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Positivity violation for the lattice Landau gluon propagator
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We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon
propagator in three-dimensional pure SU�2� gauge theory. We use data obtained at very large lattice
volumes (V � 803; 1403) and for three different lattice couplings in the scaling region (� � 4:2; 5:0; 6:0).
In particular, we observe a clear oscillatory pattern in the real-space propagator C�t�. We also verify that
the (real-space) data show good scaling in the range t 2 �0; 3�fm and can be fitted using a Gribov-like
form. The violation of positivity is in contradiction with a stable-particle interpretation of the associated
field theory and may be viewed as a manifestation of confinement.
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I. INTRODUCTION

In recent years, there has been considerable interest in
the possible violation of spectral positivity for QCD and in
its relation to color confinement (for a review see [1]). Let
us recall [2] that the reconstruction of a Gårding-Wightman
relativistic quantum field theory from the corresponding
Euclidean Green functions is possible only if they obey the
Osterwalder-Schrader axioms [3]. In particular, the re-
quirement of positive definiteness of the norm in Hilbert
space is expressed in Euclidean space by the axiom of
reflection positivity. For a generic 2-point function ~D�x�
y�, this axiom readsZ

d4xd4yf���x0;x� ~D�x� y�f�y0; y� 	 0; (1)

where f�x0;x� is an arbitrary complex test function. The
above condition implies the existence of a Källen-
Lehmann representation for ~D�x� y�, which is necessary
for interpreting the fields in terms of stable particles. Thus,
a violation of (1) implies that the Euclidean 2-point func-
tion cannot represent the correlations of a physical particle.
This may be viewed as an indication of confinement [1].

The relation between reflection positivity and Euclidean
correlation functions can be made explicit by considering
the spectral representation [1,4]

D�p� �
Z 1

0
dm2 ��m2�

p2 �m2 (2)

for the Euclidean propagator in momentum space. Then,
the statement of reflection positivity is equivalent to a
positive spectral density ��m2�. This implies that the tem-
poral correlator at zero spatial momentum D�t;p � 0� can
be written as

C�t� � D�t; 0� �
Z 1

0
d!��!2�e�!t: (3)

We note that for general spatial momentum p one would
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have ! �
������������������
p2 �m2

p
. [In the particular case p � 0 consid-

ered here, the decay behavior of D�t;p� provides direct
insight on masslike properties associated with the fields.]
Clearly, a positive density ��!2� implies that

C�t�> 0: (4)

Notice that having C�t�> 0 for all t does not ensure the
positivity of ��!2�. On the other hand, finding C�t�< 0 for
some t implies that ��!2� cannot be positive, suggesting
confinement for the corresponding particle.

For the gluon, the Landau propagator is predicted to
vanish at zero momentum [5–10]. This implies that the
real-space propagator eD�x� y� is positive and negative in
equal measure, i.e. reflection positivity is maximally vio-
lated [5,6,8]. An infrared suppressed Landau gluon propa-
gator has been obtained in several studies in momentum
space [11–14]. Numerical indications of a negative real-
space lattice Landau gluon propagator have been presented
in the 3d SU�2� case [12], in the magnetic sector of the 4d
SU�2� case at finite temperature [13] and, recently, in the
4d SU�3� case for one ‘‘exceptional’’ configuration [15]. In
this work we verify this feature in detail (see Sec. II), using
data obtained at very large lattice sizes for the SU�2� case
in three space-time dimensions [14]. At the same time, we
try to fit the numerical data in real space (see Sec. III) by
considering a sum of Gribov-like propagators [5,7]. Let us
recall that an excellent fit of the (momentum-space) propa-
gator by a Gribov-like formula has been obtained for the
equal-time three-dimensional transverse gluon propagator
in 4d SU�2� Coulomb gauge [16] and for the 3d SU�2�
Landau case [14], while in Ref. [4] the (real-space) trans-
verse propagator has been fitted using a a Stingl-like
formula in the 4d SU�3� Landau case. Also, several fitting
forms have been considered in Ref. [17] for the gluon
propagator in momentum space.
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FIG. 1. Real-space propagator C�t� as a function of t for
coupling � � 5:0 and lattice volumes V � 803 (above) and V �
1403 (below). Errors have been evaluated using bootstrap with
1000 samples. All quantities are in lattice units.
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II. VIOLATION OF REFLECTION POSITIVITY

An explicit (numerical) proof of violation of the condi-
tion (4) may be difficult if the correlation function C�t�
only becomes negative at relatively large values of t. In
particular, this is the case if C�t� is of the form C�t� �
e��tf�t� and f�t� is only negative for t 
 1=�. In this case
it is helpful to consider alternative quantities G�t� that are
positive if ��!2� is positive. [Consequently, finding G�t�<
0 implies violation of positivity for ��!2�.] For example,
one can define [18] the function

G�t� �
d2

dt2
lnC�t� (5)

�
C�t�C00�t� � �C0�t��2

�C�t��2
: (6)

