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One considers a planar Maxwell-Chern-Simons electrodynamics in the presence of a purely spacelike
Lorentz-violating background. Once the Dirac sector is properly introduced and coupled to the scalar and
the gauge fields, the electron-electron interaction is evaluated as the Fourier transform of the Möller
scattering amplitude (derived in the nonrelativistic limit). The associated Fourier integrations can not be
exactly carried out, but the interaction potential is obtained as a first order solution in v2=s2. It is then
observed that the scalar potential presents a logarithmic attractive (repulsive) behavior near (far from) the
origin. Concerning the gauge potential, it is composed of the pure MCS interaction corrected by
background contributions, also responsible for its anisotropic character. It is also verified that such
corrections may turn the gauge potential attractive for some parameter values. Such attractiveness remains
even in the presence of the centrifugal barrier and gauge invariant A � A term, which constitutes a
necessary condition for yielding electron-electron pairing.
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I. INTRODUCTION

In the last few years, Lorentz-violating theories have
been the focus of great interest and investigation [1–7],
[10–12]. Despite the intensive activity proposing and dis-
cussing the consequences of a Lorentz-violating electro-
dynamics, some experimental data and theoretical
considerations indicate stringent limits on the parameters
responsible for such a breaking [2,3]. These evidences put
the Lorentz-violation as a negligible effect in a factual �1�
3�-dimensional electrodynamics, which raises the question
about the feasibility of observing this effect in a lower
dimension system or in another environment distinct from
the usual high-energy domain in which this matter has been
generally regarded so far.

Condensed Matter Systems (CMS) are low-energy sys-
tems sometimes endowed with spatial anisotropy which
might constitute a nice environment to study Lorentz-
violation and to observe correlated effects. Indeed,
although Lorentz covariance is not defined in CMS,
Galileo covariance holds as a genuine symmetry in such
systems (a least for the cases endowed with isotropy).
Keeping in mind that a CMS may be addressed as the
low-energy limit of a relativistic model, there follows a
straightforward correspondence between the breakdown of
Lorentz and Galileo symmetries, in the sense that a
Galileo’s symmetry violating CMS may have as counter-
part a relativistic system endowed with the breaking of
Lorentz covariance. Considering the validity of this corre-
spondence, it turns out that an anisotropic CMS could be
addressed as the low-energy limit of a relativistic model in
the presence of a spacelike Lorentz-violating background.

The attainment of an attractive electron-electron �e�e��
potential in the context of a planar model incorporating
Lorentz-violation is a point that could set up a first con-
05=71(4)=045003(9)$23.00 045003
nection between such theoretical models and condensed
matter physics. Theoretical planar models able to provide
attractive e�e� interaction potentials may constitute a
suitable framework to deal with electronic pairing, a fun-
damental characteristic of superconducting systems.
Historically, the Maxwell-Chern-Simons theories [11]
were addressed in the beginning of 1990s as a theoretical
alternative to accomplish this objective, without success.
Actually, it is known that the MCS-Proca models [12] may
better provide an attractive interaction due to the action of
the scalar intermediation played by the Higgs sector.
Another well defined feature of a planar superconductor
concerns the symmetry of the order parameter (standing
for the Cooper pair), which is described in terms of a
spatially anisotropic d-wave. Certainly, a field theory
model able to accounting for a spatially anisotropic elec-
tronic pairing must first provide an anisotropic e�e�

interaction.
The investigation of the e�e� interaction can be suitably

considered in the context of a Lorentz-violating planar
framework. In fact, in a very recent paper [8], the low-
energy Möller interaction potential was carried out for the
case of a planar electrodynamics [4] incorporating a purely
timelike background. With the inclusion of the Dirac sec-
tor, the low-energy Möller scattering amplitude (adopted
as the appropriate tool to analyze the nonrelativistic
electron-electron interaction) was carried out. The interac-
tion potential, obtained from the evaluation of exact
Fourier transforms, revealed to be composed of a scalar
and a gauge contributions. It has been shown that the scalar
potential exhibits a logarithmic attractive repulsive/behav-
ior near/far from the origin, while the gauge potential is
composed of the Maxwell-Chern-Simons (MCS) usual
interaction [11] corrected by background-depending terms.
These terms provide attractiveness (for some parameter
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values) even in the presence of the centrifugal barrier and
the A2 � gauge invariant term stemming from the Pauli
equation, stating the possibility of achieving electron-
electron pairing.

