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Crossing the phantom divide: Dark energy internal degrees of freedom
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Dark energy constraints have forced viable alternatives that differ substantially from a cosmological
constant � to have an equation of state w that evolves across the phantom divide set by �. Naively,
crossing this divide makes the dark energy gravitationally unstable, a problem that is typically finessed by
unphysically ignoring the perturbations. While this procedure does not affect constraints near the favored
cosmological constant model it can artificially enhance the confidence with which alternative models are
rejected. Similar to the general problem of stability for w< 0, the solution lies in the internal degrees of
freedom in the dark energy sector. We explicitly show how to construct a two scalar field model that
crosses the phantom divide and mimics the single field behavior on either side to substantially better than
1% in all observables. It is representative of models where the internal degrees of freedom keep the dark
energy smooth out to the horizon scale independently of the equation of state.
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I. INTRODUCTION

A self-consistent model for the dark energy requires not
only a parametrization of the evolution of its equation of
state in the background w � p=� but also a physical model
for its spatial fluctuations to guarantee gravitational stabil-
ity. Cosmological constraints on a constant equation of
state have continued to close in upon w � �1 (e.g., [1]).
Since models with w<�1 are called phantom dark energy
models (e.g., [2]), we call this the ‘‘phantom divide’’.
Viable alternate models for a strongly evolving w therefore
must cross the divide at intermediate redshift so that the
effects on either side cancel. Simple generalizations of a
single scalar field model that cross the divide in fact cause
severe gravitational instabilities in the dark energy sector
(e.g., [3]).

The usual approach in the literature for dealing with
such cases is to artificially turn off the dark energy pertur-
bations. Doing so violates energy-momentum conservation
whenever w � �1. The justification for dropping these
perturbations is that observations already place w close
to �1 and so the induced error is presumably small in some
physical realization of a crossing model. While true for the
currently allowed 1� deviations of �w� 0:1, the confi-
dence level at which larger deviations can be rejected can
be affected. Furthermore, a strong time evolution allows w
to differ substantially from �1 during some epochs and
still be consistent with the distance data. It is therefore
important to show explicitly that models exist where the
dark energy remains smooth as it crosses the phantom
divide as implied by the usual procedure.

The need for a self-consistent treatment of the evolution
of the dark energy is most apparent for the cosmic micro-
wave background. Here the ISW effect is sensitive to the
decay of the gravitational potential and, for example, the
difference between the smooth and clustered regimes of the
dark energy for a constant w � �2=3 is roughly 50%.
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While the impact for a canonical scalar field which is
smooth out to the horizon scale is lower, it is well known
[4] that it changes CMB predictions significantly for larger
w and hence the confidence level of constraints on highly
deviant w (e.g., [5]).

In this Brief Report, we explicitly construct a two scalar
field model of the dark energy that is gravitationally stable
across the phantom divide and matches the canonical
single scalar field predictions on either side to much better
than 1% in all observables. Taken literally, such a model of
course compounds the coincidence problem of dark energy
but as we shall show it is a proxy for a potentially wider
class of dark energy models whose internal degrees of
freedom keep it smooth out to the horizon scale.

II. INSTABILITY

It is well known that dark energy models beyond a
cosmological constant require internal degrees of freedom,
or the presence of non-adiabatic stress perturbations, to
remain gravitationally stable. This necessity arises from
momentum conservation. Consider the dimensionless mo-
mentum density �ui � T0

i of the dark energy stress tensor
T�

�. The scalar component in Fourier space (e.g., [6,7] for
a pedagogical treatment in the same notation)

� _u �
_a
a
�3w� 1��u� k�p� �1� w��kA; (1)

where 2A � �g00=g00 is the time-time perturbation to the
metric in an arbitrary gauge. Given dark energy fluctua-
tions that are internally adiabatic p��� (not to be confused
with adiabatic across all energy density components)

�p �

�
_p
_�

�
�� �

�
w�

1

3

d ln�1� w�
d lna

�
��;

where w � p=� in the background. Perturbations go un-
stable whenever the pressure response to a density fluctua-
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tion is negative or singular. The former occurs for adiabatic
pressure fluctuations if w< 0 and 1� w is slowly varying.
A viable dark energy candidate in this regime must contain
internal degrees of freedom that supply a non adiabatic
pressure. For a single scalar field with a canonical or non-
canonical kinetic term, this is achieved through separate
kinetic and potential contributions to the energy density
and pressure.

