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We focus on the dynamical aspects on Newton-Hooke space-time NH� mainly from the viewpoint of
geometric contraction of the de Sitter spacetime with Beltrami metric. (The term spacetime is used to
denote a space with non-degenerate metric, while the term space-time is used to denote a space with
degenerate metric.) We first discuss the Newton-Hooke classical mechanics, especially the continuous
medium mechanics, in this framework. Then, we establish a consistent theory of gravity on the Newton-
Hooke space-time as a kind of Newton-Cartan-like theory, parallel to the Newton’s gravity in the Galilei
space-time. Finally, we give the Newton-Hooke invariant Schrödinger equation from the geometric
contraction, where we can relate the conservative probability in some sense to the mass density in the
Newton-Hooke continuous medium mechanics. Similar consideration may apply to the Newton-Hooke
space-time NH� contracted from anti-de Sitter spacetime.
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I. INTRODUCTION

From the viewpoint of purely theoretical and fundamen-
tal physics, it is well known that there are eight types of
possible kinematical symmetry groups based on some
rather natural assumptions [1]. Among them the most
basic two are de Sitter (dS) and anti-de Sitter (AdS)
groups, which are SO�1; d� 1� and SO�2; d� for �1�
d�-dimensional spacetime, respectively; all the others are
Inönü-Wigner contractions [2] of them. The so-called
Newton-Hooke (NH) group N� is an important and inter-
esting contraction of dS/AdS group, respectively. It is the
meaningful nonrelativistic limit of dS/AdS group. At the
same time, the Galilei group is a further contraction (the
flat limit) of both N� groups. All these kinematical groups
can lead to the corresponding �1� d�-dimensional space-
times as some homogeneous spaces of them. Furthermore,
the action of these groups on their corresponding space-
times can take some nice fractional linear forms under
special coordinate systems (called Beltrami coordinates1),
and the corresponding mechanics, like Newtonian mechan-
ics on Galilei space-time, can be really established from
first principles [3,4]. Especially, the NH case as a non-
relativistic cosmological kinematics is studied in detail in
[5] and recently in [3].
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coordinates on the (pseudo-)Euclidean spaces, ac-
e limiting case under contraction of Beltrami
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On the other hand, from the viewpoint of modern phys-
ics and cosmology, constant curvature space-times have
drawn much attention, from both theoretical and observa-
tional considerations. The significance of AdS space is
early recognized, based upon the fact that its symmetry
algebra has supersymmetric extensions and so it can be
incorporated into supergravity and string theory. Related
study has resulted in the profound AdS/CFT correspon-
dence [6]. The great interest in dS space comes from recent
cosmological observations showing that our universe is
asymptotic dS, i.e., with a positive cosmological constant
[7,8]. However, there will be lots of puzzles within the
present framework of physics if our universe does have a
positive cosmological constant [9]. Under this embarrassed
situation, of course, any instructive attempts related to
these problems are worthwhile. One available attempt is
just to consider the nonrelativistic limit, i.e., the NH limit,
which drastically simplifies the analysis while still taking
the effects of cosmological constant into account. That is
why the interest in NH space-time revives recent years
[3,10–12].

Following our recent paper [3] that investigates NH
space-time from the geometric contraction, in this paper
we focus on the dynamical aspects on NH space-time. We
discuss in detail the NH kinematics, dynamics, and even
continuous medium mechanics. Especially, we establish a
consistent theory of gravity on NH space-time as a kind of
Newton-Cartan-like theory, parallel to the Newton’s grav-
ity on the Galilei space-time. We also discuss some inter-
esting aspects of the NH invariant Schrödinger equation.
We find that it is possible to relate the conservative proba-
bility in some sense to the mass density in the NH con-
tinuous medium mechanics. Unlike most of preceding
-1  2005 The American Physical Society
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articles, which investigate NH mechanics mainly from the
algebraic point of view, our discussion will be more geo-
metric and based on the foundation of physics. The invari-
ance of physics under the action of NH group plays an
important role in our discussion.

