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We analyze, in the framework of AdS/CFT correspondence, the gauge theory phase structure that is
supposed to be dual to the recently found nonsupersymmetric dilatonic deformations to AdS5 � S5 in type
IIB string theory. Analyzing the probe D7-brane dynamics in the backgrounds of our interest, which
corresponds to the fundamental N � 2 hypermultiplet, we show that the chiral bi-fermion condensation
responsible for spontaneous chiral symmetry breaking is not logically related to the phenomenon of
confinement.

DOI: 10.1103/PhysRevD.71.046003 PACS numbers: 11.25.Tq, 11.30.Qc, 11.30.Rd, 12.38.Aw
I. INTRODUCTION

Quantum chromodynamics (QCD) is believed to de-
scribe hadrons in the universe. While much of its pertur-
bative dynamics is by now fairly well understood, it is still
hard to analyze, in convincing ways, many nonperturbative
phenomena that are relevant in the low energy regime.
Among these are the confinement of quarks and the spon-
taneous breaking of their (approximate) chiral symmetry
(S�SB). Although these two aspects of QCD have their
same origin in strongly interacting dynamics, there has not
been found any logical connection between the two phe-
nomena. In this paper, we provide, in our belief, one
convincing example showing the logical separation be-
tween confinement and S�SB. Our analysis seems to sug-
gest that spontaneous chiral symmetry breaking of
massless quarks may happen without any need of a con-
fining potential between them.

Our analysis is based on the proposal of AdS/CFT
correspondence, in which Type IIB string theory on
AdS5 � S5 background is equivalent to the N � 4 SYM
theory on the boundary of AdS5 [1]. The duality between
the two descriptions is supposed to hold even at the level of
Hilbert spaces of their corresponding quantum theory;
(semiclassical) deformations of AdS5 � S5 which vanish
asymptotically at the boundary correspond to some quan-
tum states in the dual gauge theory [2,3]. Depending on the
deformations in the bulk that we are considering, these
states share several interesting properties with the usual
vacuum states of realistic gauge theories, such as homoge-
neity over space and nonvanishing gluon condensation, etc.
Henceforth, studying confinement and S�SB on these
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states may give us an important laboratory for unraveling
the relation between the two phenomena.

The deformed backgrounds of our interest are a family
of dilatonic deformations of AdS5 � S5 that were found in
Ref. [4]. A nice fact about these solutions is the existence
of a single adjustable parameter, k=�, which enables us to
scan a range of corresponding quantum states. In the gauge
theory side, this parameter represents the ratio of the gluon
condensation to the energy density of the quantum states.
The analysis in Ref. [4] showed that, for k=� <�12, the
potential between (heavy) quark/antiquark pair is confin-
ing, while states of k=� >�12 were argued to exhibit
Coulomb-like behavior. However, in Sec. III, we perform a
more careful study for the cases of k=� >�12 to find the
screening phase instead for them. We also look at the
response to magnetically charged objects and get an inter-
esting phase structure.

To study S�SB on these background states, a small
number of light quarks/antiquarks are introduced à la
Karch and Katz in Sec. IV; probe D7-branes [5]. They
are Nf, N � 2 hypermultiplets in fundamental represen-
tation of the SU�N� gauge group, and their effect to N �
4 SU�N� SYM dynamics may be neglected in the N � Nf
limit via quenched approximation. The D7 probe for study-
ing S�SB was analyzed first in [6], and its use also for
hadron physics [7–11] is by now a well-established method
in the literature (see [12–16] for other setups of introduc-
ing flavors). From a careful numerical work, we seem to
find convincing evidence that S�SB persists in the region
of our parameter space in which the confinement no longer
exists. Therefore, on the basis of validity of the AdS/CFT
correspondence, it is clear that some states in large N
N � 4 SYM theory, which have nonvanishing gluon
condensation, serve as a rare ground for logical separation
between S�SB and confinement. We summarize and con-
clude in Sec. V.
-1  2005 The American Physical Society
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II. BULK SOLUTIONS: DILATONIC
DEFORMATION IN AdS5 � S5

In Ref. [4], a family of nonsupersymmetric solutions of
type IIB supergravity with asymptotic AdS5 � S5 geome-
try was found by turning on generic dilaton deformation to
the maximally supersymmetric AdS5 � S5 background.1

(For an earlier example, see [18,19].) Analytic solutions
are available only for the cases in the Poincaré patch,
which preserves the R� ISO�3� � SO�6� subgroup of
the full SO�2; 4� � SO�6� symmetry of AdS5 � S5.
Explicitly, these solutions are

ds2 � �y� b��1�a�=4�y� b��1�a�=4
�
�

�
y� b
y� b

�
dt2

�
dy2

16�y� b��5�a�=4�y� b��5�a�=4
� d~x2

�
� d�25;

� � �0 �
k
8b
log

�
y� b
y� b

�
; F5 � Q�!5 � �!5�;