In this case, one defines a sound speed c2e, which relates
the energy density and pressure fluctuation of the kinetic
term [8] or equivalently of the zero momentum or constant
field gauge [9] and obtains

�p � c2e��� 3
_a
a
1

k

�
c2e �

_p
_�

�
�u: (2)

If the sound speed ce � 1 it determines the scale under
which the dark energy is effectively smooth through the
sound horizon

R
ceda=�a2H�. For the canonical kinetic

term ce � 1. More specifically, well above this scale, stress
gradients are negligible and the gravitational potential A �
� in the Newtonian gauge evolves as

� /

�
1�

H�a�
a

Z a

0

da0

H�a0�

�
: (3)

Well below this scale the dark energy is smooth and � / G
with

d2G

d lna2
�

�
5

2
�

3

2
w�a�DE�a�

�
dG
d lna

�

3

2
�1� w�a��DE�a�G � 0; (4)

where DE�a� � 8�G�=3H�a�2 and a � 1 is assumed
where no dependence is given. Note that in both limits,
the effect of the dark energy on the potential is solely a
function of its background energy density. The true degree
of freedom in a dark energy model is where this transition
occurs. Any physical solution to the instability problem
that matches a desired w�a� and transition scale will be a
fairly robust representation of the class of models. We will
use this fact below to replace the usual single scalar field
ansatz with two scalar fields.

A single scalar field does not generally solve the prob-
lem that _p= _� becomes singular as w evolves across the
phantom divide w � �1 with finite slope d�1�
w�=d lna � 0 since _p= _� still appears in Eq. (2). Stability
can obviously be achieved by an alternate ansatz for the
internal degrees of freedom. The simplest solution that
preserves the behavior of the single scalar field transition
scale away from the crossing point is to introduce multiple
scalar fields.

III. TWO FIELD MODEL

For definiteness, the target form of w�a� that we wish to
model with two scalar fields is

w�a� � w0 � �1� a�wa; (5)

where wa is a constant. For simplicity, we will take the two
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fields, denoted ‘‘�’’ and ‘‘�’’ to individually have con-
stant equations of state

w � �w �n: (6)

Note that this restriction to strictly constant equations of
state is not essential to the construction. Though a strictly
constant w for a rolling scalar field is unrealistic, scalar
field potentials do exist where the resultant equation of
state differs significantly from 1 but remains roughly
constant during the redshifts of interest [10]. In any case
the point of this explicit construction is to provide a cross-
ing model that is simple to implement in existing cosmo-
logical codes and does not violate energy-momentum
conservation. It is not intended to be a well-motivated
model.

The equations of state define the relative energy density
contributions as a function of redshift or scale factor

�

�DE
�a� �

1

2
�1 ��a��; (7)

where

��a� � �n �
�1� �2

n��1� �a=an�
6�n�

�1� �n� � �1� �n��a=an�
6�n

: (8)

Here �n � ��an� defines the ratio at a normalization epoch
an. This epoch should not be chosen as an � 1 since
variations in the equation of state locally leave no net
effect. Rather an � 3=4 is roughly the pivot point where
variations in the equation of state make the maximal effect
on the high and low redshift observables. We will adopt
this value as the matching point between the two field
model and the target w�a�.

With equal sound speeds in the two components, the
pressure fluctuation becomes

�p�c2e���3
_a
a
1

k
�c2e�u�w���u��w���u��; (9)

Here � � �� � ��, p � p� � p�, �u � ��u� � ��u�
which all contain no singularities at the crossing.

The model dark energy equation of state becomes

wmod�a� � �w� ��a��n (10)

and at the normalization point wn � �w� �n�n. Likewise
at the normalization point the derivative of w is

wa � �
dwmod

da

��������an

�
3

an
�2n�1� �2

n�: (11)

Thus wa > 0 if �2
n < 1. A negative derivative is possible if

�2
n > 1, i.e., if the �� < 0.
The two field model has 3 parameters �w, �n and �n. The

target model has 2 parameters w0 and wa, leaving one
adjustable parameter to improve the performance of the
parametrization. Choosing this parameter to be �n defines
the other two in terms of w0, wa and �n

�w � w0 � �1� an�wa � �n�n; (12)
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FIG. 1 (color online). Target versus two field model behavior
of w and the dark energy observables relative to a fiducial �
model (dotted line, see text). Even in this nearly worst case
scenario where w crosses the phantom divide near the pivot point
a� 3=4 or z� 0:3, the model reproduces the observables to
0:1% accuracy for wa > 0 and only a factor of a few larger for
wa < 0.

BRIEF REPORTS PHYSICAL REVIEW D 71, 047301 (2005)
and �n

�n �

�
1�

waan
3�2n

�
1=2

: (13)

We now choose �n to satisfy several criteria. Firstly, as
wa ! 0 the two field model should reduce to a single field
so as to exactly match the standard dynamics. Secondly,
the two field model should match a sufficiently wide range
of �wmax <wa < wmax. We will take wmax � 1. Finally, it
should minimize higher order derivatives.

