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We present a weak-coupling Yang-Mills model supporting non-Abelian magnetic flux tubes and non-
Abelian confined magnetic monopoles. In the dual description the magnetic flux tubes are prototypes of
the QCD strings. Dualizing the confined magnetic monopoles we get gluelumps which convert a “QCD
string” in the excited state to that in the ground state. Introducing a mass parameter m we discover a phase
transition between the Abelian and non-Abelian confinement at a critical value m = m, ~ A. Underlying
dynamics are governed by a Z, symmetry inherent to the model under consideration. At m > m., the Zy
symmetry is spontaneously broken, resulting in N degenerate Zy (Abelian) strings. At m < m, the Zy
symmetry is restored, the degeneracy is lifted, and the strings become non-Abelian. We calculate tensions
of the non-Abelian strings, as well as the decay rates of the metastable strings, at N >> 1.
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I. INTRODUCTION

Ever since 't Hooft [1] and Mandelstam [2] put forward
the hypothesis of the dual Meissner effect to explain color
confinement in non-Abelian gauge theories people were
trying to find a controllable approximation in which one
could reliably demonstrate the occurrence of the dual
Meissner effect in these theories. A breakthrough achieve-
ment was the Seiberg-Witten solution [3] of N = 2 super-
symmetric (SUSY) Yang-Mills theory. They found
massless monopoles and, adding a small (N =
2)-breaking deformation, proved that they condense creat-
ing strings carrying a chromoelectric flux. It was a great
success in qualitative understanding of color confinement.

A more careful examination shows, however, that details
of the Seiberg-Witten confinement are quite different from
those we expect in QCD-like theories. Indeed, a crucial
aspect of Ref. [3] is that the SU(N) gauge symmetry is first
broken, at a high scale, down to U(1)¥~!, which is then
completely broken, at a much lower scale where mono-
poles condense. Correspondingly, the strings in the
Seiberg-Witten solution are, in fact, Abelian strings [4]
of the Abrikosov-Nielsen-Olesen (ANO) type which re-
sults, in turn, in confinement whose structure does not
resemble at all that of QCD. In particular, the “hadronic™
spectrum is much richer than that in QCD [5,6].

Thus, the problem of obtaining the Meissner effect in a
more realistic regime in theories which are closer relatives
of QCD remains open. A limited progress in this direction
was achieved since the 1980’s [7]; the advancement accel-
erated in recent years [8§—14]. Our task is to combine and
distill these advances to synthesize a relatively simple non-
Abelian model exhibiting at least some features of bona
fide non-Abelian confinement in a controllable setting.

What do we know of color confinement in QCD? At a
qualitative level surprisingly much. We know that in the
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Yang-Mills theory chromoelectric flux tubes are formed
between the probe heavy quarks (more exactly, between
the quark and its antiquark), with the fundamental tension
T, proportional to the square of the dynamical scale pa-
rameter, which does not scale with N at large N,

Tl -~ AQQCD'

If one pulls together N such flux tubes they can annihilate.
This clearly distinguishes QCD flux tubes from the ANO
strings. We know that for k-strings1 (with k > 1) excita-
tions lie very close to the ground state. For instance, if one
considers two-index symmetric and antisymmetric
sources, the corresponding string tensions 7Ty and Ty
are split [15] by A%/N?. The decay rate of the symmetric
string into antisymmetric (per unit length of the string per
unit time) is
FEHH ~ A’exp(-yN?),

where 7y is a positive constant of order 1. We would like to
model all the above features at weak coupling, where all
approximations made can be checked and verified. After
extensive searches we found seemingly the simplest Yang-
Mills model which does the job, at least to an extent. Our
model seems to be minimal. It is nonsupersymmetric. It
supports non-Abelian magnetic flux tubes and non-Abelian
confined magnetic monopoles at weak coupling. In the
dual description the magnetic flux tubes are prototypes of
the QCD strings. Dualizing the confined magnetic mono-
poles we get gluelumps (string-attached gluons) which
convert a “QCD string” in the excited state to that in the
ground state. The decay rate of the excited string to its
ground state is suppressed exponentially in N.

'Operationally, k-strings are defined as flux tubes attached to
probe sources with k fundamental or k£ antifundamental indices.
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It is worth noting that strings in non-Abelian theories at
weak coupling were found long ago [16]—the so-called
Zy strings associated with the center of the SU(N) gauge
group. However, in all these constructions the gauge flux
was always directed along a fixed vector in the Cartan
subalgebra of SU(), and no moduli which would make
the flux orientation a dynamical variable in the group space
were ever found. Therefore, these strings are, in essence,
Abelian.

Recently, non-Abelian strings were shown to emerge at
weak coupling [10,11,13,14] in N =2 and deformed
N = 4 supersymmetric gauge theories (similar results in
three dimensions were obtained in [9]). The main feature
of the non-Abelian strings is the presence of orientational
zero modes associated with the rotation of their color flux
in the non-Abelian gauge group, which makes such strings
genuinely non-Abelian. This is as good as it gets at weak
coupling.

In this paper we extend (and simplify) the class of
theories in which non-Abelian strings are supported. To
this end we consider a ‘““minimal”’ nonsupersymmetric
gauge theory with the gauge group SU(N) X U(1). Our
model is still rather far from real-world QCD. We believe,
however, that our non-Abelian strings capture basic fea-
tures of QCD strings to a much greater extent than the
Abelian ANO strings.

Striking similarities between four-dimensional gauge
theories and two-dimensional sigma models were noted
long ago, in the 1970’s and 80’s. We continue revealing
reasons lying behind these similarities: in fact, two-
dimensional sigma models are effective low-energy theo-
ries describing orientational moduli on the world sheet of
non-Abelian confining strings. A particular direct relation
was found previously in N = 2 supersymmetric theories
[11,13,17,18] where the BPS kink spectrum in the two-
dimensional CP(N — 1) model coincides with the dyon
spectrum of a four-dimensional gauge theory given by
the exact Seiberg-Witten solution. Pursuing this line of
research we reveal a similar relationship between nonsu-
persymmetric two- and four-dimensional theories. The
physics of nonsupersymmetric sigma models significantly
differs from that of supersymmetric ones. We find inter-
pretations of known results on nonsupersymmetric
CP(N — 1) models in terms of non-Abelian strings and
monopoles in four dimensions.

In particular, in parallel to the supersymmetric case [11—
13], we interpret the confined monopole realizing a junc-
tion of two distinct non-Abelian strings, as a kink in the
two-dimensional CP(N — 1) model. The argument is made
explicit by virtue of an extrapolation procedure designed
specifically for this purpose. Namely, we introduce mass
parameters my (A =1,..., Ny, and Ny;=N is the number
of bulk flavors) for scalar quarks in four dimensions. This
lifts the orientational moduli of the string. Now the effec-
tive world-sheet description of the string internal dynamics
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is given by a massive CP(N — 1) model. In this quasiclass-
ical limit the matching between the magnetic monopoles
and kinks is rather obvious. Tending m, — 0 we extrapo-
late this matching to the quantum regime.

In addition to the four-dimensional confinement, that
ensures that the magnetic monopoles are attached to the
strings, they are also confined in the two-dimensional
sense. Namely, the monopoles stick to antimonopoles on
the string they are attached to, to form mesonlike configu-
rations. The two-dimensional confinement disappears if
the vacuum angle @ = 77. Some monopoles become de-
confined along the string. Alternatively, one can say that
strings become degenerate.

With nonvanishing mass terms of the type

27Ti/N’ e47ri/N’ o eZ(N—l)ﬂ'i/N, 1}’

{ma} — mie
a discrete Z, symmetry survives in the effective world-
sheet theory. In the domain of large m [large compared to
the scale of the CP(N — 1) model] we have Abelian strings
and essentially the ’t Hooft-Polyakov monopoles, while at
small m the strings and monopoles we deal with become
non-Abelian. We show that these two regions are separated
by a phase transition (presumably, of the second order)
which we interpret as a transition between the Abelian and
non-Abelian confinement. We show that in the effective
CP(N — 1) model on the string world sheet this phase
transition is associated with the restoration of Zy symme-
try: Zy symmetry is broken in the Abelian confinement
phase and restored in the non-Abelian confinement phase.
This is a key result of the present work which has an
intriguing (albeit, rather remote) parallel with the breaking
of the Zy symmetry at the confinement/deconfinement
phase transition found in lattice QCD at nonzero
temperature.

