of the color
gauge symmetry, the formal requirement is that a chunk
of quark matter should be a color singlet, i.e., its wave
function should be invariant under a general color gauge
transformation. Color neutrality, meaning equality in the
numbers of red, green, and blue quarks, is a less stringent
constraint. A color singlet state is also color neutral,
whereas the opposite is not necessarily true. However it
has been shown that the projection of a color-neutral state
onto a color singlet state costs no extra free energy in the
thermodynamic limit [23]. Analyzing the consequences
of the requirement of color neutrality therefore suffices
for our purposes.

In nature, electric and color neutrality are enforced by
the dynamics of the electromagnetic and QCD gauge
fields, whose zeroth components serve as chemical poten-
tials which take on values that enforce neutrality [8,24].
Since we are limiting ourselves to color neutrality and not
color singletness we have to consider only the U�1� �
U�1� diagonal subgroup of the color gauge group. This
subgroup is generated by the diagonal generators T3 �

diag�12 ;�
1
2 ; 0� and T8 � diag�13 ;

1
3 ;�

2
3� of the SU�3� gauge

group. Electromagnetism is generated by Q �

diag�23 ;�
1
3 ;�

1
3� in flavor space �u; d; s�. The zeroth com-

ponents of the respective gauge fields serve as chemical
potentials�3 and�8 coupled to T3 and T8 charges, and as
an electrostatic potential �e coupled to the negative elec-
tric charge Q. (We make this last choice so that �e > 0
corresponds to a density of electrons, not positrons.) The
dynamics of the gauge potentials then require that the
charge densities, which are the derivatives of the free
energy with respect to the chemical potentials, must
vanish:

Q �
@�
@�e

� 0; T3 � �
@�
@�3

� 0;

T8 � �
@�
@�8

� 0:
(8)

A generic diquark condensate will be neither electri-
cally nor color neutral, so it will spontaneously break
these gauge symmetries. However it may be neutral under
a linear combination of electromagnetism and color.
Indeed, any condensate of the form (2) is neutral with
respect to the rotated electromagnetism generated by ~Q �

Q� T3 �
1
2T8, so U�1� ~Q is never broken. This means that

the corresponding gauge boson (the ‘‘ ~Q photon’’), a mix-
ture of the ordinary photon and one of the gluons, re-
mains massless. In both the CFL and gCFL phases, the
rest of the SU�3�color � U�1�Q gauge group is spontane-
ously broken, meaning that the combination of the photon
054009
and gluons orthogonal to the ~Q photon, and all the other
gluons, become massive by the Higgs mechanism.

In an NJL model with fermions but no gauge fields, as
we shall employ after pursuing model-independent argu-
ments as far as we can, one has to introduce the chemical
potentials �e, �3 and �8 ‘‘by hand’’ in order to enforce
color and electric neutrality in the same way that gauge
field dynamics does in QCD [8].

D. Where does CFL pairing become unstable?

We conclude this introduction with the model-
independent argument of Ref. [6] that determines the
density at which the CFL phase becomes unstable. The
gap equations for the three �’s will turn out to be
coupled, but we can, for example, analyze the effect of
a specified �1 on the gs and bd quarks without reference
to the other quarks. It turns out that gs-bd pairing is the
first to break down, and this instability is what catalyzes
the CFL ! gCFL transition.

The leading effect of Ms is like a shift in the chemical
potential of the strange quarks, so the bd and gs quarks
feel ‘‘effective chemical potentials’’ �eff

bd � �� 2
3�8 and

�eff
gs � �� 1

3�8 �
M2
s

2� . In the CFL phase, color neutrality
requires �8 � �M2

s=2�, a result that is model indepen-
dent to leading order in M2

s=�2 [8,19]. This result can be
understood as arising because CFL pairing itself enforces
equality in the number of rd and gu quarks, in the number
of bu and rs quarks, and in the number of gs and bd
quarks [25], but in order to achieve neutrality the number
density of �rd; gu� quarks must be reduced relative to that
of the �bu; rs� and �gs; bd� quarks, and this requires a
negative �8. Because of the negative �8, �eff

bd ��eff
gs �

M2
s=� in the CFL phase. The CFL phase will be stable as

long as the pairing makes it energetically favorable to
maintain equality of the bd and gs Fermi momenta,
despite their differing effective chemical potentials [25].
It becomes unstable when the energy gained from turning
a gs quark near the common Fermi momentum into a bd
quark (namely, M2

s=�) exceeds the cost in lost pairing
energy 2�1. Hence, the CFL phase is stable when [6]

M2
s

�
< 2�CFL: (9)

For lower density, i.e., larger M2
s=�, the CFL phase must

be replaced by some new phase with unpaired bd quarks.
One might naively expect this phase to be either neutral
unpaired quark matter or neutral 2SC quark matter, but it
is known that these have higher free energy than CFL for
M2
s=� < 4�CFL [8,19], so this new phase, which must

have the same free energy as CFL at the critical M2
s=� �

2�CFL, must be something else. In view of its properties
that are discussed in detail in Sec. III, we call it gapless
CFL (gCFL).
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II. MODEL AND APPROXIMATIONS

We are interested in physics at nonasymptotic densities,
and therefore cannot use weak-coupling methods. We are
interested in physics at zero temperature and high density,
at which the fermion sign problem is acute and the current
methods of lattice QCD can therefore not be employed.
For this reason, we need to introduce a model in which
the interaction between quarks is simplified, while still
respecting the symmetries of QCD, and in which the
effects of Ms, �e, �3 and �8 on CFL pairing can all be
investigated. The natural choice is to model the interac-
tions between quarks using a pointlike four-fermion in-
teraction, which we shall take to have the quantum
numbers of single-gluon exchange. We work in
Euclidean space. Our partition function Z and free en-
ergy density � are then defined by

Z � e��V� � N
Z

D   D exp
Z

L�x�d4x
�
;

L�x� �   �i@6 � �6 �M� � 3
8G�

  "A� ��   "�A �;

(10)

where the fields live in a box of volume V and Euclidean
time length � � 1=T, and �6 � ��4. The interaction
vertex has the color, flavor, and spin structure of the
QCD gluon-quark coupling, "A� � ��TA. The mass ma-
trix M � diag�0; 0;Ms� in flavor space. The chemical
potential � is a diagonal color-flavor matrix depending
on �, �e, �3 and �8. The normalization of the four-
fermion coupling 3G=8 is as in the first paper in Ref. [1].
In real QCD the ultraviolet modes decouple because of
asymptotic freedom, but in the NJL model we have to add
this feature by hand, through a UV momentum cutoff #
in the momentum integrals. The model therefore has two
parameters, the four-fermion coupling G and the three-
momentum cutoff #, but it is more useful to parametrize
the interaction in terms of a physical quantity, namely, the
CFL gap parameter at Ms � 0 at a reference chemical
potential that we shall take to be 500 MeV. We shall call
this reference gap �0.We have checked that if we vary the
cutoff # by 20% while simultaneously varying the bare
coupling G so as to keep �0 fixed, then our results change
by a few percent at most. All the results that we present
are for # � 800 MeV and for a coupling strength chosen
such that �0 � 25 MeV.

We now sketch the derivation of the free energy �
obtained from the Lagrangian (10) upon making the
ansatz (2) for the diquark condensate and working in
the mean-field approximation. More sophisticated deriva-
tions exist in the literature [1], but since we are assuming
that the only condensate is of the form (2) we simply Fierz
transform the interaction to yield products of terms that
appear in (2), and discard all the other terms that arise in
the Fierz transformed interaction which would anyway
vanish after making the mean-field approximation. This
054009
yields

L int �
G
4

X
"

�   P"   T�� T  P" �; (11)

where

�P"�
��
ij � C�5���"�ij" �no sum over "� (12)

and  P" � �4P
y
"�4. The index " labels the pairing chan-

nel: " � 1, 2, and 3 correspond to d-s pairing, u-s pair-
ing, and u-d pairing. The overall coefficient in (11) is the
product of the 3G=8 in (10) and factors of �1, 4=3, and
�1=2 from Fierz transformations in Dirac, color and
flavor space, respectively.

