
PHYSICAL REVIEW D 71, 045012 (2005)
Fuzzy sphere: Star product induced from generalized squeezed states
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A family of states built from the uncertainty principle on the fuzzy sphere has been shown to reproduce
the stereographic projection in the large j limit. These generalized squeezed states are used to construct an
associative star product which involves a finite number of derivatives on its primary functional space. It is
written in terms of a variable on the complex plane. We show that it actually coincides with the one found
by Gross and Presnajder in the simplest cases, endowing the later with a supplementary physical
interpretation. We also show how the spherical harmonics emerge in this setting.
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I. INTRODUCTION

The study of noncommutative structures in physics was
initially motivated by the idea that they may provide a
geometric regularization of the divergences encountered in
field theory. This has been fulfilled in some models, the
most prominent being the fuzzy sphere [1,2]. The interest
in this field of theoretical physics has been recently boosted
by the realization that such spaces emerge naturally in
string theory and matrix models [3]. These spaces also
provide models in which Lorentz symmetry is true only
at low energies. But, they possess a robust mathematical
structure which makes them more elegant and more pre-
dictive than ad hoc models.

Contacts with experiments and observations are difficult
for two major reasons. The first one is that the mathemati-
cal difficulties encountered when studying such spaces has
essentially led to restrict the attention to toy models. The
case of the noncommutative flat Minkowski space is of
course the most important exception, thanks to the fact that
one can then make a rotation which keeps all the fuzziness
in one plane. It was recently proposed that modified dis-
persion relations similar to the ones inferred from the fuzzy
sphere could be of some help when tackling the problem
posed by the gamma ray bursts [4]. Although this idea has
been proposed in some ad hoc models, the fact that a fuzzy
structure can have testable predictions is interesting.

The topics related to noncommutativity are numerous.
For example, their stability when they are obtained from a
matrix model is the focus of many recent works like [5] and
so are the U.V/I.R mixing [6], the links with string theory
[7], the properties of their solitons [8] and the behavior of
exotic particles like anyons [9].

The star product is one of the key ingredients in non-
commutative theories [10]. It allows a simple formulation
of field theory on fuzzy structures. The most famous is the
one obtained by Moyal [11–13] on a noncommutative
plane. When studying quantum field theory (QFT) on this
address: muso@ictp.trieste.it
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space, a simple prescription consists in replacing all ordi-
nary products by their star counterparts.

In this paper we derive a star product on the fuzzy
sphere. This has been done by many authors [14–29] and
in various ways. Our approach is essentially close to the
one used by Alexanian, Pinzul, and Stern [30] in the sense
that it relies on the integral approach using generalized
coherent states. The first difference relies in the states used.
The basis of our construction is provided by the general-
ized squeezed states found in [31]. They were obtained by
relaxing the Heisenberg uncertainty and were shown to
reproduce the stereographic projection in the large j limit.
The second difference is the fact that we can show how the
star product so built, although it contains an infinite num-
ber of derivatives at first sight, this is not the case when it
acts on its primary functional space, which by definition
contains the mean values of all the operators of the fuzzy
space on the generalized coherent states. This character
resembles the one displayed by the star product obtained in
[14]. Although our formulation relies on a single complex
variable rather than three dependent real ones, we will
show that the two products are actually the same, at least
when noncommutativity is strong.

This paper is organized as follows. The second section
summarizes the properties of the generalized squeezed
states which will be needed in this work. In the third
section we give a short reminder of the integral form of
the star products built from generalized coherent states.
The fourth section is devoted to the application of this
formalism to the two dimensional fuzzy sphere. We then
derive a finite expression for the star product when it is
restricted to its natural set of definition. The sixth section
makes the link between our approach and the one followed
by Grosse and Presnajder. In the seventh section we ana-
lyze the link between the primary functional space of our
star product and the spherical harmonics which are obvious
tools when dealing with a system displaying rotational
symmetry. The possible extensions of our work and some
discussions are the subject of the eighth section.
-1  2005 The American Physical Society
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II. GENERALIZED SQUEEZED STATES ON THE
FUZZY SPHERE

The fuzzy sphere is obtained by promoting the Cartesian
coordinates to noncommuting operators satisfying the fol-
lowing relations [32,33]:

�x̂k; x̂l� �
iR�����������������

j�j � 1�
p 	klmx̂m;

�lkx̂lx̂k � R2; with j integer or half-integer

and k; l;m � 1; 2; 3:

(1)

It is important that the symmetries of the classical and the
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fuzzy sphere are the same; this means one essentially
works with representations of the group SU�2�. The value
of the radius R will be related to the only value permitted
for the Casimir operator on the representation used; we will
choose rescaled variables such that it can be set equal to
one.