(2.1)

where the metric is in the Einstein frame and we let the
AdS radius be unity for simplicity. Here Q is the constant
that counts the number N of D3-branes, d�25 and !5 are
the metric and the volume form of unit five sphere, respec-
tively. Clearly, the S5 part of the original AdS5 � S5 is
intact and the SO(6) R symmetry of the N � 4 SYM
theory is unbroken at this level. The parameters a and b
are defined in terms of two quantities, k and �:

a 	

�
1�

k2

6�2

�
��1=2�

; b 	
�
2

�
1�

k2

6�2

�
1=2
: (2.2)

The solutions have a timelike naked singularity at y � b.
Up to overall scaling, these solutions are parametrized by
essentially a single variable k=�. They can be thought of as
describing some quantum states in the bulk AdS5 space-
time, because their deformations to the maximally super-
symmetric AdS5 � S5 solution decay sufficiently fast as
we approach the boundary. According to AdS/CFT corre-
spondence, we therefore interpret them as the dual geome-
tries of some quantum states of the N � 4 SYM gauge
theory living on the boundary R1;3.

An element of the standard AdS/CFT dictionary gives us
important information about these quantum states in the

gauge theory. In terms of the coordinate r defined by r2 ���
b
2

q
es and y � b cosh�2s�, the bulk metric goes to the

standard AdS5 � S5 metric for large r, and r becomes the
usual radial coordinate of asymptotic AdS5. The dilaton
1It is also possible to have solutions with the axion field turned
on, but these solutions are readily obtained from the current ones
by SL�2; Z� action. See also Ref. [17] for the nonsingular class of
dilatonic deformation in AdS5.
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field then asymptotes to

� � �0 �
k
8b
log

�
y� b
y� b

�

�0 �

k
4

1

r4
; (2.3)

which implies that the corresponding quantum states in the
gauge theory have a nonvanishing expectation value of
LCFT 
 �1=�2g2YM��trF

2:

hLCFTi �
k
4
: (2.4)

The ADM energy density of these states was calculated to
be proportional to �.
III. PHASES OF DUAL N � 4 SYM STATES:
CONFINEMENT VS SCREENING

The family of supergravity backgrounds in the previous
section with varying dilaton profile are supposed to de-
scribe some quantum states of N � 4 SYM theory on
R1;3. According to AdS/CFT dictionary, these states are
characterized by expectation values of trF2 and the
Hamiltonian density. Roughly, we have seen that

k

1

2g2YM
htr�F2�i �

1

2g2YM
htr� ~E2 � ~B2�i;

�

1

2g2YM
htr� ~E2 � ~B2�i � E;

(3.1)

where we denote the energy density by E. Though these
states are quantum states of the superconformal N � 4
SYM theory, they have certain properties that mimic those
of interesting vacuum states of more realistic gauge theo-
ries; they are homogeneous over spatial R3 and have non-
vanishing gluon condensation. The latter property has long
been suspected of being one of the crucial characteristics of
QCD vacuum [20]. It is thus a meaningful endeavor to
study quantum structure of these states and talk about their
‘‘phases.’’ One has to bear in mind that the strength of the
gluon condensate here characterizes the macroscopic states
of the N � 4 SYM theory and works as a tunable
parameter.

One of the key aspects of a given phase of gauge theory
is how it reacts to external charges. In the screening phase,
external charges are compensated by conducting currents,
and subsequently screened within some characteristic
length scale. Equivalently, the gauge boson gets massive
and does not propagate beyond its mass scale. On the other
hand, the confining phase does not break gauge symmetry
and charge conservation. Instead, electric flux is confined
to a narrow string, resulting in a linear potential between
two charges. One of the most profound observations in
gauge theory is that magnetic screening due to condensa-
tion of a magnetically charged object leads to electric
confinement and vice versa. However, there is a caveat
here; that is, if there is also a condensation of electrically
charged object at the same time, electric confinement will
-2
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be ruined. In this case, the most plausible expectation is
that both electric and magnetic charges are screened.

In this section, we analyze the response of our states of
N � 4 SYM theory to various types of external charges,
and find some aspects of interesting phases that we dis-
cussed in the above. In the spirit of AdS/CFT correspon-
dence, external charges are described by stretched strings
in the supergravity background to the boundary [21,22].
The Wilson line expectation value is obtained from the
effective world-sheet dynamics of the stretched strings in
the supergravity background. For electric charges, the
world-sheet dynamics is dictated by F1 Nambu-Goto ac-
tion, while magnetic or dyonic cases will be described by
D1–Dirac-Born-Infeld(DBI) action with/without world-
sheet gauge flux turned on.

A. Electric confinement/screening transition

Electric confinement in the above dilatonic backgrounds
has been shown to occur in Ref. [4] for k=� <�12. A
Nambu-Goto string stretched between a heavy quark/anti-
quark pair through the bulk corresponds to the Wilson loop
in the dual gauge theory side [21,22]. In the large AdS
radius limit, the string behaves classically and one may get
the interaction potential via classical analysis of the
Nambu-Goto string dynamics. Here we would like to ana-
lyze more general cases including magnetic charges as
well.

