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As is known from previous studies the lepton number violating decays K� ! �� � l�1 � l�2 have good
prospects to probe new physics beyond the standard model and provide valuable information on neutrino
masses and mixing. We analyze these processes with an emphasis on their hadronic structure aspects
applying the relativistic constituent quark model. We conclude that the previously ignored contribution
associated with the t-channel Majorana neutrino exchange is comparable with the s-channel one in a wide
range of neutrino masses. We also estimate model independent absolute upper bounds on the neutrino
contributions to these decays.
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I. INTRODUCTION

Discovery of small but finite neutrino masses and large
neutrino flavor mixing has clearly shown the limitations of
the standard model (SM) of electroweak interactions and
pointed to the physics beyond its framework. The small-
ness of neutrino masses is commonly considered as a
strong indication in favor of the celebrated seesaw picture
[1] with its characteristic attributes: high-energy scale of
lepton number violation (LNV) associated with new phys-
ics as well as very light and very heavy Majorana neutrino
mass eigenstates (for a recent review see, for instance,
Ref. [2]). This supports the long-standing belief that, con-
trary to the SM, the lepton number is not conserving and
neutrinos are massive Majorana particles. If this is true, the
LNV processes, forbidden in the SM, are allowed at small
rates and some of them can be observed experimentally.
Therefore, theoretical studies and experimental searches
for LNV processes are attracting growing interest as the
way to probe new physics beyond the SM and to study the
properties of neutrinos.

Various LNV processes have been discussed in the
literature in this respect (for review see [3,4]). In principle,
they can probe Majorana neutrino contribution and provide
information on the so-called effective Majorana mass ma-
trices hm�i�� and hM�1

N i�� of light and heavy Majorana
neutrinos. These quantities under certain assumptions are
related to the entries of the Majorana neutrino mass matrix
M���
��. Currently the most sensitive experiments intended to

probe LNV physics beyond the SM, in particular, Majorana
neutrino contribution, are those searching for nuclear neu-
trinoless double beta (0���) decay [5–7]. Because of the
lepton flavor structure of this process its experimental
searches are sensitive to a specific flavor set of the LNV
parameters. For the Majorana neutrino contribution to this
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process they are hm�iee and hM�1
N iee entries of the effective

Majorana neutrino mass matrices. In order to probe the
LNV parameters with another lepton flavor composition
one needs to study other LNV processes.

In the present paper we study LNV K� ! ��l�1 l
�
2

decays. Currently the best experimental upper bounds on
the branching ratios of these processes are [8]

R �� �
��K� ! �������

��K� ! all�
	 3:0
 10�9;

Ree �
��K� ! ��e�e��
��K� ! all�

	 6:4
 10�10;

R�e �
��K� ! ����e��
��K� ! all�

	 5:0
 10�10:

(1)

These processes may receive various contributions from
the LNV physics beyond the SM (see, for instance,
Ref. [9]), including the Majorana neutrino exchange. We
concentrate on the latter case.

Assume the neutrino mass spectrum consists of light �k
and heavy Nk neutrinos with the masses much smaller
m��k� � mK and much larger MN�k� � mk than the
K-meson mass mK � 494 MeV respectively. Then the
light and heavy neutrino contributions to the amplitude
of K� ! ��l�1 l

�
2 decay are proportional to the effective

masses hm�il1l2 and hM�1
N il1l2 with li � e;�. The estimates

of these quantities (see, for instance, [3,10]) from the
neutrino observations lead to the very small branching
ratios of these decays in comparison with the current
experimental sensitivities (1) that their experimental ob-
servation looks unrealistic even in a distant future. The
exception occurs if there exists Majorana neutrino �h with
the mass in the ‘‘resonant’’ region. For the K� !
������ decay this is the region of 245 MeV 	 m�h 	
388 MeV. In this case the �h contribution is resonantly
enhanced and may result in an observable effect [10].
-1  2005 The American Physical Society
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In the SM extensions with Majorana neutrinos there are
two lowest order diagrams, shown in Fig. 1, which con-
tribute to the K� ! ��l�1 l

�
2 decays. These diagrams were

first considered for K� ! ������ decay long ago in
Refs. [11,12] and more recently in Ref. [13].