Having as main motivation the encouraging outcomes
achieved in Ref. [8], in this work one aims at evaluating the
electron-electron potential in the context of a Lorentz-
violating planar electrodynamics endowed with a purely
spacelike background, v� � �0; v�. As this kind of back-
ground fixes a 2-direction in space, it naturally leads to an
anisotropic behavior, a consequence of the directional
dependence of the solutions in relation to the fixed back-
ground �v�. By determining such e�e� potential, one can
investigate two expected properties concerning the e�e�

interaction: attractiveness and anisotropy, which are rele-
vant due its possible connection with superconducting
systems. The procedure adopted here is the same one
developed in Refs. [8,12]. One starts from the planar
Lagrangian defined in Ref. [8], in which the Dirac sector
has been already included. One first carries out the e�e�

Möller scattering amplitude, whose Fourier transform
leads to the interaction potential (according to the Born
approximation). The involved Fourier integrations are not
exactly solvable, but algebraic solutions are obtained once
the approximation s2 � v2 is considered. The total inter-
action comprises the scalar and the gauge potentials, since
the e�e� interaction is both mediated by the massless
scalar and the massive gauge fields. The scalar potential
maintains the logarithmic behavior (asymptotically repul-
sive and attractive near the origin) of the purely timelike
case, being different only in the presence of anisotropy.
With respect to the gauge potential, it is given by a lengthy
expression composed of the pure MCS interaction and
many background-depending terms which imply manifest
anisotropy. It is also possible to show that these corrections
are able to turn this potential attractive for some values of
the relevant parameters, which behavior remains even in
the presence of the centrifugal barrier �l=mr2� and the A � A
gauge invariant term. Moreover, the total interaction (sca-
lar and gauge potentials) may always be attractive with a
suitable tuning of the coupling parameters. This outcome,
which is a necessary condition to bring about the formation
of electron-electron pairs, puts in evidence that this theo-
retical framework may be useful to describe electronic
pairing in low-energy systems as far as the nonrelativistic
approximation is valid. However, it is important to point
out that such kind of procedure does not set up a theoretical
model for addressing general condensed matter properties.

This paper is organized as follows. In Sec. II, one briefly
presents the structure of reduced planar model (derived in
Ref. [4]), here adopted as stating point. This model is
supplemented by the Dirac field. In Sec. III, one presents
the spinors which fulfill the two-dimensional Dirac equa-
tion, used to evaluate the Möller scattering amplitude
associated with the Yukawa and the gauge intermediations.
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The corresponding interaction potentials are carried out,
and the results are discussed. In Sec. IV, one concludes
with the final remarks and prospects.
II. THE PLANAR LORENTZ-VIOLATING MODEL

The starting point is the planar Lagrangian obtained
from the dimensional reduction of the Carroll-Field-
Jackiw (CFJ) electrodynamics [4], which consists in a
Maxwell-Chern-Simons electrodynamics coupled to a
massless Klein-Gordon field �’� and to a fixed 3-
background vector �v�� through a Lorentz-violating
Chern-Simons-like mixed term, derived from the dimen-
sional reduction of the Carroll-Field-Jackiw model [5].
One then considers the additional presence of a fermion
field � �:

L1�2 � �
1

4
F��F

�� �
s
2
����A

�@�A� �
1

2
@�’@

�’

� ’����v�@�A� �
1

2�
�@�A��2

�  �iD6 �me� � y’�  �: (1)

Here, the covariant derivative, D6  	 �@6 � ie3A6 � ; states
the minimal coupling, whereas the term ’�  � reflects the
Yukawa coupling between the scalar and fermion fields,
with y being the constant that measures the strength of the
electron-phonon coupling. This latter term usually appears
in some field theories endowed with a four-fermion
interaction �  �2 which, by the action of a Hubbard-
Stratonovich transformation [6], is turned into a typical
electron-phonon coupling, present in BCS-like
Lagrangians. The mass dimensions of the fields and pa-
rameters are the following: 
’� � 
A�� � 1=2; 
 � �
1; 
s� � 
v�� � 1; 
e3� � 
y� � 1=2: One then notes that
the coupling constants, e3, y; both exhibit 
mass�1=2 di-
mension, a usual result in �1� 2� dimensions. In Eq. (1),
the first two terms correspond to the Maxwell-Chern-
Simons sector, whereas the term �@�A��2 is responsible
only for the gauge-fixing in this field model. Finally, one
points out that the knowledge of the propagators1 evaluated
in Ref. [4] is essential to the calculations carried out in this
work.
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III. THE MOLLER SCATTERING AMPLITUDE
AND THE INTERACTION POTENTIAL