The differences concerning the construction of coherent
states on the noncommutative plane and the fuzzy sphere
has been considered by many others, among which [34].
While on the first space the saturation of the Heisenberg
uncertainty is enough to build a family of states with the
right properties, one has to resort, on the second, to the
weaker inequalities [31]
��x1�2��x2�2 �
1

4
��hfx̂1; x̂2gi � 2hx̂1ihx̂2i�2 � jh�x̂1; x̂2�ij2�;

��x2�2��x3�2 �
1

4
��hfx̂2; x̂3gi � 2hx̂2ihx̂3i�2 � jh�x̂2; x̂3�ij2�;

��x3�2��x1�2 �
1

4
��hfx̂3; x̂1gi � 2hx̂3ihx̂1i�2 � jh�x̂3; x̂1�ij2�:

(2)
The generalized squeezed state takes the form

ji �
1

�2j �  	�j
Xj

m��j

Rm�m�jjmi; (3)

where the real constants Rm are given by

Rm � �2j��1=2��m�j�
�


�2j � 1�


�j �m� 1�
�j � m� 1�

�
1=2

:

(4)

While the simultaneous saturation of the Heisenberg
uncertainties on the fuzzy sphere leads to the empty set,
doing the same with the weaker relations displayed in
Eq. (2) leads to a family of states parametrized by a
complex number  . This implies a mapping from the
complex plane to our family of states. Using the variable
defined by  �

�����
2j

p
� gives to the mean values hx̂ki the

expression of the stereographic projection in the limit j !
1 . The uncertainties on the positions vanish in the same
limit.

We record for future use the following expression of the
scalar product between two such generalized squeezed
states:

hj�i �
�2j � 	��2j

�2j � 	�j�2j � 	���j
: (5)

Taking the limit j ! 1, one finds this scalar product tends
to a Gaussian as on the noncommutative plane.

It is obvious that our construction is not as general as the
ones developed in [35–37].
III. COHERENT STATES AND THE INTEGRAL
FORM OF THE STAR PRODUCT

A. A reminder

As stated in the introduction, the star product is one of
the most important ingredients in noncommutative field
theory. For example, theories on the noncommutative plane
can be obtained by taking the usual action where all the
usual products have been replaced by the Moyal product
[34]. The Moyal star product is based on the Weyl corre-
spondence which incorporates plane waves in a special
way.

When working with coherent states, the star product is
first defined for a special class of functions (which we shall
call the primary functional space). To any such function f
one assigns an operator Ŵ�f� and by definition [10]:

Ŵ�A ? B� � Ŵ�A�Ŵ�B�: (6)

The primary functional space will be obtained by taking
the mean values of quantum operators on the coherent
states:

A �; 	� � hjŴ�A�ji; Ŵ�1�Â��; 	� � hjÂji:

(7)

Using these two formulas, one obtains

�A ? B��; 	� � hjŴ�A�Ŵ�B�ji: (8)

The associativity of the star product is then guaranteed by
the associativity of the product of the quantum operators.
To study QFT, one needs to express this product in terms of
differential operators acting on the functions fÂ; fB̂. This
can be done if one has a family of states j�i to which is
associated a decomposition of the unity operator. This
-2
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requires the knowledge of a weight:Z
d���; 	��j�ih�j � 1: (9)

If j�i is, up to a normalization factor depending on the
absolute value j�j, analytic in �, one is led to the following
expression of the star product [30]:

A�; 	� ? B�; 	� �
Z

d���; 	��jhj�ij2

� �e�@�e�@A�; 	��

� �e� 	@ 	�e 	�@ 	B�; 	��: (10)

From this one sees that the derivatives with respect to the
variable  will act only on the first function A while those
with respect to its conjugate 	 will act only on the second
one, i.e., B.

The last formula can then be used to extend the star
product to functions out of the functional space defined by
Eq. (7). We will illustrate this point later.

At this stage one important point is to be noticed. The
formula displayed in Eq. (10) contains an infinite number
of derivatives. But, as we shall show, the functional space
defined by Eq. (7) is finite dimensional. This means that all
the derivatives above a fixed order (2j) can be written as
combinations of derivatives below that order. This is the
reason why we will obtain a star product containing a finite
number of terms. This fact is of great importance for field
theory since it means that if one restricts oneself to the
primary set of functions, the field theory will contain a
finite number of derivatives, contrary to what happens with
the Moyal star product on the noncommutative plane.

The formula displayed in Eq. (10) does not seem to use
the Wely map. However this map is crucial in defining the
star product in Eq. (8). We used here the explicit form of
the map given in Eq. (7). We will come back to this point in
our illustrations concerning the link with the Grosse-
Presnajder product.

B. Application to the fuzzy sphere

A simple way of defining an extension of the star prod-
uct relies on a decomposition of the unity operator as
pointed out in the third section. We need a measure
d��; 	� satisfying Eq. (9). This extension will contain
an infinite number of derivatives. We assume from now
on that j � 2.

One of the key relations we will use often stems from the
decomposition of the unity operator:

hnjmi � �m;n ���! Z
d���; 	��

���n�j� 	���m�j�

�2j � 	���2j

�
1

RnRm
�n;m; for � j � m; n � j: (11)

At this stage, this is the only constraint on the measure. Of
course, one can find more than one solution to this set of
�2j � 1� � �2j � 1� equations. Each such solution will
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lead to a different extension of the star product.
Presumably, these star products will be related. In fact,
from any star product ? and any differential operator D one
can build another associative star product ?0 in the follow-
ing way:

f ?0 g � D�D�1f ? D�1g�; (12)

the two are said to be gauge equivalent [36]. Nevertheless,
the restrictions of these star products on the primary func-
tional space must coincide since Eq. (7) does not involve
the measure.