Next, for each channel we introduce a complex scalar
field %" whose expectation value will be �", the strength
of the pairing in the " channel, and bosonize the four-
fermion interaction via a Hubbard-Stratonovich transfor-
mation. The interaction Lagrangian then becomes

L int �
1

2
�   P"   T�%" �

1

2
%�
"� T  P" � �

%�
"%"

G
; (13)

where here and henceforth repeated "’s are summed and
where it is understood that we are now integrating over
the %" as well as  and   in the functional integral (10).
The functional integral is now quadratic in the quark
fields, so the fermionic function integral can be per-
formed. Since there are terms in the action that can violate
quark number, we must use Nambu-Gorkov spinors

( �


 �p�

  T��p�

�
;  ( � �   �p�  T��p��; (14)

and the full Lagrange density becomes

L �
1

2
 (
S�1

T
( �

%�
"%"

G
; (15)

where the inverse full propagator is

S�1�p� �
p6 ��6 �M P"%"

 P"%�
" �p6 ��6 �M�T

" #
: (16)

We now integrate over the fermionic fields to obtain the
effective potential for the scalar fields. We also make
the mean-field approximation, neglecting fluctuations in
the scalar fields and setting %" to its expectation value
�". The result is

Z �


Det

S�1�i!n; p�
T

�
1=2

exp
�
�
V
T

�"�"

G

�
(17)

and hence

� � �T
X
n

Z d3p

�2*�3
1

2
Tr log


1

T
S�1�i!n; p�

�
�

�"�"

G
;

(18)

where !n � �2n� 1�*T are the Matsubara frequencies.
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We do the Matsubara summation using the identity

T
X
n

ln
�
!2
n � "2

T2

�
� j"j � 2T ln�1 � e�j"j=T�: (19)

In the limit of zero temperature only the first term from
the right-hand side survives, leading to the result

� � �
1

4*2

Z #

0
p2

X
j

j"j�p�jdp

�
1

G
��2

1 � �2
2 � �2

3� �
�4
e

12*2 ; (20)

where the electron contribution is included, and "j�p� are
the dispersion relations of the quasiquarks, i.e., the values
of the energy at which the propagator diverges:

detS�1�i"j�p�; p� � 0: (21)

S�1 is a 72 � 72 matrix, but because what occurs in the
identity (19) is the combination !2 � "2, the sum in (20)
is understood to run over 36 roots. (This can be seen as
removing the doubling of degrees of freedom introduced
by using the Nambu-Gorkov formalism.) In the specific
cases where our general ansatz becomes 2SC or CFL
pairing, our expression (20) for the free energy, and, in
particular, the coefficient of the �2 term, agrees with the
expressions obtained by other methods [1] that do not
involve Fierz transformations.

In our numerical evaluation, we omit the antiparticle
modes: exciting them costs of order 2� and they therefore
do not play an important role in the physics. This is
discussed in more detail below. Neglecting the antiparti-
cles leaves us with only 18 roots of (21) to sum over in
(20). These correspond to nine different dispersion rela-
tions describing the quasiparticles of differing color and
flavor, each doubly degenerate due to spin.

A stable, neutral phase must minimize the free energy
(20) with respect to variation of the three gap parameters
�1, �2, �3, meaning it must satisfy

@�
@�1

� 0;
@�
@�2

� 0;
@�
@�3

� 0; (22)

and it must satisfy the three neutrality conditions (8). The
gap Eqs. (22) and neutrality Eqs. (8) form a system of six
coupled integral equations with unknowns the three gap
parameters and �3, �8 and �e.

We must now find the dispersion relations "j�p�, deter-
mined by the zeros of detS�1 which is specified by (21),
(16) with %" replaced by �", and (12), then evaluate the
free energy � using (20), and then solve the six simulta-
neous Eqs. (8) and (22). Before carrying this calculation
through, however, we first make a number of simplifying
approximations within the expression for detS�1.
(1) W
e neglect contributions to the condensate that are
symmetric in color and flavor: these are known to
be present and small [4,9,16].
054009
(2) W
-6
e treat the up and down quarks as massless, which
is a legitimate approximation in the high density
regime, and we treat the constituent strange quark
mass Ms as a parameter, rather than solving for an
h  ssi condensate. The latter approximation should be
improved upon, along the lines of Ref. [19].
(3) W
e incorporate Ms only via its leading effect,
namely, as a shift �M2

s=2� in the chemical poten-
tial for the strange quarks. This approximation
neglects the difference between the strange and
light quark Fermi velocities, whose effects are
known in other contexts to be small [26]. The
approximation is controlled by the smallness of
M2
s=�2. For this reason, in all the results that we

plot we shall work at � � 500 MeV and choose a
coupling such that the CFL gap at Ms � 0 is �0 �
25 MeV. We expect the CFL pairing to break down
near M2

s � 2��0, and choosing �0 � �=20 en-
sures that this occurs where M2

s=�2 � 1=10, mean-
ing that we can trust our results well into the
gapless CFL phase [27]. If, instead, we choose a
larger �0, as in Ref. [9], we find that our results
become markedly more # dependent, which is a
good diagnostic for model dependence.
(4) W
e work to leading nontrivial order in �1, �2, �3,
�e, �3 and �8. This should be a good approxima-
tion, as all these quantities are small compared
to �.
(5) W
e neglect the antiparticles. This simplifies the
numerics by discarding physically unimportant
degrees of freedom, but one must be cautious
with this truncation. It introduces cutoff-dependent
terms in our free energy, including some that de-
pend on the chemical potential and therefore in-
troduce cutoff dependence in the corresponding
charges. For our purposes this is not important,
first because we always present free energy
differences relative to neutral unpaired quark mat-
ter, and second because we only care about electric
and color charges that have zero trace over all
fermion species, and for these the cutoff depen-
dence cancels out. However, a nontraceless charge
like baryon number would have an incorrect
cutoff-dependent value when calculated in this
approximation.
(6) W
e ignore meson condensation in both the CFL and
gCFL phases.
We expect that these approximations have quantitative
effects, but none precludes a qualitative understanding of
the new phase we shall describe.

We now give the explicit expression for detS�1, after
having implemented the approximations above. As de-
scribed in Sec. I B we use a color-flavor basis in which the
gap matrix (3) is conveniently block diagonal. Since the
chemical potential and mass are diagonal in color and
flavor, the full inverse propagator (16) is then also block
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diagonal in color-flavor space. This means we can break
the determinant in Eq. (21) into four more manageable
pieces:

detS�1�p0; p� � �Dru
gd
bs

Drd
gu
Drs

bu
Dgs

bd
�2: (23)

We find that the 2 � 2 determinants are

Drd
gu
� 16�4���rd � p� ip0���gu � p� ip0� � �2

3�

� ���rd � p� ip0���gu � p� ip0� � �2
3�;

Drs
bu
� 16�4���rs � p� ip0���bu � p� ip0� � �2

2�

� ���rs � p� ip0���bu � p� ip0� � �2
2�;

Dgs
bd
� 16�4���bd � p� ip0���gs � p� ip0� � �2

1�

� ���bd � p� ip0���gs � p� ip0� � �2
1�;

(24)

and the 3 � 3 determinant is

Dru
gd
bs

� a�2��6�b�de� �2
1��cf� �2

1� � cdf�2
2 � d�2

1�
2
2

� def�2
3 � f�2

1�
2
3� � �2��6f�2

3�de�
2
2 � 4�2

1�
2
2

� ef�2
3� � c�d�4

2 � f�2
2�

2
3� � b�e�2

1�
2
3

� c��2
1�

2
2 � de�2

2 � ef�2
3��g (25)

where for compactness we assign

a � �ru � p� ip0; b � ��ru � p� ip0;

c � �gd � p� ip0; d � ��gd � p� ip0;

e � �bs � p� ip0; f � ��bs � p� ip0

(26)

and where we have dropped the superscript on the ‘‘ef-
fective quark chemical potentials,’’ given by

�eff
ru � �� 2

3�e �
1
2�3 �

1
3�8;

�eff
gd � �� 1

3�e �
1
2�3 �

1
3�8;

�eff
bs � �� 1

3�e �
2
3�8 �M2

s=�2��;

�eff
rd � �� 1

3�e �
1
2�3 �

1
3�8;

�eff
gu � �� 2

3�e �
1
2�3 �

1
3�8;

�eff
rs � �� 1

3�e �
1
2�3 �

1
3�8 �M2

s=�2��;

�eff
bu � �� 2

3�e �
2
3�8;

�eff
gs � �� 1

3�e �
1
2�3 �

1
3�8 �M2

s=�2��;

�eff
bd � �� 1

3�e �
2
3�8:

(27)

These expressions explicitly show how we treat the
strange quark mass as a shift in the chemical potential
of the strange quarks. In evaluating these determinants,
we have extensively used the identity

det
�
A B
C D

�
� det�A� det�D� CA�1B�

for the determinant of a block matrix.
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The numerical task is now explicit. We find the quasi-
particle dispersion relations "�p� by finding the zeros of
(23), viewed as a polynomial in p0. We then perform the
integral in (20) numerically, and obtain �. We evaluate
the partial derivatives of the free energy required in the
neutrality conditions (8) and the gap Eqs. (22) numeri-
cally as finite differences, with differences 0.1 MeV in the
relevant chemical potential or gap parameter.