To deal with the general �p; q� string, let us begin with
the Dirac-Born-Infeld action,

S � �
1

2$%0

�
Z
d&d'e��

���������������������������������������������������������������������
�det�g�(@aX

�@bX
( � 2$%0Fab�

q
;

(3.2)

where g�( is the string frame metric which is related to the
Einstein frame metric by

g�( � e�=2gE�(: (3.3)

Denoting

M � �det�g�(@aX
�@bX

(�; (3.4)

the Lagrangian density may be written as

L � �
1

2$%0e�

�������������������������������
M� �2$%0E�2

q
; (3.5)

where E � F01. Let us introduce the displacement D by

D �
@L
@E

�
2$%0E

e�
�������������������������������
M� �2$%0E�2

p : (3.6)

D is conserved and @'D � 0; one may obtain an equiva-
lent description of the system by the Legendre transforma-
tion,
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L 0 � �DE�L � �
1

2$%0e�

�������������������������������
M�1� e2�D2�

q
(3.7)

by eliminating E using (3.6). The displacement D counts
the number of fundamental strings immersed and it is
quantized to take an integer value, which we denote as p.
Using the Einstein frame metric, the above Lagrangian
density may be written as

L � �
1

2$%0

�
Z
d'

��������������������������������������������
�det�gE�(@aX

�@bX
(�

q �������������������������������
p2e� � q2e��

q
;

(3.8)

where we also introduced an integer q counting the number
of D strings. The derivation of the �p; q� string action here
is only for q � 1, but we generalize it for an arbitrary q.
From the above action for the �p; q� string, the S duality of
the IIB string theory is manifest. Namely, the above is
invariant under the transformation,

g0E�( � gE�(; �0 � ��; p$ q: (3.9)

Note that in our dilaton-deformed solutions, the S duality
corresponds to simply changing k! �k and �0 ! ��0.
From this S duality transformation, it is clear that magnetic
charges are confined for k=�> 12, as electrically charged
quarks are confined if k=�<�12.

To see the details of the interaction and the phase
structure, let us assume that the �p; q� string is static and
choose the gauge & � t and ' � y. We shall consider the
case where the �p; q� string trajectory is independent of x2
and x3. The �p; q� string Lagrangian then becomes

L � �
����
,

p Z
dy

��������������������������������������������������������
A�y��B�y� � C�y��dx=dy�2�

q
; (3.10)

where , � g2YMN is the t’Hooft coupling and

A�y� � �y� b��1�3a�=4�y� b��1�3a�=4
�
p2e�0

�
y� b
y� b

�
k=8b

� q2e��0
�
y� b
y� b

�
��k=8b�

�
;

B�y� �
1

16�y� b��y� b�
;

C�y� � �y� b��1�a�=4�y� b��1�a�=4:

(3.11)

The computation showing heavy quark confinement fol-
lows closely the one in Ref. [4]. The equation of motion,

d
dy

� ����
A

p
Cdx=dy��������������������������������

B� C�dx=dy�2
p �

� 0; (3.12)

may be integrated once, and one gets����
A

p
Cdx=dy��������������������������������

B� C�dx=dy�2
p � �q�2; (3.13)
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with an integration constant q2. To understand the dynami-
cal implication, we rewrite (3.13) in the form�

dy
dx

�
2
� V�y� � 0; (3.14)

with the potential

V�y� �
C
B
�1� q4AC�: (3.15)

This can be viewed as a particle moving in one dimension
under the potential V, regarding the coordinate x as the
‘‘time.’’

The confinement occurs when the ‘‘particle’’ spends an
arbitrarily large time when it approaches the turning point
denoted by y0. At the turning point, one has dy=dx � 0 and
thus V�y0� � 0, which implies that

q40A�y0�C�y0� � 1; (3.16)

for an appropriate choice of the integration constant q �
q0. The condition of spending arbitrarily large time is
fulfilled if V0�y0� � 0. This leads to

�AC�0jy�y0 � 0; (3.17)

where the condition V�y0� � 0 is used.
Let us first consider the case of a �1; 0� string connecting

the electrically charged quark/antiquark pair. In this case,
the latter condition is solved by

y0 � �ab� k=4: (3.18)

For the existence of the solution in the range y 2 �b;1�,
one has to impose

y0 � b � �ab� k=4� b 	 2b/> 0; (3.19)

which is equivalent to

k
�
<�12: (3.20)

Then V�y0� � 0 is satisfied by choosing the integration
constant q as

q40 �
1

2b
//�1� /���1�/�e��0 : (3.21)

For small q, the separation between the quark/antiquark
pair is of the order of q according to the IR/UV relation.
The energy scale here is much higher than that of the
confinement. Thus the quark/antiquark potential for suffi-
ciently small separation is of Coulomb type as expected.

When /> 0 and q approaches q0 from below, the string
spends more and more time near the turning point y
 y0.
The separation between the quark and antiquark becomes
larger and larger as one sends q to q0 from below, because
the time spent near the turning point increases more and
more.