The two-particle interaction potential is given by the
Fourier transform of the two-particle scattering amplitude
in the low-energy limit (Born approximation). In the case
of the nonrelativistic Möller scattering, one should con-
sider only the t-channel (direct scattering) [13] even for
indistinguishable electrons, since in this limit one recovers
the classical notion of trajectory. From Eq. (1), there follow
the Feynman rules for the interaction vertices: V ’ �

iy;V A � ie3 �, so that the e�e� scattering amplitudes
are written as:

�iMscalar � u�p0
1��iy�u�p1�
h’’i�u�p0

2��iy�u�p2�; (2)

�iMA � u�p0
1��ie3 

��u�p1�
hA�A�i�u�p0
2��ie3 

��u�p2�;

(3)

with h’’i and hA�A�i being the scalar and photon propa-
gators. Expressions (2) and (3) represent the scattering
amplitudes for electrons of equal polarization mediated
by the scalar and gauge particles, respectively. The spinors
u�p� stand for the positive-energy solution of the Dirac
equation �p6 �m�u�p� � 0. The  � matrices, in turn,
satisfy the so�1; 2� algebra, 
 �;  �� � 2i���� �, and
correspond to the (1+2)-dimensional representation of
the Dirac matrices, that is, the Pauli ones:  � �

�$z;�i$x; i$y�: Taking into account these definitions,
one obtains the spinors,

u�p� �
1����
N

p

� E�m

�ipx � py

�
;

u�p� �
1����
N

p 
E�m �ipx � py �;

(4)

which fulfill the normalization condition u�p�u�p� � 1
whenever the constant N � 2m�E�m� is adopted.
The Möller scattering should be easily analyzed in the
center of mass frame, where the momenta of the incom-
ing and outgoing electrons are read at the form: P�1 �

�E;p;0�;P�2 � �E;�p;0�;P0�
1 � �E;pcos�;psin��;P0�

2 �
�E;�pcos�;�psin��; whereas � is the scattering angle (in
the CM frame): The 3-current components, j��p� �
u�p0� �u�p�; and the transfer 3-momentum arising from
this convention are explicitly written in Ref. [8].

A. The scalar potential

Starting from the expression of the scalar propagator
h’’i (see 1), considering the transfer momentum, k� �
�0;k�; and a purely spacelike background, v� � �0; v�, the
following scattering amplitude arises from Eq. (2):

M scalar � �y2

k2 � s2�

k2
k2 � s2 � v2sin2��
; (5)
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where � is the angle defined by the vectors v and k. Taking
into account the Born approximation, the potential associ-
ated with the Yukawa interaction reads as,

Vscalar�r� � �
y2

�2+�2
Z
eik:r


k2 � s2�

k2
k2 � s2 � v2sin2��
d2k:

(6)

Such Fourier integration can not be exactly computed.
However, this integration may be solved in the regime in
which s2 � v2: As far as this condition holds, the follow-
ing expansion,


k2 � s2�

k2
k2 � s2 � v2sin2��
’

1

k2 �
v2sin2�

k2
k2 � s2�
; (7)

is valid as a first order approximation (in v2=s2). In order to
solve Eq. (6), two other angles are of interest: ’ and - -
defined by the relations cos’ � r � k=rk; cos- � r � v=rv,
respectively: While the background vector, v; sets up a
fixed direction in space, the coordinate vector, r; defines
the position where the potentials are to be measured;
so, - is the (fixed) angle that indicates the directional
dependence of the fields in relation to the background
direction. Being confined into the plane, these angles sat-
isfy a simple relation: � � ’� -; whose consideration
leads to sin2� � c2 � c1cos2’� c3 sin2’; with c1 �
�1� 2cos2-�; c2 � cos2-; c3 � ��sin2-�=2: This ex-
pression allows the evaluation of the angular integration
(on the variable ’) contained in Eq. (6), given below:

Z 2+

0
eikr cos’sin2�d’ � 2+

�
�c1 � c2�J0�kr� �

c1
kr
J1�kr�

�
:

(8)

Taking into account these preliminary results, one shall
now proceed with the integration on the k-variable, obtain-
ing the following scalar interaction potential:

Vscalar�r� �
y2

�2+�

��
1�

v2

s2

�
lnr�

v2sin2-

s2
K0�sr�

�
v2 cos2-

s4
1

r2

1� srK1�sr��

�
: (9)

Near the origin, r! 0, the modified Bessel functions
behave as K0�r� ! � lnr; K1�sr� ! 1=sr� sr lnr=2;
apart from constant terms. In such a way, the potential
Vscalar goes like:

lim
r!0

Vscalar�r� �
y2

�2+�

�
1�

v2

2s2
�1� sin2-�

�
lnr: (10)

Far from the origin, r! 1; the Bessel functions decay
exponentially whereas the logarithmic function increases.
In this limit, one has:

lim
r!1

Vscalar�r� �
y2

�2+�

�
1�

v2

2s2

�
lnr: (11)
-3



M. M. FERREIRA, JR. PHYSICAL REVIEW D 71, 045003 (2005)
Remarking the condition �s2 � v2�, under which this so-
lution was derived, the scalar potential turns out
always attractive near the origin and repulsive asymptoti-
cally, exhibiting a logarithmic behavior corrected by
background-depending terms near and far from the origin.
This logarithmic asymptotic behavior reflects the absence
of screening concerning the scalar intermediation, which is
ascribed to the presence of a masslesslike term, 1=k2; in the
body of the scattering amplitude. In comparing the solution
attained here with the scalar potential derived for the case
of a purely timelike background, given in Ref. [8], it is
instructive to point out that both possess a similar logarith-
mic behavior in the limits r! 0 and r! 1. The differ-
ence lies mainly in the directional dependence on the
-� angle, responsible for the anisotropy, absent in the
purely timelike case.

B. The gauge potential

Although the propagator of the gauge sector is com-
posed by 11 terms, only six of them will contribute to the
scattering amplitude, namely ���; S��;
��; T�T�;Q��;
Q��: This is a consequence of the current-conserva-
tion law (k�J� � 0) The first two terms yield, in the
045003
nonrelativistic limit, the Maxwell-Chern-Simons (MCS)
scattering amplitude, already carried out in Refs. [11].
The other four terms lead to background-depending scat-
tering amplitudes. In order to obtain the total scattering
amplitude mediated by the gauge field, one must previ-
ously evaluate the following current-current amplitude
terms,

j��p1��S���j��p2� � j�0��p1�S0ij�i��p2�

� j�i��p1�Si0j�0��p2�; (12)

j��p1��T�T��j��p2� � j�0��p1�
�~v � ~v�� ~k � ~k�

� �~v � ~k�2�j�0��p2�; (13)

j��p1��
���j��p2� � j�i��p1�
vivj�j�j��p2�; (14)

j��p1��Q�� �Q���j��p2� � 
j�i��p1�vij0�p2�

� j�l��p2�vlj
0�p1���~v� ~k�;

(15)

which carried out in the nonrelativistic limit, with v� �
�0; 0; v� and k� � �0;k�; lead to:
j��p1��S���j��p2� � k2=m� �2i=m�k� p; j��p1��T�T��j��p2� � 
v2k2sin2��; (16)

j��p1��
���j��p2� � �
v2k2

4m2 e
i�; j��p1��Q�� �Q���j��p2� �

v2k2

4m2 
1� ei��; (17)
where the vector, p � 1
2 �p1 � p2�; is defined in terms of

the 2-momenta �p1;p2� of the incoming electrons, and � is
the scattering angle in the CM frame. The total scattering
amplitude associated with the gauge sector is obviously
given by:

M gauge � MMCS �M
 �MTT �MQQ: (18)

Here, the term MMCS stands for the Maxwell-Chern-
Simons scattering amplitude (contributed by the terms
���; S��of the gauge propagator), whereas the other three
amplitude terms explicitly depend on the background.
They all are displayed as below:

MMCS � e23

��
1�

s
m

�
1

k2 � s2
�

2s
m

ik� p
k2�k2 � s2�

�
;