Next, we consider some special features of the simplest
SU(2) X U(1) case. In particular, we discuss the vacuum
angle dependence. The CP(1) model is known to become
conformal at § = 7, including massless monopoles/kinks
at 0 = .

Finally, we focus on the problem of the multiplicity of
the hadron spectrum in the general SU(N) X U(1) case. As
was already mentioned, the Abelian confinement generates
too many hadron states as compared to QCD-based expec-
tations [5,6,19]. In our model this regime occurs at large
my.

II. IN SEARCH OF NON-ABELIAN STRINGS
AND MONOPOLES

A reference model which we suggest for consideration is
quite simple. The gauge group of the model is SU(N) X
U(1). Besides SU(N) and U(1) gauge bosons the model
contains N scalar fields charged with respect to U(1) which
form N fundamental representations of SU(N). It is con-
venient to write these fields in the form of N X N matrix
® = {p*} where k is the SU(N) gauge index while A is

045010-2



NON-ABELIAN MEISSNER EFFECT IN YANG-MILLS ...

the flavor index,

QD“ §012 ngN
p=| ¢ 7 e @
¢Nl ¢N2 (PNN

Sometimes we will refer to ¢’s as to scalar quarks, or just
quarks. The action of the model has the form?

1 1
s = j d%{Tg% (Fa, ) + Q(FW)Z +THV, ) (VA D)

+ %%[Tr(cb* TD)P? + ‘f[Tr(cIﬁ ®) — NEP

i .
+ —— Fa, Fanrl 3
3272 H } ©)
where T¢ stands for the generator of the gauge SU(N),
i A a

[the global flavor SU(N) transformations then act on ®
from the right], and 6 is the vacuum angle. The action (3) in
fact represents a truncated bosonic sector of the N = 2
model. The last term in the second line forces ® to develop
a vacuum expectation value (VEV) while the first term
forces the VEV to be diagonal,

D, = /Ediag(l, 1,..., 1} )
In this paper we assume the parameter ¢ to be large,3
VE> Ay, 6)

where A, is the scale of the four-dimensional theory (3).
This ensures the weak-coupling regime as both couplings
g7 and g3 are frozen at a large scale.

The vacuum field (5) results in the spontaneous breaking
of both gauge and flavor SU(N)’s. A diagonal global
SU(N) survives, however, namely

U (N)gauge X SU(N)flavor - SU(N)diag~ (7)

Thus, color-flavor locking takes place in the vacuum. A
version of this scheme of symmetry breaking was sug-
gested long ago [20].

Now, let us briefly review string solutions in this model.
Since it includes a spontaneously broken gauge U(1), the
model supports conventional ANO strings [4] in which one
can discard the SU(N)gauge part of the action. The topo-
logical stability of the ANO string is due to the fact that

*Here and below we use a formally Euclidean notation, e.g.
Ff“, =2F% + F?j, (6#11)2 = (99a)* + (9,a)?, etc. This is appro-
priate since we are going to study static (time-independent) field
configurations, and A, = 0. Then the Euclidean action is nothing
but the energy functional.

*The reader may recognize & as a descendant of the Fayet-
Iliopoulos parameter.
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71 (U(1)) = Z. These are not the strings we are interested
in. At first sight the triviality of the homotopy group,
71 (SU(N)) = 0, implies that there are no other topologi-
cally stable strings. This impression is false. One can
combine the Zy center of SU(N) with the elements
exp(2mik/N) € U(1) to get a topologically stable string
solution possessing both windings, in SU(N) and U(1). In
other words,

7 (SUN) X U(1)/Zy) # O. (8)

It is easy to see that this nontrivial topology amounts to
winding of just one element of ®,,., say, ¢!!, or ¢?2, etc.,
for instance,”

q)string = \/gdlag(l, 1,..., eia(x))’

Such strings can be called elementary; their tension is
1/Nth of that of the ANO string. The ANO string can be
viewed as a bound state of N elementary strings.

More concretely, the Zy string solution (a progenitor of
the non-Abelian string) can be written as follows [10]:

x—o00. (9

¢o(r) 0 - 0
© |

0 - o 0

0 0 eipy(r)

1 - 0 0 (10)
AlSU(N) _ l o oo PR « o e o oo (ala)

Nl 0O --- 1 0

0 0 —(N—-1)

X [=1+ fya(r)]

A = Gl - fOL AR = a3 g,
where i = 1, 2 labels coordinates in the plane orthogonal to
the string axis and r and « are the polar coordinates in this
plane. The profile functions ¢(r) and ¢y (r) determine the
profiles of the scalar fields, while fy4(r) and f(r) deter-
mine the SU(N) and U(1) fields of the string solutions,
respectively. These functions satisfy the following rather
obvious boundary conditions:

dn(0) =0, fua0) =1, f0) =1, (11)
at r =0, and
dn(0) =VE  pl(o0) = ¢, 12
fra(oo) =0, f(e0) =0

at r = oo. Because our model is equivalent, in fact, to a
bosonic reduction of the N = 2 supersymmetric theory,

*As explained below, « is the angle of the coordinate %, in the
perpendicular plane.
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these profile functions satisfy the first-order differential
equations obtained in [21], namely,

P L ) = L0+ N = Dfsa(Dib(r) = 0

P L 30 = L0 = Fral)p) =0

2
=L p0) + B = DGO + gy - NET =0,

2
L)+ L8007 = 401 = 0
r dr
13)

These equations can be solved numerically. Clearly, the
solutions to the first-order equations automatically satisfy
the second-order equations of motion. Quantum correc-
tions destroy fine-tuning of the coupling constants in (3). If
one is interested in the calculation of the quantum-
corrected profile functions one has to solve the second-
order equations of motion instead of (13).

The tension of this elementary string is

T, = 2mé. (14)

As soon as our theory is not supersymmetric and the string
is not BPS there are corrections to this result which are
small and uninteresting provided the coupling constants g2
and g3 are small. Note that the tension of the ANO string is

TANO = 27TN§ (15)

in our normalization.

The elementary strings are bona fide non-Abelian. This
means that, besides trivial translational moduli, they give
rise to moduli corresponding to spontaneous breaking of a
non-Abelian symmetry. Indeed, while the “flat” vacuum is
SU(N) giny symmetric, the solution (10) breaks this symme-
try down’ to U(1) X SU(N — 1) (at N > 2). This means
that the world-sheet (two-dimensional) theory of the ele-
mentary string moduli is the SU(N)/(U(1) X SU(N — 1))
sigma model. This is also known as the CP(N — 1) model.

To obtain the non-Abelian string solution from the Zy
string (10) we apply the diagonal color-flavor rotation
preserving the vacuum (5). To this end it is convenient to
pass to the singular gauge where the scalar fields have no
winding at infinity, while the string flux comes from the
vicinity of the origin. In this gauge we have

SAt N =2 the string solution breaks SU(2) down to U(1).
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d(r) 0 - 0
_ .
® v 0 ¢(”) 0 ’
0 0 dn(r)
1 0 0 (16)
suwvy) _ 1 _
R i . U~(9,a)
0 0 —-(N—-1)
X fua(r),

1
£®=—N@mﬂm AgY = A3 =,

where U is a matrix € SU(N). This matrix parametrizes
orientational zero modes of the string associated with flux
rotation in SU(N). The presence of these modes makes the
string genuinely non-Abelian. Since the diagonal color-
flavor symmetry is not broken by the VEV’s of the scalar
fields in the bulk (color-flavor locking) it is physical and
has nothing to do with the gauge rotations eaten by the
Higgs mechanism. The orientational moduli encoded in the
matrix U are not gauge artifacts. The orientational zero
modes of a non-Abelian string were first observed in
[9,10].