In the limit q! q0, we can compute the tension of the
string and the energy scale of confinement. The energy of
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the string is given by

Es �
����
,

p Z
dy

���������������������������������������
A�B� C�dx=dy�2�

q
�

����
,

p Z
dx

����������������
q4A2C2

q
;

(3.22)

where we have used the equation of motion. The integral in
fact diverges and one may regulate it by subtracting the
self-energy of quark and antiquark.

Since q40A�y0�C�y0� � 1 and the string stays near the
turning point for most of the time, we find from (3.22) the
tension of the confining string to be

TQCD �
����
,

p �����������������������
A�y0�C�y0�

q
�

����
,

p
q�20

�
�������
,�

p �1� /��1�/�=2���
a

p
//=2

e�0=2: (3.23)

This sets the scale of confinement. Our result agrees with
the previously calculated one in the �! 0 limit [23].

B. Screening

In the analysis of Ref. [4], the region of k=�>�12
corresponding to /< 0 was not carefully analyzed be-
cause the paper was mainly concerned only about the
existence of confinement phenomena. We would like to
show that this region corresponds, in fact, to the screening
phase. In this region the potential V always has a turning
point beyond which the singularity is located. This feature
of inaccessibility to the singularity is true for all values of
the integration constant q2. One may ask the following.
May an infinitely large separated quark/antiquark pair be
connected through this string solution, by adjusting the
integration constant q? The answer turns out to be no.
Namely, there is an upper limit on the separation length
between the quark and antiquark pair in the above solutions
of string configuration.

To show this, let us first note that the separation length is
given by

L � 2
Z 1

y?
dy

1��������
�V

p � 2
Z 1

y?
dy

����
B

p

����
C

p ���������������������
q4AC� 1

p ; (3.24)

where y? is the turning point. For small q satisfying the
condition e�0bq4 � 1, the turning point y? 
 1=�e�0q4� is
much larger than b and, thus, the potential V may well be
approximated by

V 
 16y5=2�1� e�0q4y�: (3.25)

Then the separation is approximately given by

L

e�0=4q
2

Z 1

1

dt

t5=4
1�����������
t� 1

p : (3.26)

This is the case of sufficiently small separation and the
expression for the separation is essentially the same as the
one for the strings in the pure AdS case, because the strings
-4
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are staying in the near boundary region of the asymptoti-
cally AdS space.

To study the upper limit on the separation distance, one
should look at the large q behavior of L. When e�0bq4 �
1, the contribution of the integral from infinity to y� b �

O�b� is of order 1=�e�0=2q2�, which is small. The turning
point occurs in the regime y� b� b, and the contribution
from near the turning point reads as

4L � 2
Z
z?

dz

4z�5�a�=4�2b��5�a�=4
1��������������������������������������������

e�0q4zj/j�2b�1�/ � 1
q :

(3.27)

Thus we conclude that

4L
 q��3�a�=�2j/j�; (3.28)

which is negligible in the large q limit. Obviously, the
intermediate region contributes only of order one to the
integral. This shows that the separation has a maximum
value for some q, which we denote by Lmax.

What really happens if the separation of the external
quarks becomes larger than Lmax? In this case, the strings
follow the trajectory of the trivial solution, dx

dy � 0. The
strings from the boundary quarks and antiquarks are
stretched straight toward the singularity without any
change of x coordinate. Very near the singularity corre-
sponding to IR regime of the dual field theory, the strings
are joined by changing x coordinate. This situation is
depicted in Fig. 1. One may worry about the part of the
string very near the singularity. (This part describes the
physics of the field lines in the extreme IR regime of the
energy scale.) However, one may see that the contribution
to the energy of this part is zero at any rate. To see this, let
us first note that the energy integral of the configuration is
given by

Es �
����
,

p Z �����������������������������������
ABdy2 � ACdx2

q
: (3.29)

Since dy � 0 for the part of joining two different straight
strings,
boundary

singularity

FIG. 1. A string configuration touching the singularity repre-
sents the screening.
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Ejoint �
����
,

p Z �������
AC

p
dx �

����
,

p
L

�y� b�j/j=2

�y� b���1�/�=2

								y�b
� 0;

(3.30)

where in the last equality we have used the fact /< 0.
Thus, the boundary condition at the singularity does not
matter and the result of vanishing string energy has its own
validity despite the singularity.

From the above discussion, the nature of the interaction
is clear. The charges are not confined for k=� >�12.
When the separation becomes larger than Lmax, the
quark/antiquark potential diminishes, representing the phe-
nomenon of screening. Therefore we conclude that the
regime of k=� >�12 corresponds to a screening phase.

C. Confinement vs screening of heavy quarks

From the discussion above, one may expect that the
system shows the phase transition as one varies the pa-
rameter k=� by adjusting k or �. At k=� � �12, the
system undergoes the phase transition between a confine-
ment phase and a screening phase for heavy quarks. The
appearance of the tension of the electric-flux string in the
confining phase may serve as an order parameter. At the
critical point of the k=� � �12 or /! 0 limit, the
electric-flux string tension takes a finite value of

TQCD � 5
�������
,�

p
e�0=2: (3.31)

Namely, the tension jumps to the finite value at the phase
transition. This may be understood as follows. Because of
the Gauss law, the total electric flux around charges should
remain preserved irrespective of confinement or screening.
Then, when quarks are confined by the transition, the
electric-flux lines form a linear tube and the finite tension
simply comes from the existing energy of the field profile.
Thus, the tension should start with a finite value.