As a check, we have also done the calculation of � and
its partial derivatives by evaluating both the p and p0

integrals numerically, never writing the latter as a
Matsubara sum. In this alternative calculation, we were
able to evaluate the partial derivatives in (8) and (22)
analytically.

The � that we obtain is cutoff dependent, but its
partial derivatives (8) and (22) are insensitive to varia-
tions in # in the sense described above, namely, as long as
the coupling is changed to keep �0 fixed upon variation in
#, and as long as # is kept well above�. Furthermore, we
are only ever interested in free energy differences be-
tween phases. When we evaluate the differences between
the � for unpaired, (g)CFL, and (g)2SC quark matter, we
find that all such free energy differences are insensitive to
the cutoff, as they should be since these differences all
reflect physics near the Fermi surfaces. Because we are
only interested in free energy differences, in evaluating
� we make the numerical integral better behaved by
subtracting the appropriate expression for neutral un-
paired quark matter within the integrand.

The solutions of the system of gap and neutrality
equations depend on three parameters: �, Ms and �0.
Our purpose is to understand the effect of Ms on CFL
pairing, and these effects are controlled by the relative
size of M2

s=� and the gap parameters �i, whose overall
magnitude is set by �0. It is therefore better to think of
the three parameters in the problem as �, M2

s=� and �0.
In compact stars, � increases and Ms presumably de-
creases, meaning that M2

s=� decreases as one approaches
the center of the star. For simplicity, we set the overall
energy scale in our calculation by fixing � � 500 MeV,
which is reasonable for the center of a neutron star, and
vary Ms in order to vary M2

s=�. We have confirmed that
as long as we choose a �0 that is small enough that the
transition (9) occurs where M2

s=�2 corrections are under
control, this transition occurs very close to M2

s=� � 2�,
where � is gap parameter on the CFL side of the tran-
sition. The authors of Ref. [9] have confirmed that this
result continues to be valid even for �0 as large as
100 MeV, where the approximations are not as well con-
trolled. We quote results only for �0 � 25 MeV, which is
within the plausible range of values that �0 may take in
nature [1] and for which our calculation is clearly under
control. Although we have obtained our results by vary-
ing Ms at fixed �, we typically quote results in terms of
the important combination M2

s=�.
-7
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FIG. 2 (color online). Chemical potentials�e,�3 and �8 as a
function of M2

s=� in the CFL/gCFL phase for the same
parameters as in Fig. 1. The effects of electrons on the free
energy have been included in the calculation, as will be dis-
cussed in more detail below. We see that the gapless CFL phase
has �e > 0, meaning that it has a nonzero density of electrons.
Perhaps the most physically relevant order parameter for the
CFL/gCFL phase transition is the electron number density
ne ��3

e.
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FIG. 1 (color online). Gap parameters �3, �2, and �1 as a
function of M2

s=� for � � 500 MeV, in a model where �0 �
25 MeV (see text). At M2

s=� � 47:1 MeV (vertical dotted line)
there is a continuous phase transition between the CFL phase
and a phase that we shall identify below as the gapless CFL
phase. We find gapless CFL phase solutions up to M2

s=� �
144 MeV. But, we shall see in Fig. 3 that above M2

s=� �
130 MeV (which we denote here with a vertical dashed-dotted
line) unpaired quark matter has a lower free energy than the
gapless CFL phase.
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III. RESULTS

A. Domain where gCFL is favored

In Figs. 1 and 2, we show the gap parameters and
chemical potentials as a function of M2

s=�, for �0 �
25 MeV. Figure 3 shows the free energy. We see a con-
tinuous phase transition occurring at a criticalMc

s that, in
our model calculation with � � 500 MeV, lies between
Ms � 153 MeV and Ms � 154 MeV, i.e., at �M2

s=��c �
47:1 MeV. This agrees exceedingly well with the ex-
pected value 2� from Eq. (9), since on the CFL side of
the transition �1 � �2 � �3 � 23:5 MeV. For M2

s=� <
�M2

s=��c, the CFL phase is favored, with all three gaps
equal to each other within our approximations. If we
improve upon our approximate treatment of Ms, we ex-
pect �1 � �2 with these gap parameters slightly smaller
than �3, because �1 and �2 describe pairing between
quarks with differing Fermi velocities, an effect of Ms
that we are neglecting because it is known to be small in
other contexts [26]. (Indeed, it proves to be a few percent
effect also in the present context [27].)

For M2
s=� < �M2

s=��c our results agree with the
small-Ms expansion of Ref. [8], where �3 � �e � 0 and
�8 � �M2

s=�2�� and the free energy is

�neutral
CFL

� �
3�4

4*2 �
3M2

s�
2

4*2 �
1 � 12 log�Ms=2��

32*2 M4
s

�
3�2�2

*2

� � neutral
unpaired

�
3M4

s � 48�2�2

16*2 : (28)

As the density decreases (i.e., as M2
s=� increases)

through the CFL ! gCFL transition, the gap parameters
split apart, with �3 increasing slightly and �2 and �1

dropping significantly, with �1 dropping faster than �2.
We have verified that M2

s=�� is the relevant dimen-
sionless quantity by changing the coupling strength, i.e.,
picking a different �0 (gap at Ms � 0). The critical point
�M2

s=��c changes as predicted by (9). Furthermore we
checked the robustness of our results upon variation of the
cutoff #, observing changes of only a few percent in the
value of M2

s=�� at the transition upon changing # by up
to 20% while keeping �0 fixed.

Figure 3 confirms that the slope of the free energy is
continuous at the CFL/gCFL transition, indicating that it
is not first order. We have not determined the order of the
transition, because evaluating higher derivatives of the
free energy with respect to M2

s=� is not numerically
feasible. The most physically relevant order parameter
is the electron density ne ��3

e, which is of course equal
in magnitude to the electric charge density of the quarks.
This increases above the transition like ne � ��M2

s=�� �
�M2

s=��c�3, suggesting a fourth order phase transition.
This argument neglects the small electron mass and,
furthermore, it neglects the fact that, as we shall see in
054009
Eq. (33), there is also a nonzero number density of neutral
unpaired quark quasiparticles that grows like ��M2

s=�� �
�M2

s=��c�
1=2. Although because these unpaired quasipar-

ticles are neutral they are less important phenomenolog-
-8
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nations of bu and rs quarks (solid lines). There are gapless
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which are the boundaries of the blocking [33,34] or ‘‘breached
pairing’’ [31] region wherein there are unpaired bd quarks and
no gs quarks. One bu-rs mode is gapless at p � 475:6 MeV
with an almost exactly quadratic dispersion relation that we
shall discuss below.
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dashed-dotted line).

EVALUATING THE GAPLESS COLOR-FLAVOR LOCKED PHASE PHYSICAL REVIEW D 71, 054009 (2005)
ically, this does suggest that the transition is second order,
as in the analysis of Ref. [28].

If we had used a simpler ansatz in which the gap
parameters were constrained to one value � � �1 �
�2 � �3, then the CFL phase would have remained arti-
ficially stable above the critical value of M2

s=�. From
Eq. (28), its free energy would be higher than that of
gCFL, rising to equality with that of unpaired quark
matter at a value of M2

s=� around 90 MeV. (The precise
value depends on how the common � changes with Ms.)