Integrating with respect to the variable � [see Eq. (11)],
the star product can now be recast in the form

A�; 	� ? B�; 	� � A�; 	�B�; 	� �A�; 	�

�

"X1
l1�1

~Dl1@
l1
	
B�; 	�

#

�

"X1
k1�1

~Ck1@
k1
 A�; 	�

#
B�; 	�

�
X1
k1�1

X1
l1�1

~Mk1;l1@
k1
 A�; 	�

� @l1
	
B�; 	�: (13)

The coefficient functions are rational expressions of the
variable  which parametrizes the generalized squeezed
states.

We now use the Kronecker � to simplify these formulas.
We also extract the quantity  	 whenever possible. The
first coefficient reads

~Ck1 �
k1

�2j� 	�2j
X2j

m1�0

~�k1;m1
� 	�m1 ;

where ~�k1;m1
�

�2j�!�2j�2j�m1


�m1�1�
�2j�m1�1�

�

"
1


�k1�1�
�1���k1�2j�����1�k1�m1

�
X
m2

��1�m2


�k1�m1�m2�1�
�m2�m1�1�

#
:

(14)

The last sum is performed on integers m2 verifying the
inequality

1 � k1 � m1 � m2�� k2� � k1 (15)

and the step function � appears due to the fact that if k1 >
2j, the Kronecker symbol �k1�m1;m2

automatically van-
ishes, m2 being smaller than 2j. The form of the coefficient
Ck has a simple structure: it is the product of the kth power
of  with a polynomial of degree 2j in the quantity  	 , the
result being divided by the ubiquitous expression �2j �
 	�2j. Similar properties hold for its counterpart related to
the derivative with respect to B:
-3
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~Dl1 �
	l1

�2j �  	�2j
X2j

m2�0

~	l1;m2
� 	�m2 ;

~	l1;m2
�

�2j�!�2j�2j�m2


�m2 � 1�
�2j� m2 � 1�

�



1


�l1 � 1�
�1���l1 � 2j��� ��1�m2�l1

�
X
m1

��1��m1


�m2 � l1 �m1 � 1�
�m1 � m2 � 1�

#
:

(16)

The sum on m1 is also restricted:

1 � m2 � l1 � m1 � l1: (17)

Writing the two quantities with the same indices, one finds
~	k;m � ~�k;m so that

~Ck

k
�

~Dk

	k : (18)

MUSONGELA LUBO
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We will continue to write ~	k;m and ~�k;m differently because
it helps in keeping track of the terms origins.

The last set of coefficients, depending on two indices,
has a slightly more complex structure; each can be written
as a sum of two terms. The first is the product of the
complex variable  to a power equal to the difference of
indices k� l by a function having the same form than the
ones found for the previous coefficients. The second term
involves the opposite power l� k of the conjugate variable
	:

~M k1;l1 �
1

�2j�  	�2j

"
k1�l1

X2j
m�0

~��1�
k1;l1;m

� 	�m

� 	l1�k1
X2j�k1

m�0

~��2�
k1;l1;m

� 	�m
#
: (19)

The constants ~� are given by the following expressions:
~��1�
k1;l1;m

�
1

k1!l1!

Im;k1�m�l1

R2
j�k1�m

�
X
m2

��1�k1�m�l1�m2

l1!
�k1 � m� l1 �m2 � 1�
��m� l1 �m2 � 1�

Im;m2

R2
j�l1�m2

;

~��2�
k1;l1;m

� �1���2j � m��
X2j

m1�0

��1�l1�m�k1�m1

k1!
�l1 � m� k1 � m1 � 1�
��m � k1 �m1 � 1�

Im1;m

R2
j�k1�m1

�
X

m1;m2

��1�2m�m2�l1�k1�m1


�m� m2 � 1�
�l1 � k1 �m� m1 � 1�
�k1 � m�m2 � 1�
�k1 � m�m1 � 1�

Im1;m2

Rj�k1�m�m2�m1

;

(20)
restrictions similar to Eqs. (15) and (17) also exist here.
We have thus obtained a differential expression of an

extension of our star product. As we emphasized earlier,
there is more than one extension. This is encoded in the
coefficients Rm; in Eq. (4) these numbers are defined only
for values of m located in a specific interval while this is
clearly not the case in the last formulas. The extension we
consider here keeps the same expressions for the Rm with
m out of the interval ��j; j�, simply using the extension of
factorials by gamma functions. The formula we have de-
rived so far has derivatives of any order. In the next section,
we will show how this changes.

We are now in a position to compute some star products
explicitly in the case j � 2:

 ?  �
1

�2j � 	�2j
X2j
k�1

!�1�
k 2j�k�2 	2j�k;

	 ? 	 �
1

�2j � 	�2j
X2j
k�1

!�2�
k 2j�k 	2j�k�2;

 ? 	 �
1

�2j � 	�2j
X2j
k�0

!�3�
k 2j�k 	2j�k;

	 ?  �
1

�2j � 	�2j
X2j
k�0

!�4�
k 2j�k�1 	2j�k�1;

(21)
where the !�l�
k are constants.