III. THE WORLD-SHEET THEORY FOR THE
ELEMENTARY STRING MODULI

In this section we will present derivation of an effective
low-energy theory for the orientational moduli of the ele-
mentary string and then discuss underlying physics. We
will closely follow Refs. [10,11] where this derivation was
carried out for N = 2 which leads to the CP(1) model. In
the general case, as was already mentioned, the resulting
macroscopic theory is a two-dimensional CP(N — 1)
model [9-11,13].

A. Derivation of the CP(N — 1) model

First, extending the supersymmetric CP(1) derivation of
Refs. [10,11], we will derive the effective low-energy
theory for the moduli residing in the matrix U in the
problem at hand. As is clear from the string solution
(16), not each element of the matrix U will give rise to a
modulus. The SU(N — 1) X U(1) subgroup remains unbro-
ken by the string solution under consideration; therefore, as
was already mentioned, the moduli space is

SU(N)

st - yxom P 4"

Keeping this in mind we parametrize the matrices entering
Eq. (16) as follows:
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1 l o U1
N o - 1 0
0 O -(N—-1) p
1
=l + 18, (18)
where n' is a complex vector in the fundamental represen-

tation of SU(N), and
nin' =1

(I, p=1,..., N are color indices). As we will show below,
one U(1) phase will be gauged in the effective sigma
model. This gives the correct number of degrees of free-
dom, namely, 2(N — 1).

With this parametrization the string solution (16) can be
rewritten as

@ = G0V = 0 + byl = (@ = by (n-n = ),

ASVW) — <n nt = N)Si/r—ifNA(r)’ (19)
1 .
A = o

8.._
N 1/,.2

f(),

where for brevity we suppress all SU(N) indices. The
notation is self-evident.

Assume that the orientational moduli are slowly varying
functions of the string world-sheet coordinates x,, a =
0,3. Then the moduli n’ become fields of a (1 + 1)-
dimensional sigma model on the world sheet. Since n'
parametrize the string zero modes, there is no potential
term in this sigma model.

To obtain the kinetic term we substitute our solution
(19), which depends on the moduli n/, in the action (3),
assuming that the fields acquire a dependence on the
coordinates x, via n'(x,). In doing so we immediately
observe that we have to modify the solution including in
it the @ = 0, 3 components of the gauge potential which
are no more vanishing. In the CP(1) case, as was shown in
[11], the potential A, must be orthogonal [in the SU(N)
space] to the matrix (18) as well as to its derivatives with
respect to x,. Generalization of these conditions to the
CP(N — 1) case leads to the following ansatz:

ASVW) — —i[d,n - n* —n-o,n" —2n-n*(n*o,n)]p(r),
a=0,3 (20)

where we assume the contraction of the color indices inside
the parentheses,

(n*d4n) = nyo,n',

and introduce a new profile function p(r).
The function p(r) in Eq. (20) is determined through a
minimization procedure [10,11] which generates p’s own
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equation of motion. Now we derive it. But at first we note
that p(r) vanishes at infinity,

p(o0) = 0. @)
The boundary condition at » =0 will be determined
shortly.

The kinetic term for n’ comes from the gauge and quark
kinetic terms in Eq. (3). Using Egs. (19) and (20) to
calculate the SU(N) gauge field strength we find

x.
FSYN) = (gn - n* + n- aan*)sijr_éfNA[l — p(r)]

ai
+ildn-n*—n-d,n" —2n-n*(n*o,n)]
o Xi dp(r).
rodr

In order to have a finite contribution from the term TrF?, in
the action we have to impose the constraint

p(0) = 1. (23)

Substituting the field strength (22) in the action (3) and
including, in addition, the kinetic term of the quarks, after a
rather straightforward but tedious algebra we arrive at

(22)

SU+D = Zdetdz{(aan*aan) + (n*a,n)?),  (24)
where the coupling constant 3 is given by

8= 2—7271, 25)
2

and / is a basic normalizing integral
o0 d 2 1
I= j;) rdr{[ap(r)} + ﬁflsz(l — p)?
2
+ G @ ah) -0 - o?]l o

The theory in Eq. (24) is in fact the two-dimensional
CP(N — 1) model. To see that this is indeed the case we
can eliminate the second term in (24) by virtue of the
introduction of a nonpropagating U(1) gauge field. We
review this in Sec. IV, and then discuss the underlying
physics of the model. Thus, we obtain the CP(N — 1)
model as an effective low-energy theory on the world sheet
of the non-Abelian string. Its coupling S is related to the
four-dimensional coupling g3 via the basic normalizing
integral (26). This integral can be viewed as an “action”
for the profile function p.

Varying (26) with respect to p one obtains the second-
order equation which the function p must satisfy, namely,

d? 1d

a2 " rarf

g_%(¢2 + ¢?) _g_%(¢ —¢)?=0 (27)
2 N T PP TN '

1
- ﬁf}z\m(l — pH

After some algebra and extensive use of the first-order
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equations (13) one can show that the solution of (27) is
given by

_ ¢y
5

This solution satisfies the boundary conditions (21) and
(23).

Substituting this solution back into the expression for the
normalizing integral (26) one can check that this integral
reduces to a total derivative and is given by the flux of the
string determined by fy4(0) = 1. Therefore, we arrive at

p=1 (28)

I1=1. (29)

This result can be traced back to the fact that our theory (3)
is a bosonic reduction of the N = 2 supersymmetric
theory, and the string satisfies the first-order equations (13)
[see [11] for the explanation why (29) should hold for the
BPS non-Abelian strings in SUSY theories]. The fact that
I = 1 was demonstrated previously for N = 2, where the
CP(1) model emerges. Generally speaking, for non-BPS
strings, I could be a certain function of N (see Ref. [14] for
a particular example). In the problem at hand it is N
independent. However, we expect that quantum corrections
slightly modify Eq. (29).

The relation between the four-dimensional and two-
dimensional coupling constants (25) is obtained at the
classical level. In quantum theory both couplings run. So
we have to specify a scale at which the relation (25) takes
place. The two-dimensional CP(N — 1) model (24) is an
effective low-energy theory good for the description of
internal string dynamics at small energies, much less
than the inverse thickness of the string which is given by
V€. Thus, /€ plays the role of a physical ultraviolet cutoff
in (24). This is the scale at which Eq. (25) holds. Below this
scale, the coupling 3 runs according to its two-dimensional
renormalization-group flow, see the next section.

B. Penetration of 0 from the bulk in the
world-sheet theory

Now let us investigate the impact of the 6 term that is
present in our microscopic theory (3). At first sight, seem-
ingly it cannot produce any effect because our string is
magnetic. However, if one allows for slow variations of n!
with respect to z and ¢, one immediately observes that the
electric field is generated via A3 in Eq. (20). Substituting
F,; from (22) into the # term in the action (3) and taking
into account the contribution from F,, times F;; (o, y =
0,3 and i,j = 1,2) we get the topological term in the
effective CP(N — 1) model (24) in the form

S+ — ]dtdz{zﬂ[(aan*aan) + (n*d,n)?]

0

= 5 loEar a3, (30)
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where I, is another normalizing integral given by the
formula

Iy =— fdr{2fNA(1 — p)% +(2p - pz)df}

@
d

= [arg 2huae = o1 G
g

As is clearly seen, the integrand here reduces to a total
derivative, and the integral is determined by the boundary
conditions for the profile functions p and fy,. Substituting
(11), (12), (21), and (23) we get

I, =1, (32)

independently of the form of the profile functions. This
latter circumstance is perfectly natural for the topological
term.