Of course, we actually used the more general ansatz (2)
that allows the �’s to differ. We found that the CFL phase
becomes unstable and is replaced by the gCFL phase, in
which the gaps have very different values, so the simpli-
fied analysis of Ref. [8] does not apply. The free energy of
the gCFL phase crosses that of unpaired quark matter at
M2
s=� � 130 MeV. This phase transition is first order,

and we are able to follow the metastable gCFL phase up
to M2

s=� � 144 MeV where, as we shall explain below, it
ceases to be a solution.

B. The nature of the gCFL phase

Up to this point we have not justified our use of the
name ‘‘gapless CFL’’ for the new phase that replaces the
CFL phase at M2

s=� * 2�. We have given model-
independent arguments to expect that it will contain
unpaired bd quarks, but now we describe its properties
in more detail. In calculating the free energy (20) of the
Cooper-paired quark matter we automatically obtain the
054009
quasiquark dispersion relations (21), so we can see what
gapless modes exist. These modes are important because,
at the temperatures T & keV characteristic of neutron
stars, only the lightest modes will contribute to transport
properties.

In Fig. 4 we show the dispersion relations for the rs-bu
and gs-bd 2 � 2 blocks in the quasiquark propagator, at
M2
s=� � 80 MeV. We see immediately that there are

gapless modes in both blocks, justifying our name for
this phase. Before moving on to a detailed discussion of
the physical properties of the gCFL phase, we should note
that the phenomenon of gapless superconductivity is well
known, at least theoretically. It was first suggested by
Sarma [29] who worked in a context much like our
gs-bd block in isolation, and found that the gapless super-
conducting phase is never stable. Alford, Berges and
Rajagopal found a metastable gapless color superconduct-
ing phase in Ref. [30], but this phase was neither electri-
cally nor color neutral. The key observation was made by
Shovkovy and Huang [21], who discovered that when the
constraints of electric and color neutrality are imposed on
the 2SC phase in two-flavor QCD, there are regions of
parameter space where a gapless color superconducting
phase is stable. Following their nomenclature (they de-
scribed a ‘‘gapless 2SC phase’’) we refer to the phase that
we find above Mc

s as the ‘‘gapless color-flavor locked
phase’’ [6].
-9
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Gapless two-flavor color superconductivity was also
studied in Ref. [31], building upon prior work done in a
cold atom context [32]. These authors analyzed pairing
between a heavy and a light quark, akin to gs and bd, in
the case in which the gs quarks are nonrelativistic. They
find that a gapless phase (they describe the blocking
region as a region in which pairing is ‘‘breached’’) is
stable if the relative density of the two species is held
fixed.

Note that in our three-flavor calculation, both the gap
Eqs. (22) and the neutrality conditions (8) couple all nine
quarks. Although the single particle dispersion relations
can be analyzed for the gs and bd quarks in isolation, and
are qualitatively similar to those obtained in Refs. [21,31]
in a two-flavor setting, the implications of neutrality are
more subtle in our three-flavor context as we shall explain
below.

Each of the dispersion relations in Figs. 4 and 5 de-
scribes an excitation with well-defined ~Q, although the
sign of ~Q changes at momenta where the dispersion
relation is gapless. Beginning with an example with no
gap, the upper solid curve in Fig. 4 describes excitations
that are linear combinations of rs particles and bu holes,
both with ~Q � �1. The lower dashed curve in Fig. 4 has
clearly visible momenta pbd1 and pbd2 where it is gapless, so
we use this as an example of ‘‘sign change’’ even though it
describes ~Q � 0 quasiparticles: to the left of pbd1 , it
describes gs holes with a very small admixture of bd
particles; to the right of pbd2 , it describes bd particles
with a very small admixture of gs holes; but, between pbd1
and pbd2 it describes excitations that are superpositions of
bd holes and gs particles.
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curve). These five quark quasiparticles all have gaps throughout
the CFL and gCFL phases.
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In the CFL phase, once we take into account the
explicit symmetry breaking introduced by the strange
quark mass and electromagnetism, the unbroken symme-
try is reduced from the diagonal SU�3�L�R�c to U�1� ~Q �

U�1� [12]. The last U�1� corresponds to ‘‘color � flavor
hypercharge’’ and may be spontaneously broken by meson
condensation [13]. The gapless CFL phase has the same
symmetry as the CFL phase, and it will therefore be
interesting to investigate the possibility of meson con-
densation in the gCFL phase. The effective theory for the
Goldstone bosons alone will have the same form as in the
CFL phase, albeit with new contributions to their masses
coming from the differences between the values of the
three �2

i . And, furthermore, the gapless quasiparticles
must be included in the low-energy effective theory.

1. Dispersion relations, gapless modes, and neutrality

As will soon become clear, the 3 � 3 block in the
pairing pattern (3) plays a minor role: its quasiparticles
are always gapped, so we mainly discuss the three 2 � 2
blocks. In general, when two species of massless quarks
undergo s-wave pairing with gap parameter �, the dis-
persion relations of the two resulting quasiparticles are

E�p� � j/��
��������������������������������
�p�  ��2 � �2

q
j; (29)

where the individual chemical potentials of the quarks
are  �� /�. As long as the chemical potentials pulling
the two species apart are not too strong, Cooper pairing
occurs at all momenta:

p airing criterion: j/�j< �: (30)

However when this condition is violated there are gapless
(E � 0) modes at momenta

pgapless �  ��
����������������������
/�2 � �2

q
(31)

and there is no pairing in the ‘‘blocking’’ or ‘‘breached
pairing’’ region between these momenta [21,31–34]. (The
identification of the boundaries of a blocking region with
locations in momentum space where a dispersion relation
is gapless is discussed with considerable care in Ref. [34],
which considers a more complicated setting in which
rotational symmetry is spontaneously broken and the
blocking regions are not spherically symmetric. Such
blocking regions were analyzed previously in Ref. [33].)
The pairing criterion (30) can be interpreted as saying
that the free energy cost 2� of breaking a Cooper pair of
two quarks a and b is greater than the free energy 2/�
gained by emptying the a state and filling the b state
(assuming that /� pushes the energy of the a quark up
and the b quark down) [25]. In the blocking region, we
find unpaired b quarks and no a quarks.

We wish now to apply these ideas to the 2 � 2 pairing
blocks in three-flavor quark matter, first in the CFL phase.
-10
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As described above, neutrality is imposed via chemical
potentials �e;�3; �8, and in the CFL phase the leading
effect of the strange quark mass is an additional effective
chemical potential �M2

s=2� for the strange quarks. The
splittings of the various pairs are then as given in the
middle column of Table I.

Electrons will play a crucial role in understanding the
gCFL phase, but it is fruitful initially to consider matter
consisting only of quarks, which we can do by sending the
electron mass to infinity. In the absence of electrons, at
each M2

s=� there is a plateau in the free energy of neutral
CFL (or gCFL) solutions: if we vary the chemical po-
tential that couples to ~Q charge,

� ~Q � �4
9��e ��3 �

1
2�8�; (32)

while keeping constant the gap parameters �i and the two
orthogonal combinations of chemical potentials, then
over a range of � ~Q the free energy does not change and
we have a family of neutral stable solutions to the gap
equations. This indicates that, in the absence of electrons,
both the CFL and gCFL phases are ~Q insulators. On this
plateau, all ~Q-charged quasiparticles remain gapped: (30)
is obeyed for the �rd; gu� and �rs; bu� 2 � 2 quark pairing
blocks. At the edges of the plateau, some ~Q-charged
quasiparticles become gapless, the material ceases to be
~Q neutral, @�=@� ~Q � 0, and the free energy is no longer
independent of changes in � ~Q. The range of � ~Q that
defines the plateau is therefore the band gap for the
CFL/gCFL insulator. In Fig. 6 we show the unpairing
lines for each 2 � 2 quark pairing block. The rd-gu line
and the rs-bu line bound the plateau region. Although the
vertical axis is labeled ‘‘�e,’’ it actually corresponds to
variation in � ~Q, since we varied ��e;�3; �8� by a mul-
tiple of �1; 1; 12�. In the CFL phase, this corresponds to
keeping �3 � �e and �8 �

1
2 ��e �M2

s=�� while vary-
ing �e.
TABLE I. Chemical potential splittings for the 2 � 2 pairing
blocks. (/�eff and  �, which is not tabulated, are defined in
each row such that the effective chemical potentials of the two
quarks that pair are  �� /�eff). The middle column gives
/�eff for general values of the chemical potentials �e, �3

and �8. In the last column, it is understood that as �e is varied,
�3 and �8 ‘‘follow it’’ in such a way that varying �e corre-
sponds to varying � ~Q, tracking degenerate ~Q-neutral solutions
for electronless CFL quark matter.