D. Doubly screening phase

In this subsection, let us consider the response of D-
strings describing the interaction between magnetically
charged objects. From the Lagrangian in (3.8), the dynam-
ics of �1; 0� strings for a given k is mapped into �0; 1�
strings with �k. Thus, without further computation, one
may see that magnetically charged quarks are confined
when k=�> 12 and screened otherwise.

The full phase structure is drawn in Fig. 2. Region I with
k=�<�12 describes the phase where the electrically
charged quarks are confined. Then the magnetically
charged objects should be screened, which is indeed the
case as discussed above. Region III with k=�> 12 corre-
sponds to the phase where magnetic charges are confined
while quarks are screened. This corresponds to the S dual
of the region I.
-5
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k/ µ = −12

III

II

I

D1F1

magnetic confinement

doubly screening

electric confinement

FIG. 2. The full phase diagram.

2We use the notation xi � xi for the spatial coordinates.
3By chiral symmetry, we mean a chiral U(1) symmetry which

we discuss more in Sec. IV C.
4From now on, we set �0 � 0 because it plays no special role

except the trivial overall scaling.
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Region II with �12< k=�< 12 describes the phase
where both the quarks and magnetic charges are screened,
which we call ‘‘doubly screening phase.’’ As far as we
know, there were no such examples previously where both
the electric and magnetic charges are screened.
Presumably this phase structure is possible due to the
S-duality symmetry of the underlying N � 4 SYM
theory.

IV. SPONTANEOUS CHIRAL SYMMETRY
BREAKING: D7 PROBE ANALYSIS

A. Generalities

A few Nf D7-branes parallel to a stack of large number
N of D3-branes introduces Nf fundamental N � 2 hyper-
multiplets in the low energy gauge dynamics on D3-branes.
For N large enough, N � Nf, back reaction of the D7-
branes to the near horizon limit of supergravity background
may be irrelevant, and the low energy gauge dynamics on
D3-branes with N � 2 fundamental hypermultiplets is
supposed to be dual to AdS5 � S5 with probe D7-branes
[5]. The open string dynamics on the probe D7-branes
corresponds to the dynamics of N � 2 hypermultiplets
in the ‘‘ambient’’ N � 4 SYM theory. This is because the
gauge theory interpretation of the probe approximation is
to take the quenched approximation neglecting effects of
hypermultiplets to the dynamics of N � 4 SU�N� SYM
with large N. However, it should be noted that these probe
N � 2 fundamental hypermultiplets experience full dy-
namics of N � 4 SYM theory.

In the D-brane picture in flat ten-dimensional spacetime,
let the D3-brane world volume span along f0123g, and the
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D7-brane along f012 345 67g directions. The distance be-
tween D3 and D7 in the transverse f89g space gives rise to a
mass term in the Lagrangian for hypermultiplets. More

specifically, the asymptotic value of w �
����������������
x28 � x29

q
for

large 72 � x24 � x25 � x26 � x27 of the D7 world volume
corresponds to the bare mass mf of the hypermultiplets.2

For the maximally supersymmetric configuration, w is
constant on D7 [for instance, D7 lies at constant �x8; x9� �
�w0; 0� while D3 is sitting at the origin]. However, for
nonsupersymmetric states such as those we are consider-
ing, w is generically a varying function of 7.

In the supergravity picture, it is not difficult to identify
the bare mass for the hypermultiplets in the framework of
AdS/CFT correspondence. The maximally supersymmet-
ric supergravity background in the near horizon limit is
AdS5 � S5 with the string frame metric
ds2 �
1

f�r�

 X3
��0

dx�dx�
!
� f�r�

 X9
i�4

dxidxi
!

�
r2

l2

 X3
��0

dx�dx�
!
�
l2

r2
dr2 � l2d�25; (4.1)
where r2 �
P9
i�4 x

2
i � 72 � w2 and f�r� � 4$Ngs

r2
� l2

r2
is

the warping factor. The world-volume profile of the probe
D7-brane in this background is simply given by identifying
the flat D-brane picture coordinate fxMg (M � 0; . . . ; 9)
with the coordinate fxMg in (4.1). For example, maximally
supersymmetric D7 lying on the plane �x8; x9� � �w0; 0�
fills the AdS5 part of fx�; rg for w0 � r <1, in addition to
wrapping the S3 cycle in the S5. The wrapped S3 is defined
by x24 � x25 � x26 � x27 � 72 � r2 � w20 and it vanishes at
r � w0, ensuring a smooth D7 world volume in AdS5 �
S5. Note that the D7-brane is absent in energy scales below
r � w0; this is consistent with the field theory expectation
that we should not find any hypermultiplet below its mass
scale mf � w0. Moreover, w0 is a free parameter repre-
senting a family of the D7 profiles; this gives us the free-
dom of changing the bare mass of hypermultiplets. An
especially interesting limit would be the chiral symmetry
limit3 of mf � w0 � 0.