The additional term (30) in the CP(N — 1) model that
we have just derived is the 6 term in the standard normal-
ization. The result (32) could have been expected since
physics is 27 periodic with respect to 6 both in the four-
dimensional microscopic gauge theory and in the effective
two-dimensional CP(N — 1) model. The result (32) is not
sensitive to the presence of supersymmetry. It will hold in
supersymmetric models as well. Note that the complexified
bulk coupling constant converts into the complexified
world-sheet coupling constant,

4 0 0
— T i Lo,
’ g3 ‘o A ‘2m

The above derivation provides the first direct calculation
proving the coincidence of the # angles in four and two
dimensions.

Let us make a comment on this point from the brane
perspective. Since the model under consideration is non-
supersymmetric, the usual brane picture corresponding to
minimal surfaces in the external geometry is complicated
and largely unavailable at present. However, a few state-
ments insensitive to details of the brane picture can be
made—the identification of the 6 angles in the micro-
scopic and macroscopic theories above is one of them.
Indeed, in any relevant brane picture the € angle corre-
sponds to the distance between two M5 branes along the
11th dimension in M theory [22]. The four-dimensional
theory is defined on the world volume of one of these M5
branes, while an M2 brane stretched between M5 branes
corresponds to the non-Abelian string we deal with. It is
clear that the 6 angles are the same since it is just the same
geometrical parameter viewed from two different objects:
M5 and M2 branes (see also footnote 7 in Ref. [13]).

IV. DYNAMICS OF THE WORLD-SHEET THEORY

The CP(N — 1) model describing the string moduli
interactions can be cast in several equivalent representa-
tions. The most convenient for our purposes is a linear
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gauged representation (for a review see [23]). At large N
the model was solved [24,25].

In this formulation the Lagrangian is built from an
N-component complex field n¢ subject to the constraint

n?n‘q =1. (33)

The Lagrangian has the form
2
L =S[(0, +iA)n; (3, — iAn' — Anjn® — 1)]
8

(34

where 1/g?> = B and A is the Lagrange multiplier enforc-
ing (33). Moreover, A, is an auxiliary field which enters
the Lagrangian with no kinetic term. Eliminating A, by
virtue of the equations of motion one arrives at Eq. (30).

At the quantum level the constraint (33) is gone; A
becomes dynamical. Moreover, a kinetic term is generated
for the auxiliary field A, at the quantum level, so that A,
becomes dynamical too.

As was shown above, the 6 term which can be written as

_9
O o

appears in the world-sheet theory of the string moduli
provided the same 6 angle is present in the bulk (micro-
scopic) theory.

Now we have to discuss the vacuum structure of the
theory (34). Basing on a modern understanding of the issue
[26] (see also [27]) one can say that for each @ there are
infinitely many ‘‘vacua’ that are stable in the limit N —
oo, The word vacua is in the quotation marks because only
one of them presents a bona fide global minimum; others
are local minima and are metastable at finite (but large) N.
A schematic picture of these vacua is given in Fig. 1. All
these minima are entangled in the 6 evolution. If we vary 6
continuously from O to 27 the depths of the minima

0
Eqy 0% AY = ﬁswaa(n;mn‘f) (35)

Vacuum energy

-2 -1 0 1 2 k

FIG. 1. The vacuum structure of the CP(N — 1) model at § =

0.
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“breathe.” At 6 = 7w two vacua become degenerate
(Fig. 2), while for larger values of 6 the global minimum
becomes local while the adjacent local minimum becomes
global. The splitting between the values of the consecutive
minima is of the order of 1/N, while the probability of the
false vacuum decay is proportional to N~ exp(—N), see
below.

As long as the CP(N — 1) model plays a role of the
effective theory on the world sheet of non-Abelian string
each of these vacua corresponds to a string in the four-
dimensional bulk theory. For each given 6, the ground state
of the string is described by the deepest vacuum of the
world-sheet theory, CP(N — 1). Metastable vacua of
CP(N — 1) correspond to excited strings.

As was shown by Witten [24], the field n’ can be viewed
as a field describing kinks interpolating between the true
vacuum and its neighbor. The multiplicity of such kinks is
N [28], they form an N plet. This is the origin of the
superscript £ in n.

Moreover, Witten showed, by exploiting 1/N expansion
to the leading order, that a mass scale is dynamically
generated in the model, through dimensional transmuta-
tion,

A? = M} exp(— ;—;) (36)

Here M|, is the ultraviolet cutoff (for the effective theory on
the string world sheet M, = /€) and g> = 1/ is the bare
coupling constant given in Eq. (25). The combination N g?
is nothing but the ’t Hooft constant that does not scale with
N. As aresult, A scales as N° at large N.

In the leading order, N°, the kink mass M, is 6 inde-
pendent,

M, = A. (37)

6-dependent corrections to this formula appear only at the
level 1/N?.

FIG. 2. The vacuum structure of the CP(N — 1) model at =
.
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n ,\/ n n n
k=0 k=1 k=0 k=1 k=0 k=1

FIG. 3. Linear confinement of the n-n* pair. The solid straight
line represents the string. The dashed line shows the vacuum
energy density (normalizing &, to zero).

The kinks represented in the Lagrangian (34) by the field
n' are not asymptotic states in the CP(N — 1) model. In
fact, they are confined [24]; the confining potential grows
linearly with distance,® with the tension suppressed by
1/N. From the four-dimensional perspective the coeffi-
cient of the linear confinement is nothing but the difference
in tensions of two strings: the lightest and the next one, see
below. Therefore, we denote it as AT,

¢

A2
AT = 127 —.
Ly (38)

One sees that confinement becomes exceedingly weak at
large N. In fact, Eq. (38) refers to & = 0. The standard
argument that @ dependence does not appear at N — o0 is
inapplicable to the string tension, since the string tension
itself vanishes in the large-N limit. The 6 dependence can
be readily established from a picture of the kink confine-
ment discussed in [14], see Fig. 3, which is complementary
to that of [24]. This picture of the kink confinement is
schematically depicted in this figure.

Since the kink represents an interpolation between the
genuine vacuum and a false one, the kink-antikink con-
figuration presented in Fig. 3 shows two distinct regimes:
the genuine vacuum outside the kink-antikink pair and the
false one inside. (The opposite case, see Fig. 4, is discussed
below.) As was mentioned, the string tension AT is given
by the difference of the vacuum energy densities, that of
the false vacuum minus the genuine one. At large N, the k
dependence of the energy density in the vacua (k is the
excitation number), as well as the # dependence, is well
known [26],

£.6) = — %NAZ{I - %(W)z} (39)

At 6 = 0 the genuine vacuum corresponds to k = 0, while
the first excitation to k = —1. At @ = 7 these two vacua
are degenerate, at 6 = 27 their roles interchange.
Therefore,

SLet us note in passing that corrections to the leading-order
result (38) run in powers of 1/N? rather than 1/N. Indeed, as is
well known, the 6 dependence of the vacuum energy enters only
through the combination of §/N, namely £(6) = NA2f(6/N)
where f is some function. As will be explained momentarily,
AT = £(0 = 27) — £(0 = 0). Moreover, &, being CP even, can
be expanded in even powers of 6. This concludes the proof that
AT = (127A?/N)(1 + 32, o N~ ).

FIG. 4. Breaking of the excited string through the n-n* pair
creation. The dashed lines show the vacuum energy density.

2
AT() = 127TA—
N

l—g‘. (40)
T

Note that at § = o the string tension vanishes and con-
finement of kinks disappears.

This formula requires a comment which we hasten to
make. In fact, for each given 6, there are two types of kinks
which are degenerate at § = 0 but acquire a splitting at
0 # 0. This is clearly seen in Fig. 5 which displays &,
for three minima: the global one (k = 0) and two adjacent
local minima, k = *1 (the above nomenclature refers to
|6] < 7). Let us consider, say, small and positive values of
6. Then the kink described by the field n can represent two
distinct interpolations: from the ground state to the state
k = —1 (i.e. the minimum to the left of the global mini-
mum in Fig. 1); then

AE = 1 ——)

w

127rA2( 0)

Another possible interpolation is from the ground state to
the state k = 1 (i.e. the minimum to the right of the global
minimum in Fig. 1). In the latter case

2
ag = 127A (1 + ﬁ).
N

w

In the first scenario the string becomes tensionless,7 i.e. the
states k = 0, —1 degenerate, at § = 7. The same consid-
eration applies to negative values of 6. Now it is the vacua
k = 0, 1 that become degenerate at § = — 7, rendering the
corresponding string tensionless. In general, it is sufficient
to consider the interval || = 7.