The paper is organized as follows: In Sec. II, after a brief
introduction to algebraic construction of NH space-time,
we introduce the geometric description of dS/AdS space-
time, Beltrami coordinates, dS/AdS group action and their
NH limit for the dS spacetime. In Sec. III we discuss the
NH mechanics, concentrating on the dynamics. The
Newton-Cartan-like theory on NH space-time is con-
structed in Sec. IV. We give the gravitational field equation
there and solve it to obtain the law of gravity for the
exterior of spherical source. In Sec. V we deduce the
Schrödinger equation on NH space-time from the geomet-
ric contraction, show its NH invariance, and discuss the
conservation of probability, which can be related in some
sense to the mass density in fluid mechanics. We end the
paper with a brief conclusion and discussion in Sec. VI.
2In fact, it is easy to see that N̂��1; d� and the homogeneous
Galilei group are both isomorphic to SO�d� �S Rd.
II. NEWTON-HOOKE SPACE-TIME AS A LIMIT OF
BELTRAMI-DE SITTER SPACETIME

The Lie algebra of dS/AdS group, in terms of the time-
space decomposition, is (taking d � 3 for definiteness) [3]

	Ji;H
 � 0; 	Ji; Jj
 � �ijkJk; 	Ji;Pj
 � �ijkPk;

	Ji;Kj
 � �ijkKk; 	H;Pi
 � �	2Ki;

	H;Ki
 � Pi; 	Pi;Pj
 � �R�2�ijkJk;

	Ki;Kj
 � �c�2�ijkJk; 	Pi;Kj
 � c�2�ijH;

(2.1)

where the generators have their usual meanings, 	: � c=R
has the same dimension as frequency, and the ‘‘�’’/‘‘�’’
sign is for dS/AdS, respectively. The Newton-Hooke alge-
bra n��1; 3� is the following limit (contraction) of the
above dS/AdS algebra:

c! 1; R! 1; but 	 �
c
R

(2.2)

is a positive, finite constant, which reads

	Ji; Jj
 � �ijkJk; 	Ji;Pj
 � �ijkPk;

	Ji;Kj
 � �ijkKk; 	H;Pi
 � �	2Ki;

	H;Ki
 � Pi;

(2.3)

and the other Lie brackets vanish. If we first replace H with
H� imc2, where m is a central element, and then perform
the contraction, we will get the central extension nC

��1; 3�
of NH algebra (2.3):

	Ji; Jj
 � �ijkJk; 	Ji;Pj
 � �ijkPk;

	Ji;Kj
 � �ijkKk; 	H;Pi
 � �	2Ki;

	H;Ki
 � Pi; 	Pi;Kj
 � �i�ijm;

(2.4)
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and the other Lie brackets vanish. From the spacetime
point of view, the parameter R in Eq. (2.1) is the cosmic
radius, which is related to the cosmological constant  by
 � �3R�2. Now in the NH limit the new parameter 	
takes its place and has the meaning of temporal curvature.
If we perform a further contraction 	! 0 (the so-called
flat limit) the algebras n� and nC

� come back to the
familiar Galilei algebra gal and the corresponding central
extension galC, respectively. The algebra galC is well
known as the symmetry of nonrelativistic quantum me-
chanics (Schrödinger equation). And it can be seen there
that the central element m corresponds to the mass.

The above statements on the NH limit is from the Lie
algebra point of view (or after exponentiating, from the Lie
group point of view). But the group aspects are far from
sufficiency. The geometric aspects, such as connections,
metrics (if exist), etc., are very important when concerning
physics on these space-times. Conventionally, the next step
is to consider dS and AdS space-times and NH space-
time as homogeneous spaces SO�1; d� 1�=SO�1; d�,
SO�2; d�=SO�1; d�, and N��1; d�=N̂��1; d�, respectively,
while considering the original groups as the corresponding
principal bundles over them. Here N̂��1; d� is the homoge-
neous NH group, whose Lie algebra is the subalgebra of
n��1; d� generated by Ji and Ki.

2 Then one can examine
the actions of dS, AdS, and NH groups on these homoge-
neous spaces. In this picture the invariant connections on
these spaces can be systematically obtained as the so-
called ‘‘canonical’’ connections [10,13]. However, this
picture does not help us establish the NH dynamics when
taking into account the gravity from matter.

Fortunately, the dS/AdS spacetime has a simple geomet-
ric description as the pseudosphere embedded in higher
dimensional Minkowski spacetime. The NH space-time
NH� can be directly obtained as some appropriate limit
of this geometric picture. In fact, this naive limiting pro-
cedure can give us all the necessary geometric information
of NH space-time. So, from now on, we can forget the
algebraic construction of NH space-time and study NH�

directly from a geometric point of view. In the following,
we only consider the dS case and the corresponding
NH� (denoted by NH for briefness). NH� can be
dealt with in parallel.