For the nonsupersymmetric backgrounds of our interest,
it is possible to identify suitable coordinate fxMg that has a
natural interpretation of flat coordinate in the D-brane
picture. The string frame metric in this coordinate is4
-6
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ds2 �
�
r4 � 1

r4 � 1

�
k=�8b�

(
��r2 � r�2��1�3a�=2

� �r2 � r�2��1�3a�=2dx0dx0 �
1

r2

 X9
i�4

dxidxi
!

� �r2 � r�2��1�a�=2�r2 � r�2��1�a�=2d~x � d~x

)
; (4.2)

where r2 � �x24 � x25 � x26 � x27� � �x28 � x29� 	 72 � w2

as before. The above metric is obtained from (2.1) by
combining dy2 and d�25 with a change of variable y �
b cosh�2s� and r2 � es. The R1;3 coordinate fx0; ~xg has also
been rescaled appropriately. The singularity is now posi-
tioned at r2 � 72 � w2 � 1. The probe D7 world volume
covers x0; . . . ; x7 and its transverse position is given by
�x8; x9� � �w�7�; 0� without loss of generality. Hence, it
fills the (approximate) AdS5 space over w�0� � r <1
(equivalently 0 � 7 <1), and the wrapped S3 cycle in
S5 shrinks to zero at r � w�0�. As we have explained in the
previous paragraph, the field theory situation dual to this
configuration is a quantum state of N � 4 SYM with
N � 2 fundamental hypermultiplet in quenched approxi-
mation, whose bare mass is identified with mf � w�1�. A
family of profiles with varying w�1� allows us to tune the
bare mass and, in lucky cases, to get the chiral limit.

According to the AdS/CFT proposal, however, the bare
mass is not the only information we can extract from w�7�.
Viewing w�7� as an effective scalar field in the AdS5, its
asymptotic value at 7! 1 couples to some scalar opera-
tor in the field theory. We have actually identified this
operator; we have seen that w�1� couples to the mass
operator of the fundamental N � 2 hypermultiplet,

4LSYM � w�1�
Z
d2; ~QfQf � �H:c:�


 w�1��~qfLq
f
L � H:c:� � �bosonic�

� w�1� ,qfDq
f
D � �bosonic�; (4.3)

where we have introduced Dirac fermions,

qfD �

�
qfL

i'2�~qfL�
�

�
: (4.4)

The fermion mass operator is of dimension 3, and the AdS/
CFT dictionary tells us that its expectation value is encoded
in the coefficient of subleading 
 1

72 behavior of w�7� in

7! 1. Note that the bosonic piece in the above has a
vanishing expectation value in the symmetric phase. As we
have the freedom of choosing the bare mass w�1�, it is
possible to see interesting dependence of the bi-fermion
mass operator condensate on the bare mass parameter. In
the chiral limit, we may discuss about the occurrence of
spontaneous chiral symmetry breaking.
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B. A subtlety

In this subsection, we show that the expectation value of
the fermion mass operator for the hypermultiplet is pre-
cisely given by the coefficient of subleading 1

72 in w�7� as

7! 1. This is equivalent to a subtle question of choosing
correct field variable, from whose asymptotic behavior we
should read off the expectation value of the field theory
operator. This is a relevant caveat to care about because
w�7� has a highly nonstandard form of action functional in
AdS5 derived from the D7 DBI action. The relevant part of
the D7-brane DBI action is

SD7 � &7
Z
d8<e��

����������������������������������������������
� det

�
@xM

@<�
@xN

@<(
G�10�
MN

�s
; (4.5)

where G�10� is the ten-dimensional metric of (4.2), and the
dilaton profile is

e�� �

�
r4 � 1

r4 � 1

�
k=�4b�

: (4.6)

Choosing the gauge <i � xi (i � 0; . . . ; 7), and �x8; x9� �
�w�7�; 0�, we obtain the effective action for w�7�,

S

Z
d4x

Z 1

0
d773Z�72 � w2�

�����������������������
1�

�
dw
d7

�
2

s
; (4.7)

where Z�x� is a complicated function which goes to unity
for large x;

Z�x� �
�
1�

1

x4

��
x2 � 1

x2 � 1

�
k=�4b�

: (4.8)

Another fact that will be important for us later is Z0�x� 
 1
x3

for large x.
For a smooth D7 embedding, we need to impose the

boundary condition, dwd7 �0� � 0. In the asymptotic 7! 1

region, Z goes to unity and the solution of the equation of
motion behaves as

w�7� 
m�
C

72
: (4.9)