M
 �
e23s

2v2

4m2

k2


k2 � s2���k�
ei�;

(19)

MTT � e23v
2 k2


k2 � s2���k�
sin2�;

MQQ � �
e23sv

2

2m
k2


k2 � s2���k�

1� ei��;

(20)

where the term, ��k� � 
k2�k2 � s2 � v2sin2���; is read
off from the field propagators evaluated in Ref. [4]. The
amplitude MMCS leads to the well-know Maxwell-Chern-
Simons potential (see Refs. [11]),

VMCS�r� �
e23
�2+�

��
1�

s
m

�
K0�sr��

2

ms
�1� srK1�sr��

l

r2

�
;

(21)

which presents a purely logarithmic behavior near the
origin,

VMCS�r� ! ��e2=2+�
1� s=m� sl=m� lnr; (22)

and a typical �1=r2 behavior in the asymptotic limit. This
preliminary MCS result will be corrected by the other
background-depending contributions, still to be evaluated.
Hence, the remaining task consists in carrying out the
Fourier transforms of the three amplitudes above.
Starting from the M
-amplitude, the corresponding po-
tential is written as follows:

V
�r� �
1

�2+�2
e23s

2v2

4m2

Z 1

0

�
Z 2+

0

eikr cos’


k2 � s2�
k2 � s2 � v2sin2��
ei�kdkd’;
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As usual, this integral can not be exactly solved, so that the
first order expansion (in v2=s2),

1


k2 � s2�
k2 � s2 � v2sin2��

’
1


k2 � s2�2
�

v2sin2�


k2 � s2�3
; (23)

must be adopted. Besides this approximation, an important
point concerns the existing relationship between the scat-
tering angle ��� and the integration angle �’�: � � �2’�
+�; which is decisive for the solution of the relevant
angular integration, now read as

Z 2+

0
eikr cos’ei�d’ � ��2+�
J2�kr��: (24)

Considering it and emphasizing that only the first term on
the right hand side of Eq. (23) will provide a first order
contribution (in v2), the following potential expression
comes out:

V
�r� ’
e23
�2+�

v2

4m2

�
�

2

s2r2
� K0�sr� �

�
2

sr
�
sr
2

�
K1�sr�

�
;

(25)

where one notes that the directional dependence on the
angle - does not appear in this first order result. Moreover,
it behaves as � lnr near the origin and as �1=r2 far from it.

In turn, the interaction potential associated with the
MTT amplitude,

VTT�r� �
e23v

2

�2+�2
Z 1

0

e ~ik:~rsin2�


k2 � s2�
k2 � s2 � v2sin2��
d2 ~k;

(26)

can not be exactly solved as well, in such a way the first
order approximation,

sin2�


k2 � s2�
k2 � s2 � v2sin2��
’

v2sin2�


k2 � s2�2
; (27)

must be properly considered. The associated angular inte-
gration is given by Eq. (8), so that the resulting potential
takes on the form:

VTT�r� ’
e23v

2

�2+�

�
c1
2s2

K0�sr� �
c1
s4r2

�
sin2-
2s

rK1�sr�

�
c1
s3r

K1�sr�
�
: (28)

One can now solve the last Fourier transformation for
the scattering amplitude MQQ; written as follows:
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VQQ�r� �
1

�2+�2
e23v

2s
2m

�
Z 1

0

e ~ik ~:r�1� ei��


k2 � s2�
k2 � s2 � v2sin2��
d2 ~k;

(29)

which must be rewritten according to the approximation
(23) and solved by means of the angular integration (24),
so that one achieves the following first order outcome:

VQQ�r� ’
e23
�2+�

v2

2m

�
�

2

s3r2
�

3

2
rK1�sr�

�
1

s

�
K0�sr� �

2

sr
K1�sr�

��
: (30)

It is worth pointing out that the three potentials,
V
; VTT; VQQ; behave in the same way both near and
away from the origin. Indeed, it is easy to show that these
potentials go as a constant as r! 0, and as �1=r2 for r!
1. On the other hand, remarking that the rest mass of the
electron represents a large energy threshold against low-
energy excitations, one should adopt the following condi-
tion m2 >>s2 as a sensible premise. Thereby, the poten-
tial VTT turns out to be proportionally more significant than
VQQ and V
; in accordance with the order of magnitude of
the multiplicative factors �v2=4m2; v2=2m; v2� which ap-
pear in Eqs. (25), (30), and (28), one concludes that V
 is
the less meaningful one.