A. Hyperboloid model of de Sitter spacetime

As is well known, the four-dimensional dS spacetime
can be viewed as a hyperboloid (Fig. 1)

SR:�AB�A�B ��R2; �AB � diag�1;�1;�1;�1;�1�;

(2.5)

with topology S3  R, in the five-dimensional Minkowski
-2



FIG. 1 (color online). The hyperboloid SR and the hyperplane
P . The straight line passes through 0 and a pair of antipodal
points in SR.
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spacetime R1;4. Indices A, B, etc., run over 0 to 4, while
Greek indices such as �, 	 run over 0 to 3.

Since SR is invariant under the action of O�1; 4� on R1;4,
the latter induces an action on SR. This transformation
group is called the dS group. In this paper we are mainly
interested in the invariant structure of dS spacetime under
the action of SO"�1; 4�, the connected Lie subgroup of
O�1; 4� that preserves the orientation and time orientation.
It is denoted by G.

The next step is to chose some coordinate systems on the
dS spacetime, which remain meaningful after the NH limit,
and which admit a physical interpretation (as inertial
frames, actually) and can be used to establish kinematics
on dS spacetime and NH space-time. For these reasons,
and in order to relate our discussion to physical principles
[3] in future works, we choose the Beltrami coordinates.

B. Beltrami-de Sitter model

1. Beltrami coordinates

Now let P�
4 be the hyperplane �4 � R in R1;4. For each

point � 2 SR with �4 > 0, there is a one-to-one-
corresponding point x 2 P�

4 such that

��x � R
��

�4
� :x�; �4x � R: (2.6)

This map is actually obtained by drawing a straight line
passing through � and 0 2 R1;4, as shown in Fig. 1. Since
� 2 SR satisfies Eq. (2.5), the corresponding x in P�

4

044030
satisfies

��x�> 0; (2.7)

where

��x� � 1� R�2��	x�x	: (2.8)

The above ‘‘gnomonic’’ projection from SR with �4 > 0
into P�

4 defines a coordinate system on a patch, denoted
U�

4 , of SR, which is known as a Beltrami-coordinate
system [3,14,15]. Note that in order to preserve the ori-
entation, the antipodal identification should not been taken.
Under the Beltrami coordinates, the metric on SR has the
form

ds2 � 	��	�
�1�x� � R�2����	�x

�x���2�x�
dx�dx	:

(2.9)

We also give the Christoffel connection

���	 �
x��

�
	 � x	�

�
�

R2��x�
; (2.10)

of this metric for later reference.
The patch U�

4 covers almost half of SR. The other half is
almost covered by another patch U�

4 , which is the gno-
monic projection from SR with �4 < 0 into the hyperplane
P�

4 located at �4 � �R in R1;4. The Beltrami coordinates
on U�

4 is given by

x� � �R
��

�4
: (2.11)

Obviously, there are at least eight patches U�
� ; � �

1; � � � ; 4 to cover the whole SR. In patches U�
� ; � �

1; 2; 3, the Beltrami coordinates are given by

x	 � �R
�	

��
; 	 � 0; � � � ; �̂; � � � ; 4; �� _ 0;

(2.12)

where �̂ means omission of �. In the following discus-
sions, we mainly concentrate on the U�

4 patch.
The three-dimensional hyperboloid

��x� � 0 (2.13)

is a part of the projective boundary of SR [4], which
corresponds to the conformal boundary on the Penrose
diagram of dS spacetime. In fact, it is the intersection of
P�

4 and the five-dimensional light cone

�AB�
A�B � 0: (2.14)

2. Fractional linear form of de Sitter group

The isometry group of SR is O�1; 4�. Its subgroup
SO"�1; 4� which preserves the orientation and time orien-
tation of SR has been denoted by G. Let �DA

B� 2 G. Then
a point ��A� 2 R1;4 will be sent to another point ��0A� �
�DA

B�
B�. Examples show that D4

4 can be arbitrary real
-3
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number when �DA
B� runs overG. Later we will identify the

transformations in G with transformations among inertial
frames on dS spacetime (and its NH limit NH ).