The contribution from the factorizable s-channel dia-
gram in Fig. 1(a), dominant for the neutrinos with the
masses in the resonant region, can be calculated without
referring to any hadronic structure model. On the contrary,
the t-channel diagram in Fig. 1(b) requires a detailed
hadronic structure calculation. Studying neutrino contribu-
tions to K� ! ��l�1 l

�
2 decays outside the resonant region

one should take into account both diagrams. This implies
the analysis based on a certain model of hadronic structure.

In what follows we focus on the hadronic structure
aspects of K� ! ��l�1 l

�
2 decay. One of the main motiva-

tions of our study is the controversial situation existing in
the literature on this subject. In Ref. [12] the contribution
of the t-channel diagram in Fig. 1(b) has been evaluated in
the Bethe-Salpeter approach and is argued to be negligible
compared to the s-channel diagram in Fig. 1(a) for any
value of neutrino mass. In our mind this result is not
supported by any physical reason and appears to be an
artifact of this approach. In this situation it is worthwhile to
carry out an independent analysis of the t-channel contri-
bution within an alternative approach to hadronic structure
calculations.

Our analysis is based on the relativistic constituent quark
model [14] which was successful in the description of
various meson decay processes. As will be demonstrated,
we disagree with the above mentioned conclusion of
Ref. [12] and predict that the t-channel neutrino contribu-
tion to K� ! ��l�1 l

�
2 decays is comparable with the

s-channel one for all the values of neutrino masses outside
the resonant region.

The following comment is in order. In view of the fact
mentioned before that neutrinos with the masses outside
the resonant region give an experimentally undetectable
contribution to K� ! ��l�1 l

�
2 decays, the significance of

our results mainly consists of establishing a reliable frame-
π
_+K

+
1l

+
2l

s
_ _

u

ν

du
W W

(a)
FIG. 1. The lowest order diagrams co
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work for hadronic structure calculations in the analysis of
these and similar exotic decays rather than for extraction of
neutrino parameters. On the other hand, one may note that
our results, obtained for the simplest neutrino exchange
mechanism of K� ! ��l�1 l

�
2 decays, can be straightfor-

wardly extended to some other mechanisms offered by the
physics beyond the SM, which could lead to a priori much
larger rates and provide valuable information on the LNV
physics.
II. MAJORANA NEUTRINO CONTRIBUTION TO
K� ! ��l�1 l

�
2 DECAYS

We consider the SM extension with massive Majorana
neutrinos. In this case the weak interaction effective
Lagrangian has the standard form. For the studied pro-
cesses the relevant terms are

L weak
int �

GF���
2

p �Vud �dO�u� Vus �sO�u� � ��kU�
nkO�ln � h:c:

(2)

with O� � ���1� �5�. The unitary neutrino mixing ma-
trix Uij relates �0i � Uik�k weak �0i and Majorana neutrino
mass eigenstates �k with the masses m�k . The fields ln
denote charged leptons e, �, and �.

The lowest order diagrams describing Majorana neu-
trino contribution to K��p� ! ���p0� � l�1 �q1� � l

�
2 �q2�

decays are shown in Fig. 1. The corresponding matrix
elements we write down in the form

M�l�1 l
�
2 � � G2FVusVud

X
k

Ul1kUl2km�k�H
�1�2�q1; q2;m�k�

� L�1�2�q1; q2� � �q1 $ q2��

� M�l�1 l
�
2 �s �M�l�1 l

�
2 �t: (3)

Here the terms M�l�1 l
�
2 �s and M�l�1 l

�
2 �t denote the contri-

butions of the s- and t-channel diagrams in Fig. 1(a) and
1(b) respectively. The lepton and hadron tensors are de-
fined as
+K

_
u

+
1l

+
2l

s
_

π
_

ν

du

W

W

(b)
ntributing to K� ! ��l�1 l

�
2 decays.
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L�1�2�q1; q2� � l#1;�1 �q1�C��1��2�1� �5�l
#2;�
2 �q2�; (4)

H�1�2�q1; q2;m�� � H�1�2s �q1; q2;m��

�H�1�2t �q1; q2;m��: (5)

Here #1, #2 are the polarizations of the charged leptons and
C is the charge conjugation matrix. The hadron matrix
elements H�1�2s and H�1�2t correspond to the contributions
of the s- and t-channel diagrams in Fig. 1(a) and 1(b)
respectively.