Let us now look more closely at the measure.
Introducing the polar coordinates �r; #� linked to the
Cartesian system �x; y� defined by �; 	� � x � iy , the
nondiagonal part of Eq. (11) is satisfied if the measure is
rotationally invariant:

d�d 	�h��; 	�� � 2drd#rh�r�: (22)

The diagonal part of Eq. (11) reads

Z
drf�r�

r1�2j�2n

�2j � r2�2j
�

1

4&
1

R2
n
; where h�r� � if�r�:

(23)

Introducing the function

��r� � f�r�
r1�2j

�2j � r2�2j
(24)

and the variable s � 1� 2n, one obtains the integral equa-
tion Z 1

0
dr��r�rs�1 �

1

4&
R2



1

2
�1� s�

�
: (25)

This is solved by the inverse Mellin transformation, lead-
ing to
-4
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h�r� �
1

8&2

�2j � r2�2j

r1�2j

Z �i1

�i1
ds

r�s

R2� 12 �1� s��
: (26)

The quantity Rn has been promoted to a function R�n� by
analytical continuation.

As already pointed out, the measure is not unique. The
formula given in Eq. (11) has to be satisfied only for
integers n which absolute values are smaller than j; the
solution we gave above is obtained by enforcing it for all
real numbers. Until now our treatment is very similar to
[30] so that the behavior for large j is a priori the same.

C. Restriction on the primary functional space

The primary definition of the star product relies on
functions defined trough the mean values of operators of
the noncommuting variables. When j is fixed, the operator
Â �

P
1
i1;i2;i3�0 Ai1;i2;i3 x̂

i1
1 x̂i2

2 x̂i3
3 can be mapped to a �2j �

1� � �2j � 1� matrix. It is thus more economical to pa-
rametrize it by its entries. In fact, each function of the form
given by Eq. (6) can be written as

A�; 	� �

"
1

�2j �  	�2j
Xj

m;n��j

~am;nRmRn
	�m�j�n�j

#

with ~am;n � hmjÂjni: (27)

For simplicity, we shall rather use the quantities am;n �
~am;nRmRn.

We now wish to study how the star product we have
computed reads when restricted to the primary functional
space whose elements A are given in Eq. (27). These
functions being rational expressions with numerators and
denominators of degree 2j in  , one has

@2j�1

@2j�1
��2j �  	�2jA�; 	��

�
@2j�1

@2j�1

 X2j
m;n�0

aj�m;j�n
m 	n

!
� 0 (28)

so that the derivative of order 2j � 1 of such a function can
be written as a linear combination of those of lower order.

We can now write any derivative of order higher than 2j
in terms of those of order lower than or equal to 2j:

@2j�k

@2j�k
A�; 	� �

X2j
m�1

P2j�k;m
@m

@m A�; 	�: (29)

One similarly defines a set of functions Qk;l linked to the
derivatives with respect to the conjugate variable 	 :

@2j�k

@ 	2j�k
A�; 	� �

X2j
m�1

Q2j�k;m
@m

@ 	m A�; 	�: (30)

This allows us to write the star product with a finite number
of derivatives on the primary functional space.
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One thus ends up with the following expression of the
star product:

A�; 	� ? B�; 	� � A�; 	�B�; 	� �A�; 	�

�


X2j
m�1

Dm@m
	
B�; 	�

�

�


X2j
m�1

Cm@m
 A�; 	�

�
B�; 	�

�
X2j
k1�1

X2j
l1�1

Mk1;l1@
k1
 A�; 	�

� @l1
	
B�; 	�: (31)

The remaining coefficients also involve the functions Pk;l

and Qk;l :

Dm �

�
~Dm �

X1
k�1

~D2j�kQ2j�k;m

�
;

Mk1;k2 �
~Mk1;k2 �

X1
k�1

~Mk1;2j�kQ2j�k;k2

�
X1
k�1

~M2j�k;k2P2j�k;k1

�
X1

k;l�1

~M2j�k;2j�lP2j�k;k1Q2j�l;k2 :

(32)

We have thus shown that although the integral form of
the star product contains an infinite number of derivatives,
the situation is radically different once we look at it from
the primary functional space perspective. The star product
we end up with shares an important property with the one
derived by Grosse and Presnajder in the sense that the
highest derivatives are of order 2j.

To go ahead and clarify the structure of the new coeffi-
cient functions, we need to write down explicitly the
dependence of the auxiliary functions Pk;l and Qk;l. One
easily shows that they are all rational expressions:

P2j�k;m � p2j�k;m
	2j�k�m�2j �  	���2j�k�m�;

Q2j�k;m � q2j�k;m2j�k�m�2j�  	���2j�k�m�:
(33)

We are now ready to write the first coefficient

Cm �
m

�2j �  	�2j
X2j

m1�0

� 	�m1

"
~�m;m1

�
X1
k�1

p2j�k;m ~�2j�k;m1

�
 	

2j�  	

�
2j�k�m

#
: (34)

Compared to the one derived in the previous section, it
similarly has a power (actually the same) of the complex
variable  multiplied by a function of  	 . There is an
important difference which is that the function involved
-5
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is a priori not rational anymore, unless a conspiracy takes
place between the quantities ~�m;n, p2j�k;m, and q2j�k;m.
Restricting ourselves to the primary functional space, we
obtain that the star product gets simpler and more compli-
cated at the same time. It gets simpler in the sense that it
contains a finite number of terms but more complicated
because the coefficient functions Ck;Dk and Mk;l do not
look rational any more but seem to be replaced by series.
The second family of coefficients has a similar form:

Dm �
	m

�2j �  	�2j
X2j

m1�0

� 	�m1

"
~	m;m1

�
X1
k�1

q2j�k;m~	2j�k;m1

�
 	

2j �  	

�
2j�k�m

#
: (35)

The coefficients with two indices face a similar situation
but in addition there is a mixing between the powers of the
two variables which was absent in the extension obtained
above. This is recorded in the third term of the formula:

Mk1;k2 � k1�k2��1�
k1;k2

� 	� � 	k2�k1��2�
k1;k2

� 	�

� �k2 	�k1��3�
k1;k2

� 	� (36)
045012
where
��1�
k1;k2

� 	� �
1

�2j �  	�2j
X2j
m�0

"
~��1�

k1;k2;m

�
X1
k�1

q2j�k;k2 ~�
�1�
k1;2j�k;m

�
1

�2j �  	�2j�k�k2

#
� 	�m; (37)
��2�
k1;k2

� 	� �
1

�2j �  	�2j
X2j
m�0

"
~��2�

k1;k2;m

�
X1
k�1

p2j�k;k1 ~�
�2�
2j�k;k2;m

1

�2j �  	�2j�k�k1

� �1���2j � m��

#
� 	�m and (38)
��3�
k1;k2

� 	� �
� 	�2j

�2j�  	�4j
X2j
m�0

"X1
k�1

� 	�k

�2j�  	�k
� ~��1�

2j�k;k2;m
p2j�k;k1�2j �  	�k1 � ~��2�

k1;2j�k;mq2j�k;k2�2j �  	�k2�

#

� � 	�m �
1

�2j�  	�6j
X2j
m�0

X1
k;l�1

p2j�k;k1;mq2j�l;k2;m

�2j �  	�k�l�k1�k2

"
� 	�2j�k

X2j
m�0

~��1�
2j�k;2j�l;m

� � 	�2j�l
X2j
m�0

~��2�
2j�k;2j�l;m

#
� 	�m: (39)
To summarize, the restriction on the primary space is given
by Eqs. (31) and (34)–(37). The coefficients obtained so far
satisfy the relation

Mk;l�; 	� � Ml;k� 	; � (40)
and the diagonal elements Mk;k are functions of  	 only.
IV. LINK TO THE GROSSE AND PRESNAJDER
STAR PRODUCT

In the last section we showed that the star product
derived from our generalized squeezed states has a finite
number of derivatives on its primary functional space. We
also saw that the highest derivative was of order 2j. These
two characteristics are shared by the Grosse-Presnajder
star product which is expressed in terms of three coordi-
nates:
f�x1; x2; x3�?g�x1; x2; x3� � f�x1; x2; x3�g�x1; x2; x3�

�
X2j
m�1

�2j�m�!

m!�2j�!
Ja1b1Ja2b2 � � �

Jambm@a1a2���am
f�x1; x2; x3�

�@b1b2���bm
g�x1; x2; x3�: (41)

The three coordinates are dependent; they verify the rela-
tion x21 � x22 � x23 � x2 � 1. The tensor

Jab � x2�ab � xaxb � i	abcxc (42)

is polynomial, contrary to our coefficient functions which
are series of rational expressions. This product contains
mixed derivatives like

J12J12@x1@x2f�x1; x2; x3�@x1@x2g�x1; x2; x3�; (43)

contrary to the one obtained here for which terms such as

@@ 	f�; 	�@@ 	f�; 	� (44)
-6
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do not appear. Another difference is that our formula
contains terms such as A@B where one of the two
functions is not acted upon by a derivative; nothing of
the sort happens in Eq. (41). Despite these apparent differ-
ences, we will now show that there is actually a profound
link between the two star products.

The star product between two elements of the primary
functional space is given by Eq. (7). It takes, after repar-
ametrization ( �

�����
2j

p
z), the form"

1

�1� z	z�2j
X2j

m;n�0

am�j;n�j 	z
2j�mz2j�n

#
?

"
1

�1� z	z�2j

�
X2j

m;n�0

bm�j;n�j 	z2j�mz2j�n

#

�

"
1

�1� z	z�2j
X2j

m;n�0

 X2j
l�0

�2j � l�!l!
�2j�!

� am�j;l�jbl�j;n�j

!
	z2j�mz2j�n

#
: (45)

Let us begin with the simplest possibility, j � 1=2. The
generalized squeezed states read [31]

jzi �
1��������������

1� z	z
p �zj1=2i � j � 1=2i�: (46)

An operator built on the algebra generated by the operators
x̂k can be written as a two by two matrix whose entries will
be denoted ak;l. The associated function reads

A �z; 	z� �
a�1=2;�1=2z	z�a1=2;�1=2z�a�1=2;1=2 	z�a1=2;1=2

1� z	z
(47)

Let us consider another operator , whose entries are labeled
bk;l and which generate the function B. We obtain for the
star product of such functions, according to Eq. (45). To
obtain the canonical expression of the star product, one
needs to subtract the ordinary product of the two functions:

A�z; 	z�?B�z; 	z��A�z; 	z�B�z; 	z�

�
1

�1� z	z�2
��a1=2;�1=2 ��a1=2;1=2 �a�1=2;�1=2�	z

�a�1=2;1=2 	z2��� b�1=2;1=2 ��b1=2;1=2 �b�1=2;�1=2�z

�b1=2;�1=2z
2�: (48)