What will happen if we interchange the position of two
kinks in Fig. 3, as shown in Fig. 4?7 The excited vacuum is
now outside the kink-antikink pair, while the genuine one
is inside. Formally, the string tension becomes negative. In
fact, the process in Fig. 4 depicts a breaking of the excited
string. As was mentioned above, the probability of such
breaking is suppressed by exp(—AN). Indeed, the master
formula from Ref. [29] implies that the probability of the
excited string decay (through the n-n* pair creation) per
unit time per unit length is

"Note that in Witten’s work [24] there is a misprint in Eq. (18)
and subsequent equations; the factor 6/27r should be replaced by
0/r. Two types of kinks correspond in this equation to x > y and
x <y, respectively.
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k=0

FIG. 5 (color online). The function 1 + &+ /[(6NA?)7 ]in
the units 72/(2N?) versus 6/ .

e N/12 (41)

r— AT M2\ 6A?

2m exP( AT ) N
at 6 = 0. At 8 # 0 the suppression is even stronger.

To summarize, the CP(N — 1) model has a fine structure
of vacua which are split, with the splitting of the order of
A?/N. In four-dimensional bulk theory these vacua corre-
spond to elementary non-Abelian strings. Classically all
these strings have the same tension (14). Because of quan-
tum effects in the world-sheet theory the degeneracy is
lifted: the elementary strings become split, with the ten-
sions

T =2mé - 767NA2{1 - ;(m]\;gﬂ 42)

Note that (i) the splitting does not appear to any finite order
in the coupling constants; (ii) since & >> A, the splitting is
suppressed in both parameters, A/+/€ and 1/N.

Let us also note that the identification of the 6 terms and
topological charges in two and four dimensions (see
Sec. III B) allows us to address the issue of CP symmetry
in four dimensions at & = 77, and confront it with the
situation in two dimensions, see Ref. [30]. In this work it
was shown, on the basis of a strong coupling analysis, that
there is a cusp in the partition function of the CP(N — 1)
model at § = 7, implying that the expectation value of the
two-dimensional topological charge does not vanish at this
point. This tells us that CP invariance is dynamically
spontaneously broken at 8 = 7r.

The above result is in full agreement with Witten’s
picture of the vacuum family in the CP(N — 1) model,
with N states—one global minimum, other local ones
entangled in the 6 evolution. At § = 7 two minima are
degenerate, but they are characterized by opposite values
of the topological charge VEV’s,

<8ay8“n287n€) = *+A2

The kink (confined monopole) can be viewed as a barrier

PHYSICAL REVIEW D 71, 045010 (2005)

separating two domains (two degenerate strings) carrying
opposite CP.

On the other hand, the bulk four-dimensional theory is
weakly coupled, and for each given 6 the bulk vacuum is
unique. There is no spontaneous CP violation in the four-
dimensional bulk theory at § = 77. One can easily check
this assertion by carrying out a direct instanton calculation.

V. FUSING STRINGS

As has been already mentioned, in QCD one can con-
sider not only basic strings, but 2-strings, 3-strings, ...,
k-strings, and their excitations. k-strings are composite flux
tubes attached to color sources with N-ality k. Moreover,
the N-string ensembles—i.e. N-strings—can decay into a
no-string state. It is natural to ask how these phenomena
manifest themselves in the model under consideration.

If the ansatz (9) defines a basic string, it is not difficult to
generalize this definition to get an analog of 2-strings, 3-
strings, etc., for instance,

Dy_ing = Jédiag(e@W, e @™ 1, 1),

X — o0,

(43)

The solution (43) breaks SU(N) symmetry down to U(1) X
SU(2) X SU(N —2) (at N >3). This means that the
world-sheet (two-dimensional) theory of the string moduli
is the SU(N)/(U(1) X SU(2) X SU(N — 2)) sigma model.
This is also known as the Grassmannian G,y model. At
large N it has more fields, by a factor of 2, than the
CP(N — 1) model; other features are quite similar.

The statement that in our model the world-sheet theory
for k-strings is the Grassmannian G, y model has a clear-
cut indirect confirmation. Indeed, the k-string ansatz of the
type indicated in Eq. (43) tells us that the number of
distinct classical strings is

N!

= CN =
N = CO= v — o

(44)

since k phase factors e/® can be distributed arbitrarily in N
positions. From the two-dimensional perspective this num-
ber should match the number of distinct vacua of the
world-sheet theory. The latter was calculated in a super-
symmetric G, y model in Ref. [31], where it was shown to
be C¥, as in Eq. (44). In the supersymmetric G, y model all
these vacua are degenerate, i.e., we have degenerate
strings. Introducing supersymmetry breaking we move
away from the degeneracy. In the nonsupersymmetric
G,y model, the number v(k, N) = CY gives the number
of states in the vacuum family: the genuine vacuum plus
metastable ones entangled with the genuine vacuum in the
6 evolution.

As soon as string tensions in our model are classically
determined by their U(1) charges the tension of the k-string
is given by
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T, = 2mké + O(A?), (45)

where corrections of order of A? are induced by the
quantum effects in the effective world-sheet theory.

If we add up N-strings, the resulting conglomerate is
connected to the ANO string.

VI. KINKS ARE CONFINED MONOPOLES

The CP(N — 1) models are asymptotically free theories
and flow to strong coupling in the infrared. Therefore, the
non-Abelian strings discussed in the previous sections are
in a highly quantum regime. To make contact with the
classical Abelian strings we can introduce parameters
which explicitly break the diagonal color-flavor
SU(N) giay symmetry lifting the orientational string moduli.
This allows us to obtain a quasiclassical interpretation of
the confined monopoles as string junctions, and follow
their evolution from (almost) ’t Hooft-Polyakov mono-
poles to highly quantum sigma-model kinks. In the super-
symmetric case this was done in Refs. [11-13].

A. Breaking SU(N)g;a,

In order to trace the monopole evolution we modify our
basic model (3) introducing, in addition to the already
existing fields, a complex adjoint scalar field a*,

1 1 1
s= d4x{<Fm2 + () + S IDLa
4¢3 M Agi T g "
2
+ Tr(V, ) (VED) + %[Tr(@T Tad)
g% 1 _ 2 1 aa
+§[Tr(CI) ) — N&] +5Tr|a TP

i
3272

+ OV2MP? + FMF”} (46)

where D, is a covariant derivative acting in the adjoint
representation of SU(N) and M is a mass matrix for scalar
quarks ®. We assume that it has a diagonal form

m 0
0 my

with the vanishing sum of the diagonal entries,
N
z my = 0. (48)
A=l

Later on it will be convenient to make a specific choice of
the parameters my, namely,

M=m X diag{e2ﬂ'i/Ny e47Ti/N, e eZ(N—l)m'/N’ ]}, (49)

where m is a single common parameter, and the constraint
(48) is automatically satisfied. We can (and will) assume m
to be real and positive.

PHYSICAL REVIEW D 71, 045010 (2005)

In fact, the model (46) presents a less reduced bosonic
part of the N = 2 supersymmetric theory than the model
(3) on which we dwelled above. In the N = 2 super-
symmetric theory the adjoint field is a part of the N = 2
vector multiplet. For the purpose of the string solution the
field a“ is sterile as long as m, = 0. Therefore, it could be
and was ignored in the previous sections. However, if one’s
intention is to connect oneself to the quasiclassical regime,
my # 0, and the adjoint field must be reintroduced.