The contribution of the factorizable s-channel diagram
in Fig. 1(a) can be calculated in a straightforward way
without referring to any hadronic structure model with the
following result

H�1�2s �q1; q2;m�� � p�1p0�2
f�fK

m2� � �p� q1�2
; (6)

where the pion f� and K-meson fK leptonic decay con-
stants completely parametrize the hadronic structure of this
contribution. Their experimental values are f� �
131 MeV and fK � 161 MeV. The t-channel diagram in
Fig. 1(b) is much more involved and requires calculations
on the basis of certain models of hadronic structure. In the
following sections we apply for this purpose the relativistic
constituent quark model [14].

Let us note that for the case of neutrino mass spectrum
consisting of very light, m� � mK, and very heavy, m� �
MN � mK, neutrinos (mK � 493:677 MeV is the
K-meson mass) both s- and t-channel matrix elements in
Eq. (3) are reduced to the form

M�l�1 l
�
2 �s;t �

hm�il1l2
mK

A���
s;t � hM�1

N il1l2mKA
�N�
s;t ; (7)

with the contributions proportional to the effective
Majorana masses of the light � and heavy N neutrinos
defined as

hm�il1l2 �
X

k�light

Ul1kUl2km�k ;

hM�1
N il1l2 �

X
k�heavy

Ul1kUl2kM
�1
Nk
:

(8)

In this limiting case the coefficients A���
s;t and A�N�

s;t are
independent of neutrino masses and mixing. As follows
from Eq. (6) the coefficients A���

s ;A
�N�
s do not depend on

the hadronic structure model and their values can be easily
calculated (see, for instance, Refs. [3,10]). We will show in
Sec. IV that A�N�

t is also hadronic model independent.
Thus, the only coefficient in Eq. (7) which requires had-
ronic model based calculation is A���

t .
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III. FORMALISM OF HADRONIC STRUCTURE
CALCULATIONS

Here we present the details of the relativistic constituent
quark model [14] which we apply to the calculation of
K� ! l�1 l

�
2 �

� decay rates. The model is based on the
effective interaction Lagrangian describing the couplings
between hadrons and their constituent quarks. The cou-
pling of a meson H�q1 �q2� to its constituent quarks q1 and
�q2 is given by the Lagrangian

LStrint �x� � gHH�x�
Z
dx1

Z
dx2FH�x; x1; x2�


 �q�x1��H#Hq�x2� � h:c: (9)

Here, #H and �H are the flavor SU(3) Gell-Mann matrix
and certain combination of Dirac �-matrices correspond-
ing to the flavor and spin quantum numbers of the meson
field H�x�. The function FH is related to the scalar part of
the Bethe-Salpeter amplitude and characterizes the finite
size of the meson. The translational invariance requires the
vertex function FH to fulfil the identity

FH�x� a; x1 � a; x2 � a� � FH�x; x1; x2�

for any 4-vector a�:
(10)

We use for this function the following form

FH�x; x1; x2� � )�x� c1x1 � c2x2��H��x1 � x2�2�; (11)

where�H is the correlation function of the two constituent
quarks with the masses m1, m2. Here we introduced the
notation ci � mi=�m1 �m2�. The form of the vertex func-
tion in Eq. (11) implies factorization of its dependence on
the center-of-mass coordinate x � �m1=�m1 �m2��x1 �
�m2=�m1 �m2��x2 of the constituent quarks.

The interaction Lagrangian for the particular case of
charged kaon and pion takes the form

L�;K
int �x� � igKK��x�

Z
dx1

Z
dx2FK�x; x1; x2� �u�x1�


 �5s�x2� � ig��
��x�

Z
dx1

Z
dx2


 F��x; x1; x2� �u�x1��5d�x2� � h:c: (12)

The coupling constants gH in Eqs. (9) and (12) are
determined by the so-called compositeness condition
which requires the renormalization constant of an elemen-
tary meson field H�x� to vanish

ZH � 1�
3g2H
4�2

~ 0
H�M2H� � 0; (13)

where ~ 0
H is the derivative of the meson self-energy func-

tion. In the case of pseudoscalar mesons we have
-3
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~ 0
P�p

2� �
1

2p2
p�

d
dp�

Z d4k

4�2i
~�2P��k

2�


 tr��5S1�k6 � c1p6 ��
5S2�k6 � c2p6 ��; (14)

where ~�P��k2� is the Fourier-transform of the correlation
function �P��x1 � x2�2� and Si�k6 � is the quark propagator.
We use the free fermion propagators for the valence quarks