We need to write the right member of this equation in
terms of derivatives. For that, we have to find the expres-
sions of a�1=2;�1=2; � � � in terms of the derivatives of the
function A and b�1=2;�1=2; � � � in terms of those of the
function B. Inspired by what was obtained in the previous
section, we shall use derivatives of order 1 or lower in each
of the two variables. The result reads
045012
a1=2;1=2 � �1� 	z@	z � z��@z � 	z�1� z	z�@z@	z��A�z; 	z�;

a�1=2;�1=2 � �1� 	z@	z � z�@z � 	z�1� z	z�@z@	z��A�z; 	z�;

a�1=2;1=2 � �1� z�z@z � �1� z	z�@z@	z��A�z; 	z�;

a1=2;�1=2 � �� 	z2@	z � @z � 	z�1� z	z�@z@ 	z�A�z; 	z�:

(49)

After a straightforward computation, one finds the star
product can be written in a very simple way:

A �z; 	z� ? B�z; 	z� � A�z; 	z�B�z; 	z� � �1� 	zz�2

�
@
@z

A�z; 	z�
@
@ 	z

B�z; 	z�: (50)

At this point one can point out the nontrivial fact that
although mixed derivatives with respect to z and 	z appear
in the expression of a�1=2;�1=2; � � � , the final formula does
not contain such terms. This was of course predicted in the
last section, using the measure and the completeness rela-
tion. This is recovered here.

Once the star product is built, one has to verify, for
example, that the functions corresponding to the basic
operators have star commutators which reproduce the
quantum commutation relations. In our case one can effec-
tively verify that

�Xk�z; 	z�;Xl�z; 	z��? � Xk�z; 	z� ? Xl�z; 	z�

�Xl�z; 	z� ? Xk�z; 	z�

�
i�����������������

j�j � 1�
p 	klrXr�z; 	z�; (51)

where

X k�z; 	z� � hzjx̂kjzi: (52)

This is easily verified since these functions read [31]

X1�z; 	z� �
1���
3

p
	z � z
1� 	zz

; X2�z; 	z� � �i
1���
3

p
	z � z
1� 	zz

;

X3�z; 	z� �
1���
3

p
	zz� 1

1� 	zz
:

(53)

Concerning associativity, one readily obtains

�f�z; 	z� ? g�z; 	z�� ? h�z; 	z� � f�z; 	z� ? �g�z; 	z� ? h�z; 	z��

� ��1� z	z�3�� �2z@	zh�z; 	z�

� �1� z	z�@2
	zh�z; 	z��@zf�z; 	z�@zg�z; 	z�

� �2	z@zf�z; 	z� � �1� z	z�@2
zf�z; 	z��

� @	zg�z; 	z�@	zh�z; 	z��; (54)

which does not vanish for all functions f; g; h but does so
on the quotient of polynomials displayed in Eq. (27). For
example, z ? �z ? 	z� � �z ? z� ? 	z � �2	z�1� z	z�3 .

We emphasize that the form of the star product given
above is associative only for the set of functions appearing
in Eq. (27). All the elements of this set go to a constant at
-7
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infinity on the complex plane. Therefore, this family does
not contain the function z for example.

Let us now come back to the Weyl correspondence. We
will also illustrate this in the case j � 1=2. To each func-
tion of the form displayed in Eq. (47), one associates an
operator given by

Ŵ�f� � W1�f�x̂1 � W2�f�x̂2 �W3�f�x̂3 � W4�f�

where W1�f� � 1=2�a�1=2;1=2 � a1=2;�1=2�;

W2�f� �
i
2
��a�1=2;1=2 � a1=2;�1=2�;

W3�f� � 1=2�a1=2;1=2 � a�1=2;�1=2�;

W4�f� �
i
2
�a1=2;1=2 � a�1=2;�1=2�:

(55)

One can then see that Eq. (6) is verified. These coefficients
can be written in terms of integrals of the function:

a�1=2;1=2 �
3i
&

Z
dzd	z

z

�1� z	z�3
f�z; 	z�;

a1=2;�1=2 �
3i
&

Z
dzd	z

	z

�1� z	z�3
f�z; 	z�;

a�1=2;�1=2 � �
i
&

Z
dzd	z

1� 2z	z

�1� z	z�3
f�z; 	z�;

a1=2;1=2 �
i
&

Z
dzd	z

2� z	z

�1� z	z�3
f�z; 	z�:

(56)

The formula given in Eq. (56) when used in Eq. (55) allows
045012
one to write the image of a function by the Weyl map as an
integral on this function, as in [10].

To have a broader view, let us consider the cases j � 1
and j � 2. One can similarly to Eq. (49) obtain the coef-
ficients on the functions A�z; 	z� in terms of its derivatives,
thanks to the fact that the primary functional space is finite
dimensional. Replacing them in Eq. (45), one obtains the
star product in terms of differential operators. We record
the results in the variable z �

�����
2j

p
z in which they look

much simpler and will allow a direct comparison with the
Grosse-Presnajder’s. In both cases, one has

A �z; 	z� ? B�z; 	z� � A�z; 	z�B�z; 	z�

�
X2j

k;l�1

Mk;l@
k
zA�z; 	z�@l

	zB�z; 	z�;

(57)

where the coefficient functions are polynomials. In the case
j � 1, one has

M2;2 �
1

4
�1� z	z�4; M2;1 �

1

2
z�1� z	z�3;

M1;1 �
1

2
�1� 2z	z��1� z	z�2:

(58)