The total gauge potential, Vgauge�r� � VMCS � V
 �

VTT � VQQ; is then written as a nontrivial combination of
Bessel functions and 1=r2 terms, explicitly as:

Vgauge�r��
e23
�2+�

��
1�

s
m
�v2

�
1

2ms
�

1

4m2

�
cos2-

2s2

��
K0�sr��

�
2l
ms

�v2
�

1

ms3
�

1

2s2m2

�
cos2-

s4

��
1

r2
�

�
2l
mr

�v2
�

1

s2m
�

1

2m2s

�
cos2-

s3

�
1

r
�v2

�
s

8m2�
sin2-
2s

�
3

4m

�
r
�
K1�sr�

�
:

(31)

Near the origin, this gauge potential is reduced to a
simple expression,

Vgauge�r� ! �
e23
�2+�

�
1�

s
m
�
sl
m

�
lnr; (32)

which corresponds exactly to the limit of the MCS gauge
potential, already established in Eq. (22). This is an ex-
pected result, once it has been already established that all
the potentials V
; VTT; VQQ behave as a constant in the
limit r! 0. It is still interesting to observe that the gauge
potential derived in the case of a purely timelike back-
ground (see Ref. [4]) also presents this exact dependence,
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which shows that all background induced corrections are
negligible in close proximity to the origin for both time and
spacelike backgrounds. Far from the origin, the Bessel
functions decay exponentially, so that the gauge potential
is ruled by the 1=r2 terms, which remain as dominant. So,
one has:

Vgauge�r�!�
e23
�2+�

�
2l
ms

�v2
�

1

2m2s2
�

1

ms3
�
cos2-

s4

��
1

r2
;

(33)

This is also similar to the asymptotic behavior of the pure
MCS potential, ��2l=ms�r�2; here supplemented by back-
ground corrections, which in turn do not modify the 1=r2

physical behavior. Such analysis indicates that the gauge
potential is always attractive in the limit r! 1; once one
relies on the approximation s2 � v2. The behavior of this
potential near the origin depends on the sign of the coef-
ficient �1� s=m� sl=m� in the very way as it occurs with
the pure MCS potential: it will be attractive for s >
m=�1� l� or repulsive for s < m=�1� l�. Now, regarding
the condition, m>>s, there follows a repulsive gauge
potential at the origin. Since this potential is always attrac-
tive far from the origin, there must exist a region in which
the potential is negative (a well region) even in the case in
which s < m=�1� l�: This general behavior is attested in
Fig. 1, which graphic exhibits a simultaneous plot for the
gauge potential expression and for the pure MCS potential,
given by Eqs. (21) and (31), respectively.

Such illustration confirms the equal behavior near and
away from the origin, at the same time it demonstrates that
the presence of the background may turn this potential
attractive at some region. Yet, this result is not definitive
once it is known that one should address carefully the low-
energy potential as to avoid a misleading interpretation. As
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FIG. 1. Plot of the pure MCS potential (box dotted line) � plot
of the gauge potential (continuos line) for the following parame-
ter values: s � 20; v � 5; - � +=2; me � 5:105:
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discussed in literature (see Hagen and Dobroliubov [11]),
in concerning a nonperturbative calculation one must con-
sider not only the centrifugal barrier term �l2=mr2�,
but also the gauge invariant A2 � term coming from the
Pauli equation, 
� ~p� e ~A�2=me � e6�r� � ~$: ~B

me
���r;6� �

E��r; 6�: The centrifugal barrier term is generated by
the action of the Laplacian operator, 
 @

2

@r2
� 1

r
@
@r�

1
r2

@2

@62�;

on the total wavefunction ��r; 6� � Rnl�r�ei6l; on the
other hand, the A2-term is essential to ensure the gauge
invariance in the nonrelativistic domain. As this term does
not appear in the context of a nonperturbative low-energy
evaluation, for the same is associated with two-photon
exchange processes (see Hagen and Dobroliubov [11]), it
must be suitably added up the low-energy potential in order
to assure the gauge invariance. In the presence of these two
terms, the pure MCS potential reveals to be really repulsive
instead of attractive. Hence, to correctly analyze the low-
energy behavior of the gauge potential, it is necessary to
add up the centrifugal barrier and the A �A term to the
gauge potential previously obtained, leading to the follow-
ing effective potential:

Veff�r� � Vgauge�r� �
l2

mer
2 �

�
e2

me

�
~A � ~A (34)

In order to proceed with this analysis, it is necessary
to know the expression for the vector potential �A�,
which was not determined in Ref. [7]. This potential
may be obtained solving a system of two coupled
differential equations read off from Ref. [7], namely:
r2�r2 � s2� ~A � s ~r�: � s
r� v! � r’���; r2’�

�1=s��~v� ~r�� ~r� ~A� � 0: We proceed decoupling them,
yielding the following equation for the vector potential:

r2�r2 � s2� � �~v� � r��~v� � ~r�� ~A � s ~r�:: The solution
for this equation (by the usual methods) leads to a first
order approximate expression:

~A�r� �
e

�2+�

�
�

1

sr
�1� v2=s2sin2-� v2 cos2-=2s2�

� �1� v2=s2sin2-� v2 cos2-=2s2�K1�sr�

�
2v2 cos2-

s3r
K0�sr� �

4v2 cos2-

s5r3

1� rK1�sr��

�
v2sin2-

2s
rK0�sr�

�
r̂�: (35)

One should now compare the gauge potential (31) with the
effective potential, given by Eq. (34). In this way, one
performs a graphical analysis of these two functions for
small and large electron mass, as it is shown in Fig. 2.

For a large mass value �me � 5:105�, one observes that
the effective potential (continuos line) does not differ from
the gauge potential (circle dotted curve), so that both
graphics result perfectly overlapped. This fact reveals
that the terms l2=mer2; A2=me are not decisive to alter
the behavior of the gauge potential in the regime of large
-6
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FIG. 2. Plot of the gauge potential (dotted line) � effective
potential (continuos line) for two set of parameters with distinct
mass value: �s � 20; v � 5; m � 50; - � +=2; L � 1� and �s �
20; v � 5; m � 5:105; - � +=2; L � 1�:
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mass �me=s ’ 105�. On the other hand, for a small mass
parameter �me=s ’ 1�; one notes that the gauge potential
(box dotted curve) may differ drastically from the effective
potential (continuos single curve). Therefore, in the small
mass regime, the low-energy potential has to be replaced
by the effective one in order to yield the correct gauge
invariant behavior, requirement not necessary in the large
mass regime.

Another deserving attention point concerns the influence
of the background direction on the solutions. The graphic
in Fig. 3 presents three simultaneous plots of the gauge
potential for different values of the - angle.

Such an illustration reflects the system anisotropy:
depending on the - value; the potential may become
totally repulsive or exhibit a region in which it is attractive.
The interest in such an effect is related to its possible
connection with the anisotropic order parameter of
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FIG. 3. Plot of the gauge potential for
s � 20; v� 5; m � 5:105 and - � +=2 (continuos line), - �
3+=4 (box dotted line), - � + (cross dotted line).
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high-Tc superconductors. An interaction potential which
intensity varies with a fixed direction indeed leads to an
anisotropic wavefunction, which certainly deserves further
investigation.

As a final comment, one should remark that the real
potential corresponding to the total e�e� interaction com-
prises the gauge and the scalar contributions: Vtotal�r� �
Vscalar � Vgauge: The character attractive or repulsive of this
total potential arises from the combination of these two
expressions for each radial region. Near the origin, for
instance, the total interaction goes as:

Vtotal�r� !
1

�2+�

�
�e23

�
1�

s
m
�
sl
m

�

� y2
�
1�

v2

2s2
�1� sin2-�

��
lnr: (36)

In the regime of large mass, the total interaction will be
attractive near the origin whenever the phonic constant y2

overcomes the 2-dimensional U(1) coupling, e23 (or repul-
sive for y2 < e23). Far from the origin, the total potential
exhibits the very logarithmic behavior stated in Eq. (11). It
should be noted that this asymptotic behavior will change
solely in the case in which a new mass parameter is
introduced in, as it occurs when a spontaneous symmetry
breaking takes place. This is mentioned in more detail in
the final remarks section. By adjusting the value of the
phonic constant y, one can certainly conclude that the total
potential may always be negative at some region regardless
the character (repulsive or attractive) of the gauge interac-
tion. The relevance of this result is related to the possibility
of obtaining e�e� bound states in the framework of this
particular model.
IV. FINAL REMARKS