Si�k6 � �
1

mi � k6
(15)

with an effective constituent quark mass mi. In order to
avoid the appearance of the imaginary parts in the physical
amplitudes we require

MP <m1 �m2 (16)

for the meson mass MP.
Finally we specify the correlation function �H in

Eqs. (11) and (14) characterizing finite size of hadrons.
Any choice for its Fourier-transform ~�H is appropriate as
long as it falls off sufficiently fast in the ultraviolet region
of the Euclidean space to render Feynman diagrams ultra-
violet finite. We adopt the Gaussian form for this function

~�H�k
2
E� �
:
exp��k2E=#

2
H�; (17)

where kE is Euclidean momentum. The hadronic size
parameters #H and the constituent quark masses mu;d;s
are determined by fitting to the experimental data for the
leptonic decay constants fH of mesons H. The model
expressions for the leptonic decay constants fP of pseudo-
scalar mesons are derived from the Lagrangian (12) and
take the form

MIKHAIL A. IVANOV AND SERGEY G. KOVALENKO
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F P�p
2�p� �

3gP
4�2

Z d4k

4�2i
~�P��k

2�


 tr�O�S1�k6 � c1p6 ��
5S2�k6 � c2p6 �� (18)

with the definition fP �
:
F P�M

2
P�. The best fit to the

experimental values of the decay constants f� �
131 MeV and fK � 161 MeV is obtained with

mu�d� � 0:235 GeV; ms � 0:333 GeV;

#� � 1:0 GeV; #K � 1:6 GeV:
(19)

This completes the definition of the model which we
apply to the analysis of K� ! l�1 l

�
2 �

� decays.

IV. K� ! l�1 l
�
2 �

� HADRONIC MATRIX ELEMENTS
AND DECAY RATES

Now let us turn to the calculation of the hadronic matrix
elements of K� ! l�1 l

�
2 �

� decays within the above pre-
sented approach. The Lagrangian describing these pro-
cesses consists of the three terms

L K�dec � Lweakint �L�
int �LK

int; (20)

where the first term is the weak interaction Lagrangian (2)
while the second and the third terms determine � and K
meson interactions with quarks defined in Eq. (12). In the
lowest order this Lagrangian generates the contributions
corresponding to the diagrams in Fig. 1. In what follows we
concentrate on the contribution of the t-channel diagram in
Fig. 1(b). The expression for the corresponding hadronic
matrix element introduced in Eqs. (3) and (5) takes the
form
H�1�2t �q1; q2;m�� � �3g�gK
Z d4k1

�2��4i

Z d4k2
�2��4i

~�K��k
2
1�
~����k

2
2�tr��

5Ss�k1 � c2p�O
�1Su�k2 � p

0=2��5Sd�k2 � p
0=2�


O�2Su�k1 � c1p��
1

m2� � �k1 � k2 � q12�
2 ; (21)
where q12 � c1q1 � c2q2 � �1=2� c2�p0 with c1 �
mu=�mu �ms� and c2 � ms=�mu �ms�. The minus sign
comes from the one fermion loop.

We note that the characteristic energy scale of K� !
l�1 l

�
2 �

� is set by mK. Therefore for the neutrino masses
m� � mK, the neutrino propagators in the matrix elements
of these processes can be substituted by the constant

1

m2� � k
2 !

1

m2�
:

Thus the direct dependence on the final lepton momenta q1
and q2 drops out from the invariant matrix elements in
Eqs. (6) and (21). Using the Fierz identity

t r�T1O
�T2O�� � �tr�T1O

��tr�T2O�� (22)
in Eq. (21) and recalling the definition of the weak decay
constants f� and fK in Eq. (18), one finds that

H�1�2t �q1; q2;m�� �
1

3
H�1�2s �q1; q2;m�� for m� � mK:

(23)

Thus, in this limit the t-channel contribution can be eval-
uated in a hadronic model independent way as well as the
s-channel contribution.