Formulas get more complicated as one increases the value
of the cutoff; for j � 2, one obtains
M4;4 �
1

576
�1� z	z�8; M4;3 �

1

48
z�1� z	z�7; M4;2 �

1

16
z2�1� z	z�6; M4;1 �

1

24
z3�1� z	z�5;

M3;3 �
1

144
�1� 36z	z��1� z	z�6; M3;2 �

1

24
z�1� 18z	z��1� z	z�5; M3;1 �

1

24
z2�1� 12z	z��1� z	z�4;

M2;2 �
1

24
�1� 6z	z � 54z2 	z2��1� z	z�4; M2;1 �

1

12
z�1� 3z	z� 18z2 	z2��1� z	z�3;

M1;1 �
1

12
�3� 2z	z � 3z2 	z2 � 12z3 	z3��1� z	z�2:

(59)
The coefficient functions verify the symmetry property
Mk;l�z; 	z� � Ml;k�	z; z� so that we wrote only the upper
half of the matrix.

From these examples we will make a few observations,
hoping they will prove to be true in the general case. First,
the coefficients Ck;Dk appearing in Eq. (31) seem to be
vanishing. The second fact is that the coefficient functions
are polynomials with a special structure; they contain
specific powers of �1� z	z�:

Mk;l � zk;lNk;l�1� z	z�k�l; (60)

where the quantities zk;l are constants while Nk;l are poly-
nomials of degree 4j � �k� l� obeying the following
properties:
(i) T
he polynomial N1;1 is a function of the product z	z
of degree 2j � 1:
-8
N1;1 � �1� a1z	z � � � � � a2j�1�z	z�2j�1�: (61)
(ii) T
he others are derivatives of the previous one:

Nk;l � @k�1
	z @l�1

z N1;1: (62)
Although the star product we obtained here may look
superficially ‘‘new,’’ it seems in fact to be nothing other
than the one obtained by Grosse-Presnajder, but written in
stereographic coordinates. We hereafter show that this is
what happens for the lower values of j.

One may write the expression of the star product dis-
played in Eq. (41) in stereographic coordinates, replacing
partial derivatives by covariant derivatives. We found sim-
pler a mixed presentation which we now present. From the
definition of the stereographic coordinates
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x1 �
	z� z
1� z	z

; x2 � �i
	z� z
1� z	z

; x3 �
z	z� 1

1� z	z
;

(63)
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one obtains that the tensor Jab becomes the following
nonsymmetric matrix:
J1;1 �
��1� 	z2���1� z2�

�1� 	zz�2
; J1;2 � i

��1� 	z2��1� z2�

�1� 	zz�2
; J1;3 � �

2��1� 	z2z���1� z2�

�1� 	zz�2
;

J2;1 � �i
�1� 	z2���1� z2�

�1� 	zz�2
; J2;2 �

�1� 	z2��1� z2�

�1� 	zz�2
; J2;3 �

2i�1� 	z2�z

�1� 	zz�2
; J3;1 � �

2	z��1� z2�

�1� 	zz�2
;

J3;2 � �
2i	z�1� 	z2�

�1� 	zz�2
; J3;3 �

4	zz

�1� 	zz�2
:

(64)
The link between the derivatives with respect to the two set
of coordinates

@x1f �
1

2
�1� z	z��@zf � @	zf�;

@x2f �
i
2
�1� z	z���@zf � @	zf�;

@x3f �
1

2
�1� z	z��z@zf � 	z@	zf�;

(65)

will be summarized by the following formula:

@xa
f � Aa@zf � Ba@	zf: (66)

It is straightforward to verify some relations between the
tensor J and the vectors A;B:

Ja;bAaAb � Ja;bBaAb � Ja;bBaBb � 0;

Ja;bAaBb � �1� z	z�2:
(67)

Let us consider the case j � 1=2. From the previous rela-
tions, one obtains

f�z; 	z� ? g�z; 	z� � f�z; 	z�g�z; 	z�

� Ja;b�Aa@zf�z; 	z� � Ba@	zf�z; 	z���Ab@zg�z; 	z�

� Bb@	zg�z; 	z��

� Ja;bAaBb@zf�z; 	z�@	zg�z; 	z�

� �1� z	z�2@zf�z; 	z�@	zg�z; 	z�; (68)

which is exactly the expression we obtained with our star
product in Eq. (14).

We have verified that doing the same for j � 1 and j �
2, one obtains exactly the results obtained in Eqs. (58) and
(59).

SPHERICAL HARMONICS

On one side, spherical harmonics are natural functions
for systems or theories with spherical symmetry. On the
other side, the functions we have worked with so far are
rational expressions of the complex variable z and its
complex conjugate 	z. Can we make a connection between
the two sets? The answer seems to be positive, provided
one uses the stereographic projection.