Naively, the 7 integration in (4.7) diverges because, for
large 7,

73Z�72 � w2�

�����������������������
1�

�
dw
d7

�
2

s



�
73 �

k
2b
1

7

�

�

�
k
2b

�2m2 � 1� � 2C2
�

�
1

73
� � � � ; (4.10)

and we need a suitable regularization procedure. However,
what we are interested in will be variations of the value of
(4.7) under changing w�1� � m and, for this purpose, it is
enough to regularize (4.7) by subtracting the value of it at
-7
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some fixed reference solution w0�7�;

SR 	
Z
d4x

Z 1

0
d773

"
Z�72 � w2�

�����������������������
1�

�
dw
d7

�
2

s
� Z�72

� w20�

�������������������������
1�

�
dw0
d7

�
2

s #
; (4.11)

which is now convergent due to (4.10). The standard AdS/
CFT correspondence is then

exp�iSR�m�� �

*
exp

 
i
Z
d4xm ,qfDq

f
D

!+
; (4.12)

where SR�m� is the above regularized action evaluated for
the solution of the equation of motion with w�1� � m.
Hence, we have

4SR�m�
4m

�
Z
d4xh ,qfDq

f
Di: (4.13)

In fact, it is not difficult to calculate the left-hand side of
the above relation. Suppose that w� 4w is the solution of
the equation of motion with �w� 4w��1� � m� 4m for
infinitesimal 4m. The variation of SR�m� is

4SR�m� �
Z
d4x

Z 1

0
d773

"
2wZ0�72 � w2�

�

�����������������������
1�

�
dw
d7

�
2

s
4w� Z�72 � w2�

dw
d7

d4w
d7�������������������

1� �dwd7�
2

q
#
:

(4.14)

The convergence of this expression may easily be seen
from the property Z0�x� 
 1

x3
, and we are allowed to per-

form integration by part for the second term. The resulting
integrand which is proportional to 4w vanishes because
w�7� satisfies the equation of motion, and the surviving
surface contribution at 7 � 1 is

Z
d4x lim

7!1

"
73Z�72 � w2�

dw
d7�������������������

1� �dwd7�
2

q 4w

#

�
Z
d4x��2C4m�; (4.15)

using 73 dwd7 
�2C and 4w
 4m for large 7. Comparing
with (4.13), we thus have

h ,qfDq
f
Di � �2C: (4.16)
C. The chiral symmetry U�1�c
In this subsection, we discuss more about the chiral U(1)

symmetry of the gauge theory we are considering. In fact,
it is clear in the D-brane picture of the D3-D7 system that
there must be a global U(1) symmetry which corresponds
to the rotation of D7’s position in the transverse �x8; x9�
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plane. [Recall that the D3-branes are aligned along f0123g,
while D7-branes are along f012 345 67g. Let us put N D3-
branes at �x8; x9� � �0; 0�, and Nf D7-branes at �x8; x9� �
�w1; w2�.] The distance between D3 and D7 introduces a
mass term for N � 2 fundamental hypermultiplets,

�w1 � iw2�
Z
d2; ~QfQ

f � H:c:
 �w1 � iw2� ,q
f
Dq

f
D

� �bosonic�:

(4.17)

The rotation �w1 � iw2� ! e2i%�w1 � iw2� of the D7-
brane’s position does not change anything on the D3-brane
world volume in the D-brane picture, and hence there
should exist a compensating chiral rotation which is a
global symmetry of the gauge theory. We should also
expect the same chiral symmetry in the nonsupersymmet-
ric backgrounds of our interest, because the solutions
preserve the SO�6� symmetry of S5, which includes
�x8; x9�-plane rotation as a subgroup.

Looking at the superpotential term,Z
d2; ~QfZQf �

Z
d2;tr�Z�X; Y��; (4.18)

where X; Y and Z are adjoint chiral superfields in N � 4
SYM theory (Z � X8 � iX9), it is easy to realize that this
symmetry is a R symmetry. From the D-brane picture, we
should assign charges 1 and 0 to Z and X; Y, respectively.
Then d2; has charge �1 (or ;% has charge 1

2 ), and this
forces us to take charge 0 for ~Qf and Qf. The reason
behind the R symmetry is clear; when we rotate D7-branes
in the �x8; x9� plane, the corresponding ten-dimensional
type IIB Killing spinor of the D3-D7 system with eight
real components also rotates accordingly.

Note that ~qf and qf both have charge � 1
2 under this

U�1�c. In terms of the Dirac spinor qfD, the charge is 12?
5 �

1
2 �

�1
0

0
1�, and a nonvanishing expectation value of h ,qfDq

f
Di

will break this chiral symmetry spontaneously. Although
U�1�c has a quantum anomaly which is proportional to
�Nf � C2�F�, where C2�F� is the Casimir invariant of
fundamental representation, it is negligible in the large
N, t’Hooft limit [24,25]. From the D-brane picture, it
comes as a surprise that there is an anomaly for U�1�c in
the effective field theory on D3, because this is a simple
coordinate rotation in the �x8; x9� plane. The resolution of
the puzzle lies in the fact that D7-brane sources a nontrivial
profile of RR-scalar C0 around it, such that rotation in the
�x8; x9� plane induces a shift monodromy of C0 field which
is exactly proportional to the number of D7-branes, Nf
[13]. The RR-scalar C0, however, couples to the D3-branes
by

C0
Z
tr�F ^ F�: (4.19)

Therefore, the shift of the ; parameter due to the field
-8
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FIG. 3. Numerical solutions for w�7� when k=� � �7 (or
k=b � �4:62). It is clear that the solution with m � 0, but C �

0, exists. The line 72 � w2 � 1 is the position of the singularity.
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theory anomaly of U�1�c rotation is precisely canceled by
the shift monodromy of the bulk field C0, and the total
anomaly is absent in the whole system. This may well be
called an example of anomaly inflow5 (see also [26] for a
related discussion).