In the case of arbitrary finite neutrino masses, after
straightforward but quite tiresome calculations, explained
in the Appendix, we end up with the following expression
for the t-channel hadronic matrix element
-4
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H�1�2t �q1; q2;m�� �H
g
t �s1; s2;m��g

�1�2

�Hp
0p
t �s1; s2;m���p

�1p0�2 �p0�1p�2

� i"2122�1�2p21p
0
22�

�Hp
0q
t �s1; s2;m���p

0�1q�212 �q
�1
12p

0�2

� i"2122�1�2p021q1222�: (24)

An approximate analytic representation for the structure
functions Hkt �s1; s2;m�� is given in (A4). We define the
kinematical variables as

s1 � �q1 � q2�2 � �p� p0�2;

s2 � �q2 � p
0�2 � �p� q1�

2;

s3 � �p0 � q1�2 � �p� q2�2;

where p2 � m2K, p02 � m2�, q2i � m2li , and s1 � s2 � s3 �
m2K �m2� �m2l1 �m

2
l2

.
With these definitions the K� ! l�1 l

�
2 �

� decay rate can
be written in the form

��K� ! l�1 l
�
2 �

�� �
G4HV

2
usV2ud

256�3m3K

X
k;n

�l1l2k ��l1l2n ��



Z �mK�ml2 �

2

�ml1�m��
2
ds3

Z s�2

s�2

ds2F �s2; s3�kn;

(25)

where �l1l2k � Ul1kUl2km�k and

s�2 � m2l1 �m
2
K �

1

2s3
��s3 �m

2
K �m2l2��s3 �m

2
l1
�m2��

� #1=2�s3; m
2
K;m

2
l2
�#1=2�s3; m

2
l1
; m2���; (26)

The integrand in Eq. (25) is

F �s2; s3�kn � 2�H
�1�2�q1; q2;m�k�

�H�2�1�q2; q1;m�k���H
y�1�2�q1; q2;m�n�

�Hy�2�1�q2; q1;m�n��


 q211 q
22
2 tr��1��2�22��2��1�21�1� �

5�:

(27)

An explicit form of the function F �s2; s3�kn, which we do
not show here for its complexity, is derived by the sub-
TABLE I. The total K� ! ������ decay rate �

m�h �s�t=jU�hj
4 �s�t

�s
m�h �s�t=jU�hj

4 �s�t
�s

(eV) (GeV) (KeV) (GeV) (

1 0:13 � 10�47 0.85 1 0:13 � 10�41 0.85
250 0:80 � 10�43 0.85 250 0:80 � 10�37 0.85
500 0:32 � 10�42 0.85 500 0:32 � 10�36 0.85
750 0:71 � 10�42 0.85 750 0:71 � 10�36 0.85
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stitution of the expression forH�1�2 from Eqs. (5), (6), and
(24). Then we carry out the twofold integration in Eq. (25)
numerically. The results of these calculations we discuss in
the next section.

V. NUMERICAL RESULTS

One of the main purposes of our study is to examine the
relative contribution of the t-channel diagram, Fig. 1(b), to
K� ! l�1 l

�
2 �

� decays. We are doing this in terms of the
decay rates of these processes by comparing their values
obtained in the case when both s- and t-channel diagrams
are taken into account, �s�t, with the case when the t-
channel diagram is switched off, �s. For the sake of sim-
plicity we analyze the contribution of only one neutrino
mass eigenstate �h with an arbitrary mass m�h . Varying
m�h in a wide range of its values we assume �h to be an
additional mass eigenstate to the three ordinary very light
neutrinos. This additional neutrino state may appear in
models with sterile neutrino species (see, for instance,
Refs. [10,15]) and may a priori have an arbitrary mass.

We present our results for the particular case of K� !
������ decay in Table I for the total decay rate
�s�t=jU�hj

4 and for the ratio �s�t=�s as functions of
neutrino mass m�h . For other decays K� ! l�1 l

�
2 �

� the
results are similar.

The following comments are in order. The s-channel
diagram has the two singular neutrino propagators
1=�m2�h � s2;3�. Therefore, for the neutrino mass m�h in
the resonant intervals

�m� �m�� � 245 MeV 	 m�h 	 �mK �m��

� 388 MeV; for K� ! ������;

�me �m�� � 140 MeV 	 m�h 	 �mK �me�

� 493 MeV; for K� ! e�e���; e�����

(28)

one must take into account the total decay width ��h of
�h-neutrino substituting m�h ! m�h � �i=2���h . The total
decay width ��h receives all the possible contributions
from the leptonic and semileptonic charged and neutral
current decay modes allowed by the energy-momentum
conservation for the Majorana neutrino �h with the mass in
the resonant intervals (28). For the resonant interval of the
K� ! ������ decay this quantity has been calculated
in Refs. [10,15] as a function ofm�h . In our analysis we use
s�t and the ratio �s�t=�s vs neutrino mass m�h .