/�eff in
Quark pair /�eff electronless CFL

rd-gu 1
2 ��e ��3� �e

rs-bu 1
2 ��e �

1
2�3 ��8 �

1
2M

2
s=�� �e �

1
2M

2
s=�

gs-bd 1
2 �

1
2�3 ��8 �

1
2M

2
s=�� M2

s=2�
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We see that (g)CFL matter exists in a wedge, between
the rd-gu-unpairing line and the rs-bu-unpairing line.
From Table I we can see that the bd-gs-unpairing line is
vertical because the bd and gs quasiparticles are ~Q neu-
tral, so their splitting depends only on M2

s=� and not on
�e. This unpairing line has a different character than the
other two. Rather than bounding the band gap within
which solutions are found, it separates the CFL and
gCFL phases. CFL is stable only up to a critical value
of M2

s=�, where the gs-bd pairs break.
At the lower (rs-bu-unpairing) line,� ~Q is large enough

that the bu and rs quarks, which have ~Q � �1 and ~Q �
�1 respectively and which pair with gap parameter �2,
no longer pair completely: it is energetically favorable to
create a new blocking region of unpaired bu quarks. At
this ~Q-electrostatic potential, the CFL ~Q insulator breaks
down, unpaired bu quarks with ~Q � �1 are created, the
free energy is no longer � ~Q independent, and in fact the
neutrality conditions and gap equations are no longer
satisfied.

At the upper (rd-gu-unpairing) line, � ~Q is so low that
the rd and gu quarks, which have ~Q � �1 and ~Q � �1
respectively and which pair with gap parameter �3, no
longer pair completely, and it is energetically favorable to
create a new blocking region of unpaired rd quarks, and
once again no solution is found.

At M2
s=� � 143 MeV, which is so large that the gap-

less CFL phase is anyway already metastable with respect
0 25 50 75 100 125 150
M

2
S/µ [MeV]

-20

0µ nil  gniriapnu ub-sr
gs-bd unpairing line

FIG. 6 (color online). Unpairing lines for the same parame-
ters as used in Fig. 1. If electrons are neglected, then the upper
and lower curves bound the region of �e where neutral solu-
tions to the gap equations are found. These solutions are all ~Q
insulators. Taking electrons into account, the correct solution is
the dashed line: in the CFL phase �e � 0, while the gCFL
phase corresponds to values of �e below but very close to the
rs-bu-unpairing line. gCFL is a ~Q conductor both because of
the nonzero electron density and because of the ungapped
~Q-charged rs-bu quasiparticles.

-11



MARK ALFORD, CHRIS KOUVARIS, AND KRISHNA RAJAGOPAL PHYSICAL REVIEW D 71, 054009 (2005)
to unpaired quark matter, the two boundaries cross,
meaning that no gapless CFL solution can be found.

So, in the absence of electrons, we can find stable
solutions of the gap and neutrality equations everywhere
between the rs-bu and rd-gu curves in Fig. 6. To the left
of the gs-bd-unpairing line this is the CFL phase, a ~Q
insulator with no gapless quasiquark modes. To the right
of that line we have the gCFL phase, again a ~Q insulator,
in which all ~Q-charged modes are gapped, but there are
~Q � 0 gapless quasiparticles.

We now restore the electrons, setting their mass to zero.
In the CFL region, the system is forced to�e � 0 (dashed
line in Fig. 6) [25]. However, at the transition point to
gCFL, where the gs-bd pairs break, we find that the
neutrality requirement forces us over the line where
rs-bu pairs also begin to break. The result is that as
M2
s=� increases further, the system maintains neutrality

by staying close to the rs-bu-unpairing line, where there is
a narrow blocking region in which there are unpaired bu
quarks. Their charge is cancelled by a small density of
electrons. We analyze this quantitatively below.

We see that real-world gCFL quark matter is a conduc-
tor of ~Q charge, since it has gapless ~Q-charged quark
modes, as well as electrons. The rd and gu quarks, which
are insensitive to the strange quark mass, remain robustly
paired and the ~Q-neutral bd and gs quarks develop a large
blocking region as the system moves far beyond their
unpairing line. The neutrality requirement naturally
keeps the system close to the rs-bu-unpairing line, fol-
lowing the dashed line in Fig. 6, so these quarks have a
very narrow blocking region and an almost quadratic
dispersion relation (see below). Although U�1� ~Q is unbro-
ken in the gapless CFL phase, the presence of electrons
and unpaired bu quarks makes this phase a ~Q conductor.
This is in contrast to the CFL phase, which is a ~Q
insulator with no gapless quasiquarks and no electrons.

The gapless quark quasiparticles occur in the gs-bd
and rs-bu sectors. Since these will have a dramatic effect
on transport properties, we now discuss them in greater
depth.

2. The gs-bd sector

In a typical part of the gCFL phase space, the ~Q-neutral
gs-bd sector is well past its unpairing line, and there is a
large blocking region between momenta pbd1 and pbd2 at
which there are gapless excitations, as shown in Fig. 4. In
the blocking region pbd1 < p< pbd2 there are bd quarks
but no gs quarks, and thus no pairing. We have confirmed
this by direct evaluation of the difference between the
number density of bd and gs quarks, showing this to be
equal to the volume of the blocking region in momentum
space.

Note that even though there is no pairing in the ground
state in the blocking region, the dispersion relations are
054009
not trivial. Because the states obtained via the two differ-
ent single particle excitations that are possible (adding a
gs quark or removing a bd quark) mix via the �1 con-
densate, the two dispersion relations exhibit an ‘‘avoided
crossing’’ between pbd1 and pbd2 . If we neglect the mixing
among the excitations introduced by �1, the gapless ex-
citations just above (below) pbd2 are bd quarks (holes) and
those just above (below) pbd1 are gs quarks (holes).

It may seem coincidental that the value of M2
s=� at

which the CFL phase becomes gapless is the same as the
value at which �1 and �2 separate in Fig. 1. Although we
do not see a profound reason for this, it is certainly not a
coincidence. The CFL ! gCFL transition is triggered by
the instability of the CFL phase that occurs when a gs-bd
quasiparticle dispersion relation goes gapless, indicating
the instability towards gs-bd unpairing and the opening
up of a blocking region in momentum space, filled with
unpaired bd quarks and with no gs-bd pairing. Con-
sequently, one of the terms in the �1 gap equation—
that corresponding to the gs-bd block—is reduced in
magnitude because its integrand vanishes within the
blocking region. This reduction in the support of the �1

gap equation integrand causes �1 to drop.
The ‘‘thickness’’ of the bd blocking region can be

considered an order parameter for gCFL: for M2
s=� be-

low the critical value there is no blocking region. Just
above the critical value we can use the results of Table I
and (31) to show that

pbd2 � pbd1 � �1=2
1


M2
s

�
�

�Mc
s �

2

�

�
1=2

� �Ms �Mc
s �

1=2;

(33)

typical behavior for a second order phase transition.
Because we are analyzing a zero temperature quantum
phase transition, the long wavelength physics at the criti-
cal point is four-dimensional rather than three-
dimensional as at a finite temperature transition.