For a given �DA
B�, if D4

4 � 0,3 we can define

a� � �R
D4

�

D4
4

; a� � ��	a	: (2.15)

Then we can obtain the relations

D4
4 � ���1=2�a�; D�

4 � �
D�
	 a	

R
: (2.16)

In the following, the signs � and � are taken correspond-
ing to the sign of D4

4. We can define

L�	 � D�
	 �

R�2D�
�a�a	

1� �1=2�a�
; (2.17)

which satisfy

���L
�
�L

�
	 � ��	: (2.18)

The inverse relation reads

D�
	 � L�	 �

R�2L��a�a	
��a� � �1=2�a�

: (2.19)

The action of �DA
B� on U�

4 can be easily obtained from
Eq. (2.6). The result takes a factional linear form:

~x � � �
B�	�x	 � a	�

��a; x�
; (2.20)

where

��a; x�: � 1� R�2��	a�x	; B�	: � �1=2�a�D�
	:

(2.21)

In fact, if ���a; x�> 0, x0 remains in the U�
4 patch and so

Eq. (2.20) is valid; if ���a; x� � 0, then x0 will go out of
U�

4 and a transition between coordinate patches is needed.
It is important that all transition functions in intersections
can be realized by elements of G, which is easily
understood.

C. The Newton-Hooke limit

Here we choose the most convenient way to consider the
NH limit from the five-dimensional point of view. Replace
for all equations in Sec. II B the original metric �AB with

gAB � diag�c2;�1;�1;�1;�1�; (2.22)

where c is a positive constant with the physical meaning
speed of light. Now �0 has a dimension of time, and we can
define

t � x0 � R�0=�4: (2.23)

When c increases, the five-dimensional light cone
3The D4
4 � 0 case is a little subtle, which is discussed in [4].

044030
gAB�A�B � 0 (2.24)

collapses. The NH limit is attained when c; R! 1 while
keeping 	 � c=R fixed. This will keep the crossing points
of the 5D light cone and the x0 axis on P�

4 fixed at x0 �
�1=	. In fact, the c! 1 limit of the original 5D
Minkowski spacetime is the 5D Galilei space-time. The
latter has a degenerate (or split) space-time metric, which
induces the split metric of NH space-time NH . Now the
U�

4 patch is itself geodesically complete, so other coordi-
nate patches are no longer needed. It is easy to see that the
projective boundary becomes the hyperplanes t � �1=	 in
NH .

Now put the NH limit in a little more detail. Using
g�	 � diag�c2;�1;�1;�1�, Eq. (2.8) becomes

��t� � 1� 	2t2 (2.25)

under the NH limit. From the metric g�	 the Lorentz
matrix �L�	� has the familiar Newtonian limit:

L0
0 L0

j

Li0 Lij

 !
!

1 0
�Oi

ju
j Oi

j

 !
; Oi

j 2 SO�3�:

(2.26)

Correspondingly, one can obtain the NH limit of D�
	 from

Eq. (2.19):

D0
0 !

1

�1=2�ta�
; (2.27)

D0
j ! 0; (2.28)

Di
0 ! �

Oi
ju
j

�1=2�ta�
�

	2taOi
ja
j

��ta� � �1=2�ta�
� :�Oi

jû
j;

(2.29)

Di
j ! Oi

j; (2.30)

where ta � a0. Hereafter, û is renamed to u for
convenience.

Because the restriction to U�
4 requires D4

4 > 0, we will
have from Eq. (2.20)

~t �
t� ta
��ta; t�

; (2.31)

~x i �
�1=2�ta�
��ta; t�

Oi
j	x

j � aj � uj�t� ta�
: (2.32)

Defining

bi � ai � uita; (2.33)

the above transformation becomes the same form as in [3]:

~t �
t� ta
��ta; t�

; (2.34)
-4
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~x i �
�1=2�ta�
��ta; t�

Oi
j�x

j � bj � ujt�: (2.35)

The group properties of this type of fractional linear trans-
formations have been discussed in [3]. It is important that
the transformation for time coordinate is independent of
space coordinates and that the transformation for space
coordinates are linear among themselves. Thus it follows
that the Beltrami-time simultaneity on NH is absolute,
i.e., independent of (inertial) reference frames, which is
similar to the Newtonian space-time.