m�h �s�t=jU�hj
4 �s�t

�s
m�h �s�t=jU�hj

4 �s�t
�s

MeV) (GeV) (GeV) (GeV)

1 0:13 � 10�35 0.85 1 0:26 � 10�31 1.33
250 0:12 � 10�17 1.00 250 0:44 � 10�36 1.78
500 0:20 � 10�30 1.00 500 0:11 � 10�36 1.78
750 0:41 � 10�31 1.25 750 0:49 � 10�37 1.78
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its average value over the resonant intervals (28) which is
��h � 10

�14 GeV.
Because of the smallness of ��h , the s-channel diagram

in Fig. 1(a) blows up in the resonant intervals and abso-
lutely dominates over the t-channel one. This effect is
clearly seen in Table I.

Let us note that the values of the decay rates in the
resonant intervals (28), dominated by �s, give model in-
dependent theoretical upper limits on the neutrino contri-
butions to the studied processes

��K� ! l�1 l
�
2 �

�� 	 �ress �K� ! l�1 l
�
2 �

��: (29)

The t-channel contributions introduce negligible correc-
tions to these limits. For the corresponding branching
ratios we obtain the following order of magnitude upper
limits

R ��;Ree;R�e 	 10
�1: (30)

The derivation of more accurate limits requires a compre-
hensive evaluation of the total decay width ��h of the
neutrino mass eigenstate �h as a function of m�h in the
resonant intervals (28), which is beyond the scope of the
present study. Apparently the limits in Eq. (30) are much
larger than the experimental limits in Eq. (1). This allows
one to derive stringent limits on the mixing matrix ele-
ments Ueh; U�h. In this way an upper limit jU�hj2 	 10�9

has been derived in Ref. [10] fromK� ! ������ decay.
As seen from Table I, the ratio �s�t=�s is less than one

below the resonant region and greater than one above it.
This behavior is explained by the fact that the interference
of the s- and t-channel diagrams is destructive for m�h
below the resonant region and constructive above it. One
can also notice that the ratio �s�t=�s approaches its
asymptotic value

�s�t
�s

�

�
4

3

�
2
� 1:78 �m� ! 1� (31)

at m� � 10 GeV. This asymptotic relation follows from
Eq. (23) and is independent of the hadronic model.
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VI. SUMMARY

We studied the hadronic structure aspects of the lepton
number violating K� ! ��l�1 l

�
2 decays within the

Relativistic Constituent Quark Model. We considered a
particular mechanism of these decays via Majorana neu-
trino exchange and derived the decay rates as functions of
neutrino mass. Our special interest was focused on the
relative contribution of the t-channel neutrino exchange
diagram in Fig. 1(b). We have shown that it is comparable
with the contribution of the s-channel diagram for all
values of neutrino mass m�h except for the resonant do-
mains (28) where the s-channel diagram Fig. 1(a) abso-
lutely dominates in the decay rates. Outside of this domain
the relative contribution of the t-channel diagram varies
between �20% and �45%. This conclusion contrasts with
the previous study of Ref. [12] claiming this contribution to
be always negligible in the considered decays. We also
pointed out that the values of the decay rates in the resonant
regions of neutrino mass represent hadronic model inde-
pendent theoretical absolute upper bounds for the
Majorana neutrino contribution to K� ! ��l�1 l

�
2 decay

processes.
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APPENDIX: TECHNICAL DETAILS

Here we present the details of the calculations leading to
the expression (24) for the t-channel hadronic matrix
element.

We start with the expression in Eq. (21). Using the vertex
functions in the form (17) and the �-representation for the
denominators of quark propagators

1

m2 � K2
�

Z 1

0
d�e���m

2�K2�

one can write down
H�1�2t � 3g�gK
Y5
i�1

Z 1

0
d�ie

��1m2s���2��3��4�m2q��5m2����1c22��2c
2
1�p

2���3��4�p02=4��5q212
Z d4k1

�2��4i



Z d4k2

�2��4i
ekak�2krtrf�5�ms � 6k1 � c2 6p�O�1�mu � 6k2 � 6p0=2��5�md � 6k2 � 6p0=2�O�2�mu � 6k1 � c1 6p�g;

(A1)

where
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a �
wK � �1 � �2 � �5 ��5