Using Eq. (3) we can write G�t� as [1,4]

G�t� � h�!� h!i�2i; (7)

where the averages denoted by hi are evaluated in the
measure d!��!2�e�!t. Clearly, if the density ��!2� is
positive, so is G�t�. Let us note that for C�t� � e��tf�t�
one gets G�t� � d2 lnf�t�=dt2, namely, we get rid of the
exponential factor e��t and it should be easy to check
numerically if G�t�—or equivalently f�t�—is negative.
The quantity G�t� could be of particular interest in a 4d
study, since in this case it is more difficult to obtain good
data for large time separations. In the case of a Gribov-like
momentum-space propagator [7]

D�p� � p2=�p4 �M4�; (8)

one obtains the real-space propagator [5]

C�t� �
1

2�

Z 1

�1
dpD�p�e�ipt (9)

�
e�Mt=

��
2

p

2M
cos

�
Mt���
2

p �
�
4

�
: (10)

Then, using Eq. (6), it is easy to check that

G�t� � �M2

�
2cos2

�
Mt���
2

p �
�
4

��
�1
; (11)

which is negative for all values of t.
Notice that if C�t� is negative for some value of t we

cannot evaluate its logarithm in Eq. (5), while the expres-
sion in Eq. (6) is always well defined for C�t� � 0.

On the lattice, the real-space propagator can be eval-
uated using

C�t� �
1

N

XN�1

k0�0

e�2�ik0t=ND�k0; 0�; (12)

where N is the number of points per lattice side and D�k� is
the propagator in momentum space. If the lattice action
051902
satisfies reflection positivity [19], then we can write the
spectral representation

C�t� �
X
n

rne�Ent; (13)

where rn are positive-definite constants. Clearly, this im-
plies that C�t� is non-negative for all values of t.

As in the continuum, we can consider G�t� using Eq. (6)
or, equivalently, the function G�t��C�t��2. This quantity can
be easily discretized on the lattice by

G�t; a� �
1

a2
�C�t�C�t� 2a� � C�t� a�2�; (14)
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FIG. 3. Plot of �G�t; 1� as a function of t for lattice volume
V � 1403 and coupling � � 4:2. Errors have been evaluated
using bootstrap with 1000 samples. All quantities are in lattice
units.
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where a is the lattice spacing. Indeed, in the continuum
limit a ! 0, one obtains G�t; a� � G�t�C�t�2 �O�a3�.
Furthermore, defining

bn �
�����
rn

p
e�Ent=2; cn �

�����
rn

p
e�En�t�2a�=2; (15)

we can use the Schwartz inequality [18] to show that
G�t; a� 	 0 for all values of t and a if the rn’s are positive.
Also, considering the effective gluon mass

m�t� � � log�C�t� a�=C�t��; (16)

one gets em�t� � em�t�a� � G�t; a�a2em�t�a�=C�t� a�2.
Thus, if G�t; a� 	 0 one obtains m�t� 	 m�t� a�, i.e. the
effective mass should decrease when considering a larger
time separation t. As discussed in [18], an increasing
effective gluon mass has been obtained already in the first
numerical studies of the gluon propagator [20], suggesting
a violation of reflection positivity. Note, however, that
Eq. (16) is ill-defined if C�t� changes sign.

Here we use the 3d SU�2� Landau-gauge data presented
in [14] in order to check if the conditions C�t�> 0 and
G�t; a�> 0 are violated for the gluon propagator. (The data
have been analyzed using the bootstrap method with 1000
samples; we checked that results do not change when using
500 samples.) As explained in Ref. [14], we set the physi-
cal scale by considering 3d SU�2� lattice results for the
string tension and the input value

����
#

p
� 0:44 GeV, which

is a typical value for this quantity in the 4d SU�3� case.
Since we consider �h � c � 1, this implies 1fm�1 �
0:4485

����
#

p
.

FIG. 2. Plot of jC�t�j as a function of t for lattice volume V �
803 and coupling � � 6:0. For clarity, errors are not shown. All
quantities are in lattice units. The solid line is drawn to guide the
eye.
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We find that the real-space propagator C�t� is negative
for several values of t, showing a clear oscillatory behavior
(see Fig. 1). In analogy with Ref. [10] we also plot, in
Fig. 2, the function jC�t�j: the spikes reveal the change of
sign in the propagator C�t�. Finally, in Fig. 3 we plot the
function �G�t; 1�: one can see that, as in the Gribov-like
propagator, G�t; 1� is negative for all values of t. Thus, we
find an explicit violation of positivity for the lattice Landau
gluon propagator. Let us stress that this violation is clearly
observable for the three lattice couplings and for the two
lattice volumes considered.
III. SCALING AND FITS FOR C�t�

It is important to check if the behavior obtained for C�t�
satisfies scaling for the lattice parameters considered here.
To this end, we apply to the data the matching procedure
described in [14], Section III and consider t in physical
units using [14], Table 2. We obtain that all propagators
become negative at t � 0:7fm and that the minimum is
reached at tmin � 1fm (see Fig. 4). Moreover, finite-size
effects seem to become important only at t * 3 fm. This
means that our data for t 2 �0; 3�fm are essentially
infinite-volume continuum results. Note that the Gribov-
like propagator C�t� in Eq. (10) has its minimum at tmin �

�=�M
���
2

p
�. Thus, the above result for tmin would imply

M � �=
���
2

p
fm�1 � 2:22 fm�1 � 438 MeV � 0:995

����
#

p
.