D. Separation between S�SB and confinement

The equation of motion for w�7� from the effective
action (4.7) is somewhat complicated, and does not seem
to have any analytic solutions. We have performed numeri-
cal analysis for solving the equation of motion, and have
identified the asymptotic data, m and C, for each solution.
In the previous subsections, we have seen that m corre-
sponds to the bare mass of N � 2 fundamental hyper-
multiplets, while C is directly proportional to the
condensate of the bi-fermion mass operator for the hyper-
multiplets. Hence, a solution whose asymptotic behavior is
characterized by m � 0, but C � 0, signals that chiral
symmetry is spontaneously broken in the gauge theory
living on the boundary.

The effective action (4.7) for the probe D7-brane has a
parameter

k
b
� 2

�
k
�

��
1�

k2

6�2

�
��1=2�

; (4.20)

representing a family of bulk type IIB supergravity back-
grounds, which in turn correspond to a family of homoge-
neous quantum states of N � 4 SYM theory with N � 2
hypermultiplets in AdS/CFT correspondence. In Sec. II,
we analyzed ‘‘phases’’ of these states and observed that
their phase structure is sensitive to the value of k=�
(equivalently, k=b). Specifically, for k=�<�12 (k=b <
�4:8), we have an electric confinement, while for k=� >
�12 (k=b >�4:8), magnetically charged objects are con-
fined. An interesting phase seems to happen for �12<
k=�<�12 ( � 4:8< k=b <�4:8), in which both elec-
tric charges and magnetic charges are screened.

The existence of spontaneous chiral symmetry breaking
(S�SB), that is whether there is a solution with m � 0 but
C � 0 in the bulk, also depends on the parameter k=� (or
k=b). Our numerical study shows that there is such a
solution for k=� <�2:97 (or k=b <�3:78). As an exem-
plar case, Fig. 3 is describing solutions with varying
w�1� � m when k=� � �7 (or k=b � �4:62). It is evi-
dent from the figure that the value of C does not vanish for
the solution with m � 0. What happens when k=� >
�2:97 (or k=b >�3:78) is that solutions start to meet
the singularity at 72 � w2 � 1 as we lower the value of
m. We thus cannot extract useful information for these
cases.

The above analysis has a profound implication. For
�12< k=�<�2:97 (or �4:8< k=b <�3:78), the cor-
responding quantum states of the gauge theory are in the
5We thank Jaemo Park for a discussion on this.
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screening phase, while massless fermions of fundamental
representation form a nonvanishing bi-fermion condensa-
tion. This contradicts a prevailing lore that bi-fermion
condensation would require a confining potential between
two charges. On the basis of the AdS/CFT correspondence
for probe D7-branes, we thus claim to have provided the
first example of separation between spontaneous chiral
symmetry breaking and confinement.
V. CONCLUSION

In this work, we have considered dilatonic deformations
of AdS geometry that are dual to some quantum states of
the N � 4 SYM theory with nonvanishing gluon conden-
sation, k, as well as homogeneous energy density �. As
varying the parameter k=�, we have identified the phases
of these states by studying the interaction between quarks/
antiquarks and also between magnetically charged objects.
The regime k=�<�12 is electrically confining, where
quarks are confined and magnetic charges are screened.
The opposite regime of k=�> 12 corresponds to the
S-dual transformed phase, where magnetic charges are
confined. For �12< k=�< 12, interestingly both funda-
mental quarks as well as magnetic charges are , whose
phase we call doubly screening phase.

We then introduced the probe D7-branes and studied
possible spontaneous chiral symmetry breaking. The N �
2 fundamental hypermultiplet arising from the D3-D7
strings possesses the classical chiral U�1�c, which suffers
from quantum anomaly. However, we are working in the
large N limit of D3-branes and the effect of the anomaly
may be ignored. By studying the D7 moduli dual to the
fermion mass operator of the hypermultiplet, we have
shown that there is a nonvanishing bi-fermion condensate
in the zero-mass limit, leading to the spontaneous breaking
of the chiral symmetry. We demonstrated that this happens
even within the screening phase with no confinement.
-9
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It is our hope that the conclusions we have drawn from
analyzing these states of N � 4 SYM theory reflect some
truth of generic confining gauge theories. At least, it seems
to suggest that spontaneous chiral symmetry breaking does
not necessarily require confinement.
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