For the reason which will become clear shortly, let us
assume that, although m, # 0, they are all small compared

to V¢,
m < \J€,

but m > A. For generic nondegenerate values of m, the
adjoint field develops VEV’s,

m, - 0
<a>=—\/§(~- ) (50)
0 - my

The vacuum expectation values of the scalar quarks &
remain intact; they are given by Eq. (5). For the particular
choice specified in Eq. (49)

(a) = —\2mdiag{e?™/N, Ami/N _ 2N=Dmi/N 11

(1

Clearly the diagonal color-flavor group SU(N);,, is now
broken by adjoint VEV’s down to U(1)N — 1 X Zy. Still,
the solutions for the Abelian (or Zy) strings are the same as
was discussed in Sec. II since the adjoint field does not
enter these solutions. In particular, we have N distinct Z
string solutions depending on what particular squark winds
at infinity, see Sec. II. Say, the string solution with the
winding last flavor is still given by Eq. (10).

What is changed with the color-flavor SU(N)g;,, explic-
itly broken by m, # 0, the rotations (16) no more generate
zero modes. In other words, the fields n‘ become quasi-
moduli: a shallow potential for the quasimoduli n’ on the
string world sheet is generated. This potential is shallow as
long as m, < /€.

This potential was calculated in the CP(1) case in
Ref. [11]; the CP(N — 1) case was treated in [13]. It has
the following form:

2
]. (52)

Verin—1) = 2B‘Z|mz|2|nl|2 - ‘ Zm,lnllz
7 7
The potential simplifies if the mass terms are chosen
according to (49),
2
}. (53)

This potential is obviously invariant under the cyclic sub-
stitution

N
Z 6277'[€/N|n€|2
=1

Vepw-1) = 2/3”12[1 -
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— €+ k nt — nt*k YV ¢, 54)

with k fixed. This property will be exploited below.

Now our effective two-dimensional theory on the string
world sheet becomes a massive CP(N — 1) model. The
potential (52) or (53) has N vacua at

nt = 8, ¢ =12...,N. (55)

These vacua correspond to N distinct Abelian Zy strings
with @%% winding at infinity, see Eq. (19).

B. Evolution of monopoles

Our task in this section is to trace the evolution of the
confined monopoles starting from the quasiclassical re-
gime, deep into the quantum regime. For illustrative pur-
poses it will be even more instructive if we start from the
limit of weakly confined monopoles, when in fact they
present just slightly distorted 't Hooft-Polyakov mono-
poles (Fig. 6). For simplicity, in this section we will set § =
0. To further simplify the subsequent discussion we will
not treat N as a large parameter in this section, i.e., we will
make no parametric distinction between m and mN.

Let us start from the limit |m,| > /& and take all
masses of the same order, as in Eq. (49). In this limit the
scalar quark expectation values can be neglected, and the
vacuum structure is determined by VEV’s of the adjoint a?
field. In the nondegenerate case the gauge symmetry
SU(N) of our microscopic model is broken down to
U(1)N — 1 modulo possible discrete subgroups. This is
the textbook situation for occurrence of the SU(N)
"t Hooft-Polyakov monopoles. The monopole core size is
of the order of |m|™'. The ’t Hooft-Polyakov solution
remains valid up to much larger distances of the order of
£71/2. At distances larger than ~¢&~'/2 the quark VEV’s
become important. As usual, the U(1) charge condensation
leads to the formation of the U(1) magnetic flux tubes, with
the transverse size of the order of ¢~'/2 (see the upper
picture in Fig. 6). The flux is quantized; the flux tube

12
mi>>& J
B \“\ -
/
N\ s
\ yaw
o £
TN
— e
/
/ AN
\

Almost free monopole

12
A<<lml <t

‘ii % E—

Confined monopole,
quasiclassical regime

Confined monopole,
highly quantum regime

FIG. 6 (color online). Evolution of the confined monopoles.
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tension is tiny in the scale of the square of the monopole
mass. Therefore, what we deal with in this limit is basically
a very weakly confined ’t Hooft-Polyakov monopole.

Let us verify that the confined monopole is a junction of
two strings. Consider the junction of two Zy strings cor-
responding to two “‘neighboring” vacua of the CP(N — 1)
model. For the €yth vacuum n‘ is given by (55) while for
the €, + 1th vacuum it is given by the same equations with
€y — €y + 1. The flux of this junction is given by the
difference of the fluxes of these two strings. Using (19)
we get that the flux of the junction is

1
47T><diag§{...0, 1,-1,0,...} (56)

with the nonvanishing entries located at positions €, and
€y + 1. These are exactly the fluxes of N — 1 distinct
’t Hooft-Polyakov monopoles occurring in the SU(N)
gauge theory provided that SU(N) is spontaneously broken
down to U(1)V~!. We see that in the quasiclassical limit of
large |m,| the Abelian monopoles play the role of junctions
of the Abelian Z), strings. Note that in various models the
fluxes of monopoles and strings were shown [21,32—-35] to
match each other so that the monopoles can be confined by
strings in the Higgs phase. The explicit solution for the
confined monopole as a 1/4 BPS junction of two strings
was obtained in [11] for the N = 2 case in the N =2
supersymmetric theory. The general solution for 1/4 BPS
junctions of semilocal strings was obtained in [36].
Now, if we reduce |m],

A < |m| < /¢

the size of the monopole ( ~ |m|™!) becomes larger than
the transverse size of the attached strings. The monopole
gets squeezed in earnest by the strings—it becomes a bona
fide confined monopole (the lower left corner of Fig. 6). A
macroscopic description of such monopoles is provided by
the massive CPY~! model, see Egs. (52) or (53). The
confined monopole is nothing but the massive sigma-
model kink.

As we further diminish |m| approaching A and then
getting below A, the size of the monopole grows, and,
classically, it would explode. This is where quantum ef-
fects in the world-sheet theory take over. This domain
presents the regime of highly quantum world-sheet dynam-
ics. While the thickness of the string (in the transverse
direction) is ~§_1/ 2 the z-direction size of the kink rep-
resenting the confined monopole in the highly quantum
regime is much larger, ~A !, see the lower right corner in
Fig. 6. In passing from m > A tom < A we, in fact, cross
a line of the phase transition from Abelian to non-Abelian
strings. This is discussed in Sec. VIIL
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VII. ABELIAN TO NON-ABELIAN STRING
PHASE TRANSITION

In this section we will restrict ourselves to the choice of
the mass parameters presented in Eq. (49).
Correspondingly, the potential of the massive CPY™!
model describing the quasimoduli has the form (53).

At large m, m > A, the model is at weak coupling, so
the quasiclassical analysis is applicable. N quasiclassical
vacua are presented in Eq. (55). The invariance of Vepy 1)
under the cyclic permutations (54) implies a Zy symmetry
of the world-sheet theory of the quasimoduli. In each given
vacuum the Zy symmetry is spontaneously broken. N
vacua have strictly degenerate vacuum energies, which,
as we already know, leads to the kinks deconfinement.
From the four-dimensional point of view this means that
we have N strictly degenerate Abelian strings (the Zy
strings).

The flux of the Abelian 't Hooft-Polyakov monopole
equals to the difference of the fluxes of two neighboring
strings, see (56). Therefore, the confined monopole in this
regime is obviously a junction of two distinct Zy strings. It
is seen as a quasiclassical kink interpolating between the
neighboring €yth and (€, + 1)th vacua of the effective
massive CP(N — 1) model on the string world sheet. A
monopole can move freely along the string as both attached
strings are tension degenerate.

Now if we further reduce m tending it to zero, the picture
changes. At m = 0 the global symmetry SU(N)gj,e is un-
broken, and so is the discrete Z of the massive CP(N — 1)
model with the potential (53). N degenerate vacua of the
quasiclassical regime give place to N nondegenerate vacua
depicted in Fig. 1 (see Sec. IV). The fact that (n¢) = 0 in
the quantum regime signifies that in the limit m — 0 the Z
symmetry of the massive model gets restored. Now kinks
are confined, as we know from Sec. IV.