3. The rs-bu sector

As discussed above, the gCFL phase remains neutral by
crossing the rs-bu-unpairing line, and developing enough
unpaired bu quarks to cancel the ~Q charge of the elec-
trons. The electrons contribute ���4

e=12*2� to the free
energy, so ~Q neutrality can be maintained as long as

ne �
�3
e

3*2 � nbu �
�pbu2 �3 � �pbu1 �3

3*2 ; (34)

where pbu1 and pbu2 bound the blocking region of unpaired
bu quarks. The condition (34) implies that

�pbu2 � pbu1 � �
�3
e

3  p2 ; (35)

where  p is the average of pbu1 and pbu2 . At M2
s=� �

80 MeV, where �e � 14:6 MeV at the lower curve in
Fig. 6, this implies �pbu2 � pbu1 � � 0:0046 MeV. Indeed,
-12
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in Fig. 4 the separation between pbu1 and pbu2 is invisible,
and the dispersion relation appears to be quadratic about a
single gapless point. To resolve the separation between pbu1
and pbu2 , we did calculations assuming 200 and 500 ‘‘fla-
vors’’ of massless electrons. In these cases, �pbu2 � pbu1 � �
1 and �3 MeV, in very good agreement with the above
argument. Returning to our world with its single electron
species, because �pbu2 � pbu1 � is so small, the value of �e

at the true ~Q-neutral solution is very close to that given by
the lower curve in Fig. 6. And, the gaps are very close to
those found in a calculation done in the absence of
electrons.

From Eq. (29), the maximum in the quasiparticle
energy between the two gapless momenta is Emax �
j/�� �j, so from (31) we can express this in terms of
the width of the blocking region: 4�j/�j � ��Emax �
�p2 � p1�

2. For the rs-bu quarks, the blocking region is
always very narrow, so Emax � �pbu2 � pbu1 �2=�8�2�
which from (35) is a small fraction of an electron volt
at M2

s=� � 80 MeV. Thus, at any astrophysically rele-
vant temperature, the rs-bu dispersion relation can be
treated as quadratic about a single momentum at which it
is gapless. Indeed, even at M2

s=� � 130 MeV where the
gapless CFL phase ceases to be the ground state, �e �
40:3 MeV, �pbu2 � pbu1 � � 0:1 MeV and the peak of the
dispersion relation between pbu1 and pbu2 is at about 50 eV.
The requirement of ~Q neutrality naturally forces this
dispersion relation to be very close to quadratic, without
requiring fine tuning to a critical point.

4. The rd-gu sector and the 3 � 3 ru-gd-bs block

In Fig. 5 we show the dispersion relations for the
quasiparticles in the rd-gu sector. One of these becomes
gapless at the upper boundary of the wedge in Fig. 6, but
we have seen that in the presence of electrons, the neutral
gapless CFL solution is never near this upper boundary.
Therefore, these dispersion relations are always gapped,
as in the figure. In Fig. 5 we also show the dispersion
relations for the three quasiparticles from the 3 � 3 block.
These quasiparticles carry zero ~Q charge and they always
have nonzero gap. Their smallest gap becomes very small
near the rightmost tip of the gCFL wedge region in Fig. 6,
but is always greater than 1 MeV in the region in which
gCFL is favored.

C. The gCFL free energy function

In the previous subsection, we have used the dispersion
relations to delineate the unpairing lines which bound the
ranges in � ~Q where, in the absence of electrons,
~Q-insulator solutions are to be found and which separate
the CFL and gCFL phases. Here, we sketch the behavior
of the free energy � in the vicinity of solutions to the gap
and neutrality equations, and see how this behavior
changes at the unpairing lines.
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In Fig. 7 we study the free energy in the vicinity of a
gapless CFL solution not far above the CFL ! gCFL
transition. We have neglected electrons in making this
plot; the change from including them would be invisible
on the scale of the plot. We plot the free energy upon
variation of gap parameters while keeping �’s fixed
(dashed curves in Fig. 7), and we also plot the ‘‘neutral
free energy’’ (solid curves) obtained by varying gap
parameters about the solution while solving the neutrality
conditions anew for each value of the gap parameters. We
see that the solution is a minimum of the neutral free
energy, confirming that we have succeeded in finding a
stable neutral solution. However, the solution is not at a
minimum of the free energy upon variation of the gap
parameters while keeping �’s fixed.

We see in the top panel of Fig. 7 that the solution is
found at a local maximum of the dashed curve describing
variation of �1 at fixed �’s. Shovkovy and Huang de-
scribed similar behavior in the gapless 2SC case in
Refs. [21,22], and suggested that this is a characteristic
of gapless superconductivity. We find this not to be the
case: deep in the gCFL phase, at M2

s=� � 80 MeV rather
than the M2

s=� � 51:2 MeV of Fig. 7, we find that the
gCFL solution is a local minimum of both the dashed and
the solid curves in the analogue of the top panel of Fig. 7.
That is, we find an onset of the behavior seen in the top
panel of Fig. 7 as we cross the CFL ! gCFL transition,
namely, the gs-bd-unpairing line: as a gs-bd blocking
region begins to open up, the solution goes from being a
local minimum of the dashed curve to being a local
maximum. However, we find that the dashed curve does
not persist in this shape as the gs-bd blocking region
expands. The onset of gaplessness is characterized by a
dashed curve as in the top panel of Fig. 7, but gaplessness
itself need not be.

In the middle panel of Fig. 7, we find that the solution is
at a point of inflection with respect to variation of �2 at
fixed �’s. We find that the gCFL solutions at all values of
M2
s=� above �M2

s=��c are at points of inflection of
this sort. This arises because a gCFL solution is forced
by the neutrality constraint to be very close to the
bu-rs-unpairing line. In Fig. 8 we replot the middle panel
of Fig. 7 after increasing �e by 2 MeV while varying �3

and �8 so that only � ~Q changes. This means that we have
taken a 2 MeV step upwards in Fig. 6, away from the
bu-rs-unpairing line. And, we see that the solution is now
a minimum with respect to variation of �2 at fixed �’s.
The point of inflection has resolved itself into a mini-
mum and a maximum, with the solution at the minimum.
Thus, the point of inflection in the dashed curve does
indeed occur at the bu-rs-unpairing line.

Note that at M2
s=� � 80 MeV, once we have taken an

upward step away from the bu-rs-unpairing line in Fig. 6,
obtaining the analogue of Fig. 8, the gapless CFL phase
solution is now a local minimum of both the dashed and
-13



16 17 18 19 20 21 22 23 24 25 26
∆1[MeV]

-0.4

-0.2

0

0.2

0.4

F
re

e 
E

ne
rg

y 
[1

06 M
eV

]
16 17 18 19 20 21 22 23 24 25 26

∆2[MeV]

-0.4

-0.2

0

0.2

0.4

F
re

e 
E

ne
rg

y 
[1

06 M
eV

]

16 17 18 19 20 21 22 23 24 25 26
∆3[MeV]

0

0.2

0.4

-0.2

-0.4

F
re

e 
E

ne
rg

y 
[1

06 M
eV

]

FIG. 7 (color online). These figures show the free energy � in the vicinity of the gapless CFL solution for M2
s=� � 51:2 MeV. In

each panel, the dashed curve is obtained by varying one of the gap parameters (�1 in the top panel, �2 in the middle, �3 in the
bottom) while keeping the other two gap parameters and the chemical potentials �e, �3 and �8 fixed. The free energies are
measured relative to that of the solution. The solid curve in each panel depicts the ‘‘neutral free energy,’’ obtained by varying one
gap parameter, keeping the other gap parameters fixed, and solving the neutrality conditions anew for each point on the solid curve.
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the solid curves for variation in the �1, �2 and �3

directions.
If we take a step in the ‘‘wrong direction’’ in Fig. 6,

downwards from the bu-rs-unpairing line, the point of
inflection in the middle panel of Fig. 7 vanishes and the
dashed curve becomes monotonically increasing, indicat-
ing that there is no solution to the �2 gap equation to be
found at these values of the �’s. In the presence of
electrons, the neutrality conditions are satisfied just below
the bu-rs-unpairing line in Fig. 6, and the dependence of
the free energy on �2 is slightly modified so that the point
of inflection in the middle panel of Fig. 7 occurs where the
neutrality conditions are satisfied. We have confirmed
this in calculations done with 200 and 500 species
of electrons; with a single species as in the real world,
the changes in Fig. 7 are invisible on the scales of the
plot.

Finally, with respect to variation of �3, the solution is a
local minimum of the dashed curve in the lower panel
of Fig. 7. However, we have verified that if we move
sufficiently upwards in Fig. 6 as to run into the
rd-gu-unpairing line, then the dashed curve in the lower
panel exhibits a point of inflection (while that in the
middle panel has a robust minimum.)