��5 w� � �3 � �4 � �5

� �

with wP � 1=#2P and

r �
�c1�2 � c2�1�p� �5q12
��3 � �4�p0=2� �5q12

� �
:

Then we use the differential representation of the numera-
tor

n um�6k1; 6k1�e
2kr � num

�
1

2
6@1;
1

2
6@2

�
e2kr

HADRONIC STRUCTURE ASPECTS OF K ! � � l1 � l2
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with 6@i � ��@=@r�i . Integrating out the loop momenta

Z d4k1
�2��4i

Z d4k2
�2��4i

ekak�2kr �
1

28�4
1

jaj2
e�ra

�1r

we arrive at the expression

H�1�2�q1; q2;m��t �
3g�gK
28�4

Y5
i�1

Z 1

0

d�i
jaj2

e�z � num�1�2 ;

(A2)

where
num�1�2 � tr
�
�5�ms � �a�1r6 �1 � c2p6 �O�1�mu � �a�1r6 �2 � p6 0=2��5�md � �a�1r6 �2 � p6 0=2�O�2�mu � �a�1r6 �1 � c1p6 �

�
1

2
a�121 �

5��O�1���5�md � �a�1r6 �2 � p6
0=2�O�2�mu � �a�1r6 �1 � c1p6 �

�
1

2
a�121 �

5��O�1�mu � �a�1r6 �2 � p6 0=2��5��O�2�mu � �a�1r6 �1 � c1p6 �

�
1

2
a�111 �

5��O�1�mu � �a�1r6 �2 � p6
0=2��5�md � �a�1r6 �2 � p6

0=2�O�2��

�
1

2
a�122 �

5�ms � �a�1r6 �1 � c2p6 �O�1���5��O�2�mu � �a�1r6 �1 � c1p6 �

�
1

2
a�112 �

5�ms � �a�1r6 �1 � c2p6 �O
�1���5�md � �a�1r6 �2 � p6

0=2�O�2��

�
1

2
a�112 �

5�ms � �a�1r6 �1 � c2p6 �O�1�mu � �a�1r6 �2 � p6 0=2��5��O�2��

�
1

4
a�121 a

�1
12 �

5��O�1���5��O�2�� �
1

4
a�122 a

�1
11 �

5��O�1���5��O�2��

�
1

4
a�112 a

�1
21 �

5��O�1���5��O�2��
�

and

z � �1m2s � ��2 � �3 � �4�m2q � �5m2� � ��1c22 � �2c
2
1�p

2 � ��3 � �4�p02=4� �5q212 � ra
�1r: (A3)

Thus, we have reduced the two-loop integrations to the 5-fold integrals over �-parameters. We use the FORM code [16] for
the calculation of the trace and end up with the ten independent Lorentz structures

H�1�2�q1; q2;m��t � Hgt �s1; s2;m��g�1�2 �H
pp
t �s1; s2;m��p�1p�2 �H

p0p0
t �s1; s2;m��p0�1p0�2 �H

qq
t �s1; s2;m��q

�1
12 q

�2
12

�Hp
0p
t �s1; s2;m���p

�1p0�2 � p0�1p�2� �Hpqt �s1; s2;m���p
�1q�212 � q

�1
12p

�2�

�Hp
0q
t �s1; s2;m���p

0�1q�212 � q
�1
12p

0�2� �Hepp
0

t �s1; s2;m��i"
2122�1�2p21p

0
22

�Hepqt �s1; s2;m��i"2122�1�2p21q1222 �H
ep0q
t �s1; s2;m��i"2122�1�2p021q1222 :

We have shown that

Hppt � Hqqt � Hpqt � Hepqt � 0; Hepp
0

t � Hp
0p
t ; Hep

0q
t � �Hp

0q
t :

The function Hp
0p0
t has been numerically found to be negligibly small. We calculated the three remaining structure

functions HAt �s1; s2� (A � g; p0p; p0q) using the FORTRAN code and then approximated them by the functions

HAt �s1; s2;m�� �
H�smin1 ; smin2 �

1� b1x1 � b2x2 � b11x
2
1 � b22x

2
2 ��b12x1x2

; (A4)

with xi � si � smini (i � 1; 2). For K� ! ������ one has smin1 � 4m2�, smin2 � �m� �m��2. The coefficients
-7
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b1; b2; b11; b22; b12, and H�smin1 ; smin2 � depend on neutrino mass m�. The code for their numerical calculations is available
from the authors.
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