From the standpoint of the four-dimensional micro-
scopic theory the tensions of N non-Abelian strings get a
split, and the non-Abelian monopoles, in addition to the
four-dimensional confinement (which ensures that the
monopoles are attached to the strings) acquire a two-
dimensional confinement along the string: a monopole-
antimonopole forms a mesonlike configuration, with ne-
cessity, see Fig. 3.

Clearly these two regimes at large and small m are
separated by the phase transition at some critical value
m,. We interpret this as a phase transition between the
Abelian and non-Abelian confinement. In the Abelian
confinement phase at large m, the Z, symmetry is sponta-
neously broken, all N-strings are strictly degenerate, and
there is no two-dimensional confinement of the 4D-
confined monopoles. Instead, in the non-Abelian confine-
ment phase occurring at small m, the Zy symmetry is fully
restored, all N elementary strings are split, and the 4D-
confined monopoles combine with antimonopoles to form
a mesonlike configuration on the string, see Fig. 3. We
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show schematically the dependence of the string tensions
on m in these two phases in Fig. 7.

It is well known [37] that the two-dimensional CP(N —
1) model can be obtained as a low-energy limit of a U(1)
gauge theory with N flavors of complex scalars n¢ and the
potential

2B (In12 = 1)?, (57)

where e? is U(1) gauge coupling. Classically the CP(N —
1) model corresponds to the Higgs phase of this gauge
theory. The potential (57) forces n‘ to develop VEV’s
breaking the U(1) gauge symmetry. Then the U(1) photon
becomes heavy and can be integrated out. Namely, in the
low-energy limit the gauge kinetic term can be ignored
which leads us to the model (34).

To include the masses m, in this theory we add, follow-
ing [37], a neutral complex scalar field o and consider the
U(1) gauge theory with the potential

1 1
SUHD = ]dtdz{Z,BWanlz + @sz + Z|aaa|2

ol (o5

where V, = 9, — iA, [A, is the two-dimensional U(1)
gauge potential].

At large m, this theory is in the Higgs phase. Moreover,
quantum effects do not destroy the Higgs phase because
the coupling constant is small. Namely, o develops a VEV,

2+2e2‘[32(|nf|2 - 1)2}, (58)

(o) = mge,,

while VEV’s of n! are given by (55). In this phase both the
U(1) gauge field and the scalar field o become heavy and
can be integrated out leading to the massive CP(N — 1)
model with the potential (52).

At small m, this theory is in the Coulomb phase. The
VEV’s of n! vanish, and the photon becomes massless.

Tension

2§ A

——

m* m

FIG. 7. Schematic dependence of string tensions on the mass
parameter m. At small m in the non-Abelian confinement phase
the tensions are split while in the Abelian confinement phase at
large m they are degenerative.

045010-12



NON-ABELIAN MEISSNER EFFECT IN YANG-MILLS ...

Since the Coulomb potential in two dimensions is linear,
the photon masslessness results in the confinement of kinks
[24]. Thus, the phase transition which we identified above
separates the Higgs and Coulomb phases of the two-
dimensional U(1) gauge theory (58). The Higgs phase is
characterized by a broken Zy symmetry and degenerate
vacua, while in the Coulomb phase the Z,, symmetry gets
restored, and the vacua split. In four dimensions the former
phase is an Abelian confinement phase with degenerate
Abelian strings and 2D deconfinement of monopoles. The
latter phase is a non-Abelian confinement phase with N
split non-Abelian strings and non-Abelian 2D-confined
monopoles forming mesonlike configurations on these
strings. Note that the description of the CP(N — 1) theory
on the string world sheet as a U(1) gauge theory (58) was
used in [13] in a supersymmetric setting.

In particular, we expect that in the N = 2 case the
massive CP(1) model is in the same universality class as
the two-dimensional Ising model. Therefore, we conjec-
ture that the phase transition from the Abelian confinement
phase to the non-Abelian one is of the second order, and is
described (at N = 2) by conformal field theory with the
central charge ¢ = 1/2, which corresponds to a free
Majorana fermion.

To conclude this section we would like to stress that we
encounter a crucial difference between the non-Abelian
confinement in supersymmetric and nonsupersymmetric
gauge theories. For BPS strings in supersymmetric theories
we do not have a phase transition separating the phase of
the non-Abelian strings from that of the Abelian strings
[11,13]. Even for small values of the mass parameters
supersymmetric theory strings are strictly degenerate, and
the Zy symmetry is spontaneously broken. In particular, at
my = 0 the order parameter for the broken Z,, which
differentiates N degenerate vacua of the supersymmetric
CP(N — 1) model, is the bifermion condensate of two-
dimensional fermions living on the string world sheet of
the non-Abelian BPS string.

An example of the deconfinement phase transition at a
critical mass is known [38] in four-dimensional softly
broken N = 2 supersymmetric quantum chromodynam-
ics (SQCD); in this model the order parameter is the
Seiberg-Witten monopole condensate, and the collision
of vacua happens in the parameter space, which is absent
in our model. Note, that in some two-dimensional super-
symmetric theories both Coulomb and Higgs branches are
present and they have distinct R symmetries and different
renormalization-group flows in the infrared domain [39].
Interpolation between two branches is a rather delicate
issue since the transition region is described by a nontrivial
geometry in the moduli space. A recent analysis of the
supersymmetric case [40] shows that the two phases can
even coexist on the world sheet and, moreover, integration
over the form of the boundary is necessary to make the
theory self-consistent.
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We do not expect such a picture in the nonsupersym-
metric case under consideration.

VIIL THE SU(2) X U(1) CASE

The N = 2 case is of special importance, since the
corresponding world-sheet theory, CP(1), is exactly solv-
able. In this section we discuss special features of this
theory in more detail. The Lagrangian on the string world
sheet is

SO+ = Z,B[dtdz{(éan*aan) + (n*9,n)?
+ m2[1 _ (|n1|2 _ |n2|2)2]}
6
- / dtdze.,(9,n"d,n), (59)

where in the case at hand the mass parameter m = m; =
—m,, see (49). In this theory the mass term breaks
SU(2)giae symmetry down to U(1) X Z, since the potential
is invariant under the exchange n' < n?. It has two min-
ima: the first one located at n! = 1, n> = 0, and the second
minimum at n! = 0, n% = 1.

Now let us discuss the m = 0 limit, i.e., non-Abelian
strings, in more detail. Setting N = 2 we arrive at a non-
Abelian string with moduli forming a CP(1) model on the
world sheet. The very same string emerges in the super-
symmetric model [14] which supports non-BPS string
solutions. It is instructive to discuss how the pattern we
have established for the CP(N — 1) string is implemented
in this case.

Unlike CP(N — 1), the CP(1) model has only one pa-
rameter, the dynamical scale A. The small expansion
parameter 1/N is gone. Correspondingly, the kink-antikink
interaction  becomes strong,  which invalidates
quasiclassical-type analyses. On the other hand, this model
was exactly solved [41]. The exact solution shows that the
SU(2) doublets (i.e. kinks and antikinks) do not show up in
the physical spectrum, and the only asymptotic states
present in the spectrum are SU(2) triplets, i.e., bound states
of kinks and antikinks. [Note that there are no bound states
of the SU(2)-singlet type.] As was noted by Witten [24]
passing from large N to N = 2 does not change the picture
qualitatively. In the quantitative sense it makes little sense
now to speak of the kink linear confinement, since there is
no suppression of the string breaking. The metastable
vacuum entangled with the true vacuum in the 6 evolution,
is, in fact, grossly unstable. Attempting to create a long
string, one just creates multiple kink-antikink pairs, as
shown in Fig. 8. We end up with pieces of broken string
of a typical length ~A .

There is a special interval of # where long strings do
exist, however, and, hence, we can apply the approach
developed in the previous sections to obtain additional
information. The CP(1) model at & = 7 turns out to be
integrable [42,43], much in the same way as at § = 0.
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FIG. 8. Breaking of a would-be string through the kink-

antikink pair creation in CP(1). The thick solid lines show the
energy density of the true vacuum, while the dashed ones
indicate the energy density of the ‘“metastable’” vacuum.