D. Mixed phase alternatives

Up to this point, the phases we have discussed have
been locally neutral with respect to all gauge charges.
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However, it is well known that neutrality can also be
achieved in an averaged sense, by charge separation
into a mixture of two oppositely charged phases. This is
shown schematically in Fig. 9, which shows generic free
energy curves ���i� for two phases A and B. The free
energy must be a concave function of the chemical po-
tential, since increasing �i increases the charge Qi �
�@�=@�i. There are then two possible situations. In
one [Fig. 9(b)] there is no coexistence point and hence
no mixed phase is possible. In the other [Fig. 9(a)] there is
a coexistence point of oppositely charged phases, and its
free energy is lower than that of either neutral phase, so if
Coulomb and surface energy costs are low enough then a
neutral mixed phase will be free-energetically preferred
over either homogeneous neutral phase.

We now consider possible gCFL � unpaired mixed
phases. [Note that for �M2

s=��> �M2
s=��c a CFL �

unpaired mixture is not possible because there is no
CFL solution, charged or neutral.] For the unpaired and
gCFL phases, the free energies are of the form shown in
Fig. 9(a). At the values of ��e;�3; �8� that make one
phase neutral, the other phase has lower free energy.
Thus there is a value of ��e;�3; �8� ‘‘between’’ that for
neutral gCFL and that for neutral unpaired quark matter,
where the two can coexist with opposite color and electric
charge density. However, a mixed phase is not favored in
this case because each component would have net color
charge, and color is a gauge symmetry with a strong
coupling constant, so this mixed phase would pay a
-14
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FIG. 8 (color online). Same as the middle panel of Fig. 7,
except that �e has been increased by 2 MeV while changing �3

and �8 so as to make this a shift in � ~Q. This means that,
neglecting electrons, we are now exploring the change of the
free energy and the neutral free energy upon variation of �2

about a gCFL solution that is in the interior of the wedge in
Fig. 6, rather than at its bottom boundary.
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huge price in color-Coulomb energy. (For similar argu-
ments applied to systems with no gauge symmetries,
where the initial conclusion that a mixed phase is favored
is the correct one, see Refs. [35,36].)

It is then natural to ask whether one could construct a
gCFL � unpaired mixed phase whose components are
electrically charged, but color neutral. This avoids the
i iµ

Ω

µ

Ω

B
B

(a) (b)

A
A

FIG. 9 (color online). Schematic illustration of conditions for
the occurrence of mixed phases. Free energy � for two phases
A and B is shown as a function of some chemical potential �i.
Charge Qi � �@�=@�i is given by the slope. Squares mark
the neutral points. (a) At the neutral point for each phase, the
other phase has lower free energy, so there is a point (black dot)
where the two phases can coexist with the same pressure and
opposite charge, with lower free energy than either neutral
phase. Depending on Coulomb and surface energy costs, a
mixed phase may exist there. (b) Phase B has higher free
energy than phase A at the point where A is neutral. At no
point do the two phases coexist with opposite charge, so no
mixed phase is possible.
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large color-Coulomb energy cost of mixed phases with
colored components. Such mixed phases have recently
been constructed in two-flavor quark matter, with un-
paired and 2SC components [37]. There is still some color
electric field (and color-charged boundary layers) at the
interfaces where the color chemical potentials change
rapidly as one travels from one component to the other,
analogous to the charged boundary layers and ordinary
electric field at the CFL/nuclear interface constructed in
Ref. [38], but Ref. [37] finds that the 2SC � unpaired
mixed phase does occur in two-flavor quark matter.
However, for color-neutral unpaired and gCFL phases,
we have found that the situation is typically that of
Fig. 9(b): the free energy of color-neutral, but electrically
charged, unpaired quark matter is typically higher than
the free energy of color-neutral gCFL, at the value of �e
where color-neutral gCFL is electrically neutral. Hence
there is no value of�e at which oppositely charged phases
can coexist.We have found that this is true for all values of
M2
s=� except for a range of a few MeV just below

M2
s=� � 130 MeV, where the neutral gCFL and neutral

unpaired free energies cross. There, a mixed phase may
arise, although as we shall discuss below it may be super-
seded by other more favorable possibilities.

We have not eliminated all possible mixed phase con-
structions, involving mixtures of all possible phases.
However, over most of the gCFL regime there can be no
mixed phase constructed from gCFL and unpaired quark
matter.

E. (Gapless) 2SC and 2SCus

In this subsection, we discuss the properties of phases
in which only two of the three flavors pair. These cannot
compete with the CFL and gCFL phases at low values of
M2
s=�, but could conceivably become important at larger

values (lower densities).
The Fermi momenta in cold unpaired quark matter are

ordered pFd > pFu > pFs, since the strange quark mass
tends to decrease the strange quark Fermi momentum,
and the down quark Fermi momentum then increases to
preserve neutrality. Thus, the likely two-flavor pairings in
cold three-flavor quark matter are u-d pairing (i.e., 2SC,
with gap parameter �3 > 0 and �1 � �2 � 0) and u-s
pairing (i.e., 2SCus, with gap parameter �2 > 0 and
�1 � �3 � 0).

1. Calculation

In order to find a two-flavor pairing solution, we need
only solve four equations (one gap and the three neutrality
equations). The other two gap equations are automatically
satisfied upon setting the relevant gaps to zero. Using the
same coupling strength as in our investigation of the
gCFL phase (�0 � 25 MeV) and working at the same
value of � � 500 MeV, the nonzero gaps at M2

s=� � 0
are �3 � 31 MeV in the 2SC phase and �2 � 31 MeV in
-15
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FIG. 10 (color online). Gap parameters in 3-flavor quark
matter for the 2SC phase ��3� and the 2SCus phase (�2). In
each case the other two gaps are zero. The 2SC phase becomes
gapless (g2SC) at M2

s=� > 113 MeV and ceases to exist at
M2
s=� � 130 MeV, and its free energy is always lower than

that of unpaired quark matter (Fig. 3). The 2SCus phase
becomes unfavored relative to unpaired quark matter at
M2
s=� > 99 MeV, and ceases to exist at M2

s=� � 103 MeV,
without ever becoming gapless.
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the 2SCus phase. As we increase M2
s=�, as long as we do

not enter a gapless phase the gaps decrease slowly and the
simplified analysis of the 2SC and 2SCus phases in
Ref. [8] should be a good guide. We do indeed find that
our results are well approximated by �3 � �8 � 0 and
�e � M2

s=2� in the 2SC phase and �e � �3 � �8 � 0
in the 2SCus phase, with a free energy given by

� neutral
2SC=2SCus

� � neutral
unpaired

�
M4
s � 16�2

i �
2

16*2 ; (36)

with �i given by �3 in the 2SC phase and �2 in the 2SCus
phase, as predicted in Ref. [8]. The free energy of the
2SCus phase is higher than that of the 2SC phase because
�2 decreases more rapidly withM2

s=� in the 2SCus phase
than �3 does in the 2SC phase. This cannot be discovered
by the methods of Ref. [8], in which these two phases were
treated as degenerate.

Our results for the gap parameters are shown in Fig. 10
and for the free energies in Fig. 3. As in our other figures,
we vary Ms keeping � fixed at 500 MeV.

2. 2SC/g2SC results

We find a neutral 2SC solution at low M2
s=�, with four

gapped quasiparticles. At M2
s=� � 113 MeV two of

these quasiparticles become gapless, with blocking re-
gions within which there are unpaired rd and gd quarks,
and there is a continuous transition to the gapless 2SC
(g2SC) phase. (Gapless 2SC was introduced in two-flavor
quark matter in Refs. [21,22].) The gap parameter then
decreases rapidly until it reaches zero at M2

s=� �
130 MeV and the solution ceases to exist.