When expressed in spherical coordinates, the spherical
harmonics read

Yj;m�#;3� � Pm
j �cos#�e

im3; (69)

where the Pm
j are Legendre functions which turn out to be

polynomials for special values of j and m. One straight-
forwardly obtains that in the stereographic coordinates,

Yj;m�#;3� �

�
	z�����
z	z

p

�
m
Pm

j

�
z	z� 1

1� z	z

�
: (70)

The Legendre functions have the following form:

X
k;l

pm
j;k;l

�
z	z� 1

1� z	z

�
k
�
2

�����
z	z

p

1� z	z

�
l
; (71)

the pm
j;k;l being real numbers. From here one sees that the

components of the spherical harmonics will be rational like
the functions of our primary functional space only for even
values of l. For example, in the case j � 1=2, this does not
happen:

Y1=2;�1=2 �
1���
	z

p
1� z	z��������������
1� z	z

p ; Y1=2;1=2 �

���
	z

p��������������
1� z	z

p : (72)

On the contrary, when j � 1, this is the case:

Y1;�1 �

�������
3

2&

s
z

1� z	z
; Y1;0 � 1=2

����
3

&

s
�1� z	z
1� z	z

;

Y1;1 � �

�������
3

2&

s
	z

1� z	z
:

(73)

On the other side, a typical function A of the primary
functional space takes the form displayed in Eq. (45): it is
the quotient of two polynomials of degree four. The hyper-
geometrics are recovered for special choices of the con-
stants am;n:
-9
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a1;0 � a0;�1 �

�������
3

2&

s
! Y1;�1;

a1;1 � �a�1;�1 � �1=2

����
3

&

s
! Y1;0;

a0;1 � a�1;0 � �

�������
3

2&

s
! Y1;1

(74)
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in each case the nonmentioned constants are take to be
vanishing.

For the specific case at hand, the computation of the star
products using the differential formulation given is not the
easiest. One readily makes the calculations using Eq. (45)
and obtains that the star products of hypergeometrics can
be written as sums of linear and quadratic expressions:
Y1;�1 ? Y1;�1 �
1

2
Y1;�1Y1;�1; Y1;0 ? Y1;0 � Y2

1;0 � Y1;1Y1;�1; Y1;1 ? Y1;1 �
1

2
Y1;1Y1;1;

Y1;�1 ? Y1;0 � Y1;�1

 
1

4

����
3

&

s
�

1

2
2Y1;0

!
; Y1;�1 ? Y1;1 �

1

4

 ����
3

&

s
Y1;0 � 2Y2

1;0 � 6Y1;1Y1;�1

!
;

Y1;0 ? Y1;�1 � �
1

4
Y1;�1

 ����
3

&

s
� 2Y1;0

!
; Y1;0 ? Y1;1 �

1

4
Y1;1

 ����
3

&

s
� 2Y1;0

!
;

Y1;1 ? Y1;�1 �
1

4

 
�

����
3

&

s
Y1;0 � 2Y2

1;0 � 6Y1;1Y1;�1

!
; Y1;1 ? Y1;0 �

1

4
Y1;1

 ����
3

&

s
� 2Y1;0

!
:

(75)
The fact that the coefficient functions appearing in the
expression of the star product do not contain complex
numbers imply that

�A ? B�� � B� ? A�: (76)

We have more elements in our primary functional space
than there are hypergeometrics for a fixed value of j; this is
evident from Eq. (74). This is not necessarily a handicap;
when using coherent states, one actually introduces an over
complete basis, which amounts to dealing with a redundant
system. For the case we examined in this section, the
hypergeometrics being a subset of our primary space, the
expression of the star product we obtained are also valid for
them.

VI. CONCLUSIONS

A family of generalized squeezed states on the fuzzy
sphere has been proposed. It is based on an uncertainty
relation which is weaker than Heisenberg’s. In this work,
we have constructed the associate star product. The inte-
gral formulation leads to an expression with an infinite
number of derivatives, with rational coefficient functions.
On the contrary, the restriction to the primary functional
space is simpler, like the one obtained by Grosse-
Presnajder: it involves derivatives up to the order 2j. The
coefficient functions, at first sight, become series rather
than being rational functions. Working out explicitly the
cases j � 1=2; 1 and 2, we found that in fact the coefficient
functions are polynomial: this indicates a conspiracy be-
tween the quantities appearing in Eqs. (34)–(37), but we
did not pursue the analysis in that direction. The star
product has the interesting property that it does not contain
mixed derivatives: the derivative with respect to the vari-
able z act only on the first argument while the derivative
with respect its conjugate acts only on the second argu-
ment. We also explicitly showed that for the lowest values
at least, our star product coincides with the one found by
Grosse and Presnajder. This provides a physical interpre-
tation of this star product in the sense that the states on
which it is based saturate an uncertainty which is weaker
than the Heisenberg relation [38].

The interest of the formulation presented here is two-
fold. First, star products with a finite number of derivatives
play an important role in the proof that QFT on the fuzzy
sphere are finite. Second, the states used here are parame-
trized by a complex variable which is linked to the stereo-
graphic coordinates. This opens the possibility of studying
field theory by a deformation of the theory written on the
sphere in these coordinates [39], obtaining a kind of ‘‘-
space-time’’ description in contrast to many studies in
which it was rather the ‘‘angular momentum’’ representa-
tion which was used. The formulas we have displayed so
far display the important features of the star product but are
not transparent concerning what happens in the large j
limit, because of the intricate dependences of the coeffi-
cient functions on j. One of the first tasks will be their
simplification or a formulation leading to more tractable
formulas from the start.

This work provides a way to obtain a fuzzy version of
the algebra of the compactified plane. Unlike standard
representations, the maps used are not based on the spheri-
cal harmonics (homogeneous polynomials in x; y; z) but on
polynomials in z and 	z mapped on a finite dimensional
space.
-10
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