From the exact solution [42,43] it is known that at 8 = 7
there are no localized asymptotic states in the physical
spectrum—the model becomes conformal. The exact so-
lution confirms the presence of deconfined kinks (doublets)
at 0 = 7 and their masslessness. The S matrix for the
scattering of these massless states has been found in
[42,43].

We will focus on a small interval of € in the vicinity of
6 = . It is convenient to introduce a new small parameter

e =|m— 4| (60)

If € < 1, our model again becomes two parametric. We
will argue that in this regime the string tension in the CP(1)
model is

ATcpy ~ A, (61)
while the kink mass and the string size scale as

M, ~ Ag'/?, L~Aleg 12 (62)

The mass of the kink-antikink bound state also scales as
M ~ A&'/?, (63)

so that at @ = 7 the string tension vanishes allowing the
model to become conformal.

Let us elucidate the above statements starting from the
string tension. In the CP(1) model the vacuum family
consists of two states: one true vacuum, and another—
local —minimum, a companion of the true vacuum in the 6
evolution. This fact can be confirmed by consideration of
the supersymmetric CP(1) model which has two degener-
ate vacua. Upon a soft SUSY breaking deformation, a
small fermion mass term, the above vacua split: one mini-
mum moves to a higher energy while another to a lower
one. The roles of these nondegenerate minima interchange
in the process of the 6 evolution from zeroto 27;at = 7
they get degenerate.

Returning to the nonsupersymmetric CP(1) model, it is
not difficult to derive that in the vicinity of 6 = 7 the
vacuum energy densities £, , of the two vacua behave as

E 12 = 80 + A2(0 - 7T) (64)
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This formula proves that the difference of the vacuum
energy densities (also known as the string tension) scales
as indicated in Eq. (61).

Now the validity of Eq. (62) can be checked with ease.
Indeed, the kink momentum (which is ~L~!) is of the
order of its mass. Therefore, the kink and the antikink in
the bound pair are right at the border of nonrelativistic and
ultrarelativistic regimes. No matter which formula for their
potential energy we use, we get E, ~ Ae!/2, so that the
potential energy of the bound state is of the order of the
kinetic energy of its constituents. The total mass of the
bound state is then given by Eq. (63). This is in full
agreement with the fact [43] that the conformal theory
one arrives at in the limit § = 7 has the Virasoro central
charge ¢ = 1. At ¢ = 1 the spectrum of the scaling dimen-
sions is given by (1/4) X (integer)?.

It is easy to verify that any regime other than (62) is
inconsistent. Here we note in passing that our result contra-
dicts the analyses of Refs. [44,45]. In these papers a
deformation of the exact 6§ = 7 solution of the CP(1)
model was considered, with the conclusion that M ~
A€*3. This scaling regime is in contradiction with our
analysis.

An alternative analysis of the CP(1) model at generic 6
can be carried out using the quasiclassical picture devel-
oped by Coleman a long time ago [46]. Namely, in the dual
fermionic version of the model € corresponds to the con-
stant electric field created by two effective charges located
at the ends of the strings. The value of the electric field
experiences jumps at the kinks’ positions, since the kinks
are charged too. Generically the system is in a 2D Coulomb
phase, with the vanishing photon mass. Coleman’s analysis
is qualitatively consistent with the description of the
CP(N — 1) model as a Coulomb phase of the U(1) gauge
theory (58) reviewed in Sec. VII and with the solution [24]
of the CP(N — 1) models at large N.

IX. DUAL PICTURE

It is instructive to compare properties of the QCD strings
summarized at the end of Sec. I with those emerging in the
model under consideration. First of all, let us mention the
most drastic distinction. In QCD, the string tension, exci-
tation energies, and all other dimensionful parameters are
proportional to the only scale of the theory, the dynamical
scale parameter Agcp. In the model at hand we have two
mass scales, /€ and A. To ensure full theoretical control
we must assume that & > A2,

The transverse size of the string under consideration is
proportional to 1//€. Correspondingly, a large component
in the string tension is proportional to &, see Eq. (42). It is
only a fine structure of the string that is directly related to
A, for instance, the splittings between the excited strings
and the string ground state. The decay rates of the excited
strings are exponentially suppressed, ~ exp(—yN?) in the
QCD case and ~ exp(—yN) in our model. The confined
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monopoles in our model are in one-to-one correspondence
with gluelumps of QCD (remember, in the model at hand
we deal with the Meissner effect, while it is the dual
Meissner effect that is operative in QCD).

N-strings in QCD can combine to produce a no-string
state, while N non-Abelian strings in our model can com-
bine to produce an ANO string, with no structure at the
scale A. The only scale of the ANO string is ¢&.

Moreover, confinement in our model should be thought
of as dual to confinement in pure Yang-Mills theory with
no sources because there are no monopoles attached to the
string ends in our model. If we started from a SUN + 1)
gauge theory spontaneously broken to SU(N) X U(1) at a
very high scale, then in that theory there would be extra
very heavy monopoles that could be attached to the ends of
our strings. However, in the SU(N) X U(1) model per se
these very heavy monopoles become infinitely heavy. The
SU(N) monopoles we have considered in the previous
sections are junctions of two elementary strings dual to
gluelumps, rather than to the end-point sources.

Our model exhibits a phase transition in m between the
Abelian and non-Abelian types of confinement. As is well
known [5,6], the Abelian confinement leads to prolifera-
tion of hadronic states: the bound state multiplicities within
the Abelian confinement are much higher than they ought
to be in QCD-like theories.

Tension

2ntNg

4n &

2n §

FIG. 9. The string spectrum in the non-Abelian confinement
phase. The k-strings at each level are split.
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In our model the Abelian confinement regime occurs at
large m (m > A). In this region we have N degenerate Z,
strings with the tensions given in (14). If we extend our
model to introduce superheavy monopoles (see above) as
the end-point source objects, it is the N-fold degeneracy of
the Z strings occurring in this phase that is responsible for
an excessive multiplicity of the “meson” states.

Now, as we reduce m and eventually cross the phase
transition point m,, so that m <<m,, the strings under
consideration become non-Abelian. The world-sheet
CP(N — 1) model becomes strongly coupled, and the
string tensions split according to Eq. (42). The splitting is
determined by the CP(N — 1) model and is ~A?/N. Thus,
(at & = 0) we have one lightest string—the ground state—
as expected in QCD. Other N — 1 excited strings become
metastable. They are connected to the ground-state string
through the monopole-antimonopole pairs. At large N their
decay rates are ~ exp(—N).

Besides N elementary strings we also have k-strings
which can be considered as a bound states of k elementary
strings. Their tensions are given in Eq. (45). At each level k
we have N!/k!(N — k)! split strings. The number of strings
at the level k and N — k are the same. At the highest level
k = N we have only the ANO string. The string spectrum
in our theory is shown in Fig. 9.

The dual of this phenomenon is the occurrence of the
k-strings in QCD-like theories. If k >> 1 we have a large
number of metastable strings, with splittings suppressed by
inverse powers of N, which are connected to the ground-
state string through a gluelump.

At small N all metastable strings become unstable and
practically unobservable.

X. CONCLUSIONS

Our main task in this work was developing a simple
reference setup which supports non-Abelian strings and
confined monopoles at weak coupling. We construct a
simple nonsupersymmetric SU(N) X U(1) Yang-Mills the-
ory which does the job. The advantages of the large-N limit
(i.e. 1/N expansion) are heavily exploited. We discover, en
route, a phase transition between Abelian and non-Abelian
confinement regimes. We discuss in detail a dual picture
where the confined monopoles turn into string-attached
gluelumps; these gluelumps separate excited strings from
the ground state. The non-Abelian strings we obtain in non-
Abelian regime have many common features with QCD
k-strings; however, they have significant distinctions as
well. At the present level of understanding, this is as
good as it gets on the road to quantitative theory of QCD
strings.
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