As is clear from Fig. 3, 2SC/g2SC always has lower free
energy than unpaired quark matter, and usually has
higher free energy than CFL/gCFL. However, we find a
tiny window ofM2

s=� less than 1 MeV wide, very close to
130 MeV, in which the gapless 2SC phase has lower free
energy than gCFL. In this regime, the one nonzero gap in
the g2SC phase is almost zero whereas all three gaps are
nonzero in the gCFL phase. This indicates that the fact
that the gCFL free energy crosses that of unpaired quark
matter almost at the same point where the g2SC and
unpaired free energies come together is a nongeneric
feature of our model. Taken literally, our calculation
predicts that as M2

s=� increases, gCFL is supplanted by
g2SC which is then almost immediately supplanted by
unpaired quark matter. However, treating the effects of
Ms more accurately than we have may shut the tiny g2SC
window completely [27]. In contrast, treating Ms as a
chemical potential shift, as we have, but using �0 �
100 MeV appears to open a wide g2SC window [9], but
this occurs in a regime where Ms �� and so this result is
not trustworthy. Also, as we discuss in the next section, a
more general ansatz is required once one is at a suffi-
ciently large M2

s=� that the free energy of the gCFL
054009
phase is close to that of unpaired quark matter, since there
are other possible pairing patterns that likely become
favorable.

Finally, it is interesting to note that the 2SC solution in
three-flavor quark matter differs from its two-flavor ver-
sion, which requires a large �e for neutrality given that
there are no strange quarks present to carry negative
charge. In three-flavor quark matter, we find that at Ms �
0 there is a small positive �e and a small negative �8 �
��e in the 2SC phase. This happens because the pairing
of ru, rd, gu and gd quarks increases their number
density. This contributes a positive electric charge and
excess redness/greenness, which is compensated by a
small positive �e and a negative �8. As we increase
M2
s=�, the small �8 remains approximately unaffected

whereas the small �e due to pairing is rapidly swamped
by the larger contribution of order M2

s=2� that compen-
sates for the lack of strange quarks.

3. 2SCus results

We find a neutral 2SCus solution, with a gap �2 that
decreases with increasingM2

s=� as shown in Fig. 10. This
solution only exists for M2

s=� < 103 MeV, and has a
higher free energy than that of neutral unpaired quark
matter for M2

s=� > 99 MeV (see Fig. 3). It is always
unfavored relative to the CFL/gCFL phase.

It is striking that two-flavor u-s pairing, unlike the
two-flavor u-d pairing discussed above, has no gapless
phase. In our calculations, we find that at M2

s=� >
103 MeV, when the 2SCus phase becomes unstable to
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unpairing (i.e., when /�eff in the u-s sector, line 2 of
Table I, becomes as large as �2), there is no neutral
solution with a smaller value of �2 (other than unpaired
quark matter). We do find such a ‘‘gapless 2SCus’’ solution
in a range of M2

s=� below 103 MeV, with �2 smaller than
that in the 2SC solution at the same M2

s=�, but the
g2SCus solution is unstable: it is a local maximum of
the neutral free energy as a function of �2. (In a figure
like Fig. 7 this g2SCus solution would be at a local
maximum of the solid curve.) At M2

s=� � 103 MeV,
the g2SCus solution (local maximum) meets the 2SCus
solution (local minimum) at an inflection point of the
neutral free energy, and for M2

s=� > 103 MeV neither
2SCus nor g2SCus solutions exist. Unlike the gapless
2SC phase [21,22] and the gapless CFL phase [6], which
are rendered stable by the constraint of neutrality, the
gapless 2SCus phase remains unstable. This is presumably
because u-s paired phases are very close to being neutral
anyway (only very small values of �e;�3; �8 are re-
quired to achieve neutrality [8]), so the constraint does
not change the physics much. This can be summarized by
saying that the 2SCus phase behaves analogously to that
studied by Sarma [29], even after neutrality constraints
are imposed.

IV. CONCLUDING REMARKS AND OPEN
QUESTIONS

The gapless CFL phase seems sufficiently well moti-
vated as a possible component of compact stars to warrant
further study of its low-energy properties and its phe-
nomenological consequences: it is the phase that sup-
plants the asymptotic CFL phase as a function of
decreasing density, and compact stars are certainly far
from asymptotically dense.

The low-energy effective theory of the gCFL phase
must incorporate the gapless fermionic quasiparticles
with quadratic dispersion relations, which have number
densities ��2

���������
�2T

p
and dominate the low temperature

specific heat, the gapless quarks with linear dispersion
relations, with number densities ��2T, and the electron
excitations, with number density ��2

eT. In contrast, the
(pseudo-)Goldstone bosons present in both the CFL and
gCFL phases have number densities at most �T3. This
means the gCFL phase will have very different phenome-
nology from CFL. It will be particularly interesting to
compute the cooling of a compact star with a gCFL core,
because neutrino emission will require conversion be-
tween quasiparticles with linear and quadratic dispersion
relations. And, we expect that in a star with CFL, gCFL
and nuclear volume fractions, the gCFL shell will domi-
nate the total heat capacity and the total neutrino emis-
sivity, and thus control the (rapid) cooling. It will also be
interesting to work out the magnetic field response of the
gCFL phase, since the gauge boson propagators will be
affected both by the gapless quasiparticles (all nine gauge
054009
bosons) and by the condensate (Meissner effect for eight
out of nine.) Finally, we have left the study of possible
meson condensation in the gapless CFL phase to future
work.

Although we have studied the gCFL phase in a model,
all of the qualitative properties of this phase that we have
focused on appear robust. We have also offered a model-
independent argument for the instability that causes the
transition, and for the location of the transition. We have
used our model to show that the gCFL phase is favored
over the two-flavor-pairing phases (2SC, g2SC, and
2SCus) throughout almost all of the regime where the
gCFL phase is favored over unpaired quark matter. It
remains a possibility, however, that the CFL gap is large
enough that baryonic matter supplants the CFL phase
before M2

s=� > 2�. Assuming that the gCFL phase
does replace the CFL phase, it is also possible that gaps
are small enough that a third phase of quark matter could
supplant the gCFL phase at still lower density, before the
transition to baryonic matter. We do not trust our analysis
to determine this third phase. Perhaps it is a mixed phase
of some sort, although we have ruled out the straightfor-
ward possibilities. Perhaps it is the gapless 2SC phase
[21,22], as the literal application of our model would
suggest. We should stress, in addition, that our model
relies upon a pairing ansatz designed to study the insta-
bility of the CFL phase, and hence well suited to the study
of the gCFL phase. Determining what phase comes after
gCFL almost certainly requires a more general ansatz.
For example, perhaps weak pairing between quarks with
the same flavor plays a role once gCFL is superseded [39],
or perhaps it is the crystalline color superconducting
phase [26,33,34,40,41] that takes over from gapless
CFL at lower densities. (Other possibilities have also
been suggested [42].)

Recent developments [41] make the crystalline color
superconducting phase look like the most viable con-
tender for the ‘‘third-from-densest phase.’’ Previous
work [40] had suggested that the face-centered-cubic
crystal structure was sufficiently favorable that its free
energy could be competitive with that of BCS pairing over
a wide range of parameter space, but because these in-
dications came from a Ginzburg-Landau calculation
pushed beyond its regime of validity, quantitative results
were not possible. The results of Ref. [41] suggest that a
crystalline phase involving pairing of only two flavors is
favored over the unpaired phase by � 0:2�2�2

2SC=*
2 at

M2
s=� � 4�2SC. Here, �2SC is the gap parameter in the

2SC phase atMs � 0, which is 31 MeV with the parameter
values we have used in all our figures. This suggests that if
we were to generalize our pairing ansatz to allow the
crystalline phase as a possibility, it would take over from
gCFL at M2

s=�� 120 MeV, or even somewhat lower if
the three-flavor crystalline phase, which no one has yet
constructed, is more favorable than the two-flavor ver-
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sion. Furthermore, the authors of Ref. [41] find that the
crystalline phase persists until a first order crystalline !
unpaired transition atM2

s=� � 7:5�2SC, hence over a very
wide range of densities. If analysis of three-flavor crys-
talline color superconductivity supports these estimates,
we will not have to worry about the resolution of the
puzzles and possible mixed phases associated with the
confluence of the free energies for the gCFL, g2SC and
unpaired phases nearM2

s=�� 130 MeV in Fig. 3: by that
density the crystalline phase will already be robustly
ensconced on the phase diagram.
054009
ACKNOWLEDGMENTS

We acknowledge helpful conversations with J. Bowers,
R. Casalbuoni, G. Cowan, M. Forbes, K. Fukushima,
E. Gubankova, J. Kundu, W.V. Liu, G. Nardulli,
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