Let us also observe that the momentum-space Gribov-like
propagator D�p� [see Eq. (8)] has its maximum at pmax �
M. In Ref. [14] we obtained pmax � 0:8�0:2

�0:1

����
#

p
�

350�100
�50 MeV.
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TABLE I. Fit of the data using a sum of two functions of the
type (17), setting b1 � 0. We obtain %=d:o:f: � 0:24 (respec.
0.19) for � � 4:2 (respec. 5.0). The number of d:o:f: is 13
(respec. 17). The values of �1 and �2 are in fm�1. The relatively
small %=d:o:f: is probably due to the use of the diagonal part of
the covariance matrix only.

� c1 �1 c2 b2 �2

4.2 0.368(6) 3.83(4) 0.70(3) 0.099(6) 1.54(4)
5.0 0.361(6) 3.72(3) 0.56(3) 0.089(6) 1.75(5)

FIG. 4. Scaling for the real-space propagator C�t� as a function
of t (in fm) for lattice volume V � 1403 and couplings � �
4:2���, 5:0���, 6:0�}�. Errors have been evaluated using boot-
strap with 1000 samples.
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As said above, in Ref. [14] we have fitted the gluon
propagator in momentum space using a modified Gribov-
like or Stingl-like formula with four or five parameters. We
now try to fit the data in real space using

C�t� � ce��t=
��
2

p

cos�b� �t=
���
2

p
�; (17)
FIG. 5. Fit of C�t� as a function of t (in fm) using a sum of two
functions of the type (17) for lattice volume V � 1403 and
coupling � � 4:2. We also display C1�t� and C2�t� separately.
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which is a generalization of the Gribov-like propagator in
Eq. (10). Clearly, this function also corresponds to a G�t�
that is always negative. Let us stress that only for b � �=4
does this propagator correspond to the Gribov-like propa-
gator in Eq. (8). In particular, for b � 0 one gets the
momentum-space propagator D�p� � �p2 �M2�=�p4 �
M4�, which is finite at zero momentum. As reported in
[14], it is still not clear from our data (on a 1403 lattice) if
the zero-momentum gluon propagator vanishes in the
infinite-volume limit, as predicted in [5,6,8].

We fit the data obtained for the two largest physical
volumes, i.e. V � 1403 and � � 4:2, 5.0, with t in the
range �0; 3�fm. As can be seen in Fig. 5, the data are
well fitted using a sum of two functions of the type (17).
The corresponding fitting parameters are reported in
Table I. The averaged mass scales are �1 � 1:69�1�

����
#

p
�

745�5� MeV and �2 � 0:74�1�
����
#

p
� 325�6� MeV. One

can also obtain good fits of the data in the whole t range
by considering the Fourier transform of the sum of three
Stingl-like propagators in momentum space. These fits
(using 12 parameters) have been reported elsewhere [21].
It is evident that fits of the gluon propagator in real space
(see also [4]) require more parameters than fits in momen-
tum space. This is due to the fact that the infrared data, for
which the modeling is still not well understood, are spread
over the whole time interval by the Fourier transform done
in the evaluation of the temporal correlator C�t�.

Recently, it has been suggested [22,23] that the violation
of spectral positivity in lattice Landau gauge be related to
the quenched auxiliary fields used for gauge fixing. We
note that the fitting form proposed for C�t� in [23] (also
considering 5 fitting parameters) describes reasonably well
our data up to t � 3 fm—yielding a light-mass scale of
about 1:14

����
#

p
� 500 MeV—but cannot account for the

oscillatory behavior observed at very large separations.
IV. CONCLUSIONS

Using data from the largest lattice sides to date, we
verify explicitly (in the 3d case) the violation of reflection
positivity for the SU�2� lattice Landau gluon propagator.
This is one of the manifestations of confinement discussed
in [1]. For very large separations (t > 3fm) the propagator
-4
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shows a clear oscillatory behavior, but of course one needs
a careful extrapolation to infinite volume in order to verify
if this behavior survives in that limit. In the scaling region,
the data are well described by a sum of Gribov-like for-
mulas, with a light-mass scale M � 0:74

����
#

p
� 325 MeV,

where # is the string tension. As a final comment, one
should always bear in mind that the Gribov-like propagator
may not represent the true analytic structure of the gluon
propagator, but it is illustrative of a possible mechanism of
051902
confinement for the gluons (see also the discussion after
Eq. (18b) in [24]).
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