To satisfy the first condition, �n should scale as a power
of wa at least near wa � 0. Combined with the second
criteria,

�n �
�
anwmax

3

�
1=2

�������� wa

wmax

��������
�1�p�=2

; �wa > 0� (14)

since wa is maximized at �n � 0.
The final condition is that higher order derivatives such

as

waa �
d2w

da2
�

1� 6�n�n
an

wa (15)

should be minimized insofar as possible. At large wa this is
ensured by keeping �n�n small. A good choice to minimize
these higher order derivatives is to take p � 1=10. For
wa < 0, �n > 1 and so one must restrict the values of �n.
We take

�n ! max��n; 0:1�; �wa < 0�: (16)

Since 1� �2
n is unbounded from below, this restriction still

allows large negative wa in Eq. (11) while preserving the
single field correspondence for wa ! 0 from below.

To complete the modelling we match the physical en-
ergy density (i.e., not relative to critical) at the normaliza-
tion epoch an � 3=4. To scale the dark energy density of
the target dark energy model Eq. (5) we write �DE�an� �
DE�critgDE, where

gDE � a�3�1�w0�wa�
n e�3�1�an�wa (17)

and analogously introduce

g � a�3�1�w�
n : (18)

Thus given a target model with an energy density relative
to critical of DE and Hubble constant parametrized by
H0 � 100h km s�1 Mpc�1, the two field model has an
effective Hubble constant he�

he
h

�
2
� DEgDE

�
1� �n

2g�
�

1� �n

2g�

�
� 1�DE (19)

and density relative to critical defined by that Hubble
constant of

 � DEgDE
1 �n

2g

�
he
h

�
�2
: (20)

Although this construction is completely phenomeno-
logical and hence physically contrived, the general point is
that once a close matching of w�a� to some target has been
achieved with multiple scalar fields, the scalar field dy-
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namics will make the predictions in both the smooth and
clustered regimes robust to reparametrization.
IV. DISCUSSION

In Fig. 1 we show examples of the performance of the
model on the dark energy observables of comoving dis-
tance D�z�, Hubble parameter H�z� and linear growth rate
G�z� in the smooth dark energy regime (see Eq. (4) for
strong variations in the equation of state wa � 0:5. To
better show the relevant performance we choose w0 such
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FIG. 2 (color online). Model predictions for the CMB anisot-
ropy power spectrum relative to a fiducial �CDM model. For
models that do not cross the phantom divide, e.g., w0 � �1,
w � 0:5, the two field model matches the single field predictions
to 0:1%. For crossing models that mimic a cosmological constant
by having wn � �1, e.g., w0 � �1:15, w � 0:5, the deviations
are essentially indistinguishable.
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that wn � �1 and plot the observables relative to a nearly
degenerate fiducial � model of DE � 1�m � 0:74
and h � 0:735 which is a good fit to the current CMB
data. In all cases we adjust the DE of the target model to
match the comoving angular diameter distance to recom-
bination and hence the CMB peak results. Note that for
wa > 0, despite a mismatch in w at very high redshift, all
observables as a function of redshift are modeled to the
0:1% level. The performance for wa < 0 is somewhat
worse but never exceeds a few times this level. Thus the
two field model will remain an adequate parametrization
until the statistical and systematic errors in the dark energy
observable measurements reaches the sub 1% level.
Mismatches at this point merely reflect the unavoidable
fact that higher order derivatives in w�a� produce observ-
able effects and our target constant wa model is itself
inadequate. Even in this regime the two field model can
be useful since the parameter �n can be used to marginalize
or probe the second derivative.

The two field model allows one to also calculate the
CMB anisotropy. For a case with no crossing of the divide,
e.g., wa � 0:5, w0 � �1, the single field model with the
exact w�a� matches the two field model with the approxi-
mate w�a� to �0:1%, in particular at the low multipoles of
the ISW effect (see Fig. 2). In addition to the adequate
matching of w�a�, this indistinguishability is a conse-
quence of setting all of the sound speeds to ce � 1.
Aside from w�a� the remaining degrees of freedom in a
dark energy model involve the transition scale between the
smooth and clustered regimes. We also show the predic-
tions for a model that does cross the phantom divide wa �
0:5, w0 � �1:15. As this model has an equation of state at
the normalization point of wn � �1:025, it predicts even
smaller deviations from the fiducial w � �1 model with
no instabilities in the evolution of the gravitational
potential.

The model constructed here permits a self-consistent
likelihood analysis of dark energy observables involving
both models that cross the phantom divide and those that
differ strongly from � in the pivot wn. Although predic-
tions for the former class models differ little from the
currently favored smooth cosmological constant case, the
confidence level at which the latter can be excluded can be
affected by a consistent model of dark energy clustering. A
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detailed study of the effect on current cosmological con-
straints is beyond the scope of this Brief Report.

If future observations require an evolutionary crossing of
the phantom divide, it will be a good indication that the
dark energy contains hidden internal degrees of freedom in
its physical structure.
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