In this work, one has considered the Möller scattering in
a planar Maxwell-Chern-Simons electrodynamics incorpo-
rating a Lorentz-violating purely spacelike background.
The interaction potential was evaluated as the Fourier
transform of the scattering amplitude (Born approxima-
tion) carried out in the nonrelativistic limit, exhibiting two
distinct contributions: the scalar (stemming form the
Yukawa exchange) and the gauge one (mediated by the
MCS-Proca gauge field). The scalar Yukawa interaction
turns out to be logarithmically attractive near the origin and
repulsive far from it, in much the same way as in the purely
timelike case. As for the gauge interaction, it is composed
of a pure MCS potential corrected by background-
depending contributions, which are able to induce physical
interesting modifications despite the smallness of the back-
ground against the topological mass �v2=s2 <<1�. Near
and far from the origin, this gauge potential goes like the
pure MCS counterpart, so that the alterations only appear
at an intermediary radial region. Namely, it is verified that
the gauge potential becomes attractive for some parameter
-7



M. M. FERREIRA, JR. PHYSICAL REVIEW D 71, 045003 (2005)
values. Such attractiveness remains even in the presence of
the centrifugal barrier and gauge invariant A �A term.
Besides the possibility of having an attractive gauge inter-
action, it should be mentioned that the total interaction
(scalar plus gauge potential) may always result attractive,
once a fine tuning of the coupling constant values (y; e3) is
realized. This is a necessary condition for the formation of
electron-electron bound states.

The real possibility for obtaining electronic pairing may
be checked by means of a quantum-mechanical numerical
analysis of the nonrelativistic interaction potential here
derived. Such potential should be introduced in the
Schrödinger equation, whose numerical solution will pro-
vide the corresponding e�e� binding energies for each set
of the stipulated parameter values. One should remark that
the values must be chosen in accordance with the usual
scale of low-energy excitations in a condensed matter
system. This analysis may be performed for the potentials
obtained both in the case of a purely timelike and spacelike
background, keeping also in mind the presence of anisot-
ropy observed in the latter case.

One must now comment on the validity of the approxi-
mation which has been here adopted. At first sight, the
higher order terms (in v2) are always negligible before the
first order ones. Indeed, this is true for terms that decay
quickly at large distances. Near the origin, although, it
might occur that a high order term (in v2) comes to increase
with r more rapidly, overcoming a first order term, fact
which is really associated with its radial dependence in the
limit r! 0. Such a behavior would be observed if a second
order term (in v2) had a more pronounced power in �1=r�
045003
than the first order one. This fact was not noted in all
second order performed evaluations, which confirms the
validity of the approximation adopted as well as the out-
comes obtained in this work.

The absence of screening, first observed in Refs. [7,8], is
here manifest only in the scalar potential expression by
means of the asymptotic logarithmic term, once the gauge
sector revealed a much different ��1=r2� asymptotic be-
havior. Some usual planar models, in �1� 2� dimensions,
are known for exhibiting a confining (logarithmic) poten-
tial as representation of the gauge interaction; such behav-
ior, however, does not reflect a convenient physical
interaction since it increases with distance. To represent a
physical interaction, it may be changed to a condensating
potential, which may be attained when the model is prop-
erly supplemented by a new mass parameter. The consid-
eration of the Higgs mechanism is a suitable tool to provide
a Proca mass for the gauge field and to induce an efficient
screening for the corresponding field strengths and solu-
tions, bypassing this difficulty. In a recent work [9], it was
accomplished the dimensional reduction of an Abelian-
Higgs Lorentz-violating model endowed with the CFJ
term. The classical solutions for field strengths �E;B�
and four-potential �A0;A� related to this planar model
were analyzed and solved [10], yielding entirely shielded
solutions and interesting deviations in comparison with the
pure MCS-Proca electrodynamics. This preliminary out-
come indicates that the Möller scattering in this framework
[14] will also lead to a totally screened interaction poten-
tial, with the logarithmic term being replaced by K0;K1
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