Considering the infinitesimal form of NH transformation
(2.34) and (2.35), we can get the Beltrami-coordinate
realization of (anti-Hermitian) generators of the NH alge-
bra n��1;3�:

H � ��t�@t � 	2txi@i; Pi � @i; Ki � t@i;

(2.36)

and the usual form of the SO(3) generators Ji. Then the Lie
brackets (2.3) are easily checked.

The meaningful NH limit of Eq. (2.9) is

d'2 � c�2ds2 � ��2�t�dt2: (2.37)

If d'2 is taken as the new line element instead of ds2, we
will have the following degenerate metric tensor:

gtt � ��2�t�; gij � 0; gti � git � 0: (2.38)

In a fixed hypersurface of simultaneity (dt � 0), we have

dl2 � ĝijdx
idxj; ĝij � ��1�t��ij: (2.39)

A connection exists as the contraction of the Christoffel
connection (2.10), whose nonzero coefficients are only

�tt
t �

2	2t

1� 	2t2
; �tj

i � �jt
i �

	2t

1� 	2t2
�ji : (2.40)

It is pleasant to see that this connection is torsion free, as
expected, and that the corresponding curvature tensor and
Ricci tensor have the following nonzero components:

Rit�	 �
	2

�1� 	2t2�2
��t��i	 � �i��t	� and

Rtt �
�3	2

�1� 	2t2�2
;

(2.41)

respectively. Note that Eq. (2.41) can be directly obtained
by contracting the curvature tensor and Ricci tensor on SR,
and that the relation

Rtt � �3	2gtt (2.42)

holds as expected.
It is easy to check that Eqs. (2.37), (2.38), (2.39), (2.40),

and (2.41) are all invariant under NH transformations. It
can be proved that the above connection is the only one that
is NH invariant and keeps d' invariant. For details, see
Appendix A. Further, under the flat limit 	! 0, all the
044030
above expressions reduce to their counterparts in the
Newtonian case.
III. NEWTON-HOOKE CLASSICAL MECHANICS

A. Newton-Hooke kinematics

Following [3], we only list here some related results of
the kinematics on NH space-time. Differentiating NH
transformation (2.34) and (2.35) gives rise to the velocity
composition law

~v i �
Oi

j

�1=2�ta�
	��ta; t�vj � uj � 	2ta�xj � bj�
; (3.1)

for v � dx=dt. Differentiating again, one obtains the fol-
lowing transformation of (3-)acceleration:

d~vi

d~t
�
�3�ta; t�

�3=2�ta�
Oi

j
dvj

dt
: (3.2)

Surprisingly, the NH transformation of acceleration is
much simpler than that of velocity.

Noting that the NH transformation (3.1) of velocity is
dependent on the position x, we can define a new quantity

Vi � vi �
	2txi

1� 	2t2
; (3.3)

whose NH transformation is independent of x:

~V i �
��ta; t�

�1=2�ta�
Oi

j

�
Vj �

uj

��t�
�
	2tbj

��t�

�
: (3.4)

We will see later that this quantity is very useful.

B. Newton-Hooke dynamics

It is well known that the gnomonic projection maps a
great circle (also a geodesic) on a sphere to a straight line
on the target plane. Since the dS/AdS spacetime is a
pseudosphere (see Eq. (2.5) for the dS spacetime), one
can expect that the similar conclusion holds. This is indeed
the case and is actually an important reason why we chose
such a kind of coordinate systems [16]. Based on this, we
can define the inertial motion (free motion, or moving
along geodesics) as uniform-velocity motion, parallel to
the corresponding concept in Newtonian mechanics and
special relativity, and identify the Beltrami coordinates
with inertial frames. The fractional linear transformation
(2.20) preserves straight (world) lines. Then the whole
mechanics on dS/AdS spacetime can be established. In
fact, it is more appropriate to examine this from a
projective-geometrylike point of view [4], which we will
not dwell on in this article.

In the NH limit, one can intuitively expect from the
geometric picture that via Beltrami coordinates the relation
between geodesics and straight lines survives. This expec-
tation can be strictly proved using the geodesic equation
with connection (2.40) [3]. Thus, we have the counterpart
-5
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considering the NH transformation of |. One must carefully
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of Newton’s first law on NH , which we call Newton-
Hooke’s first law.

To go further along this direction, we first list the (con-
served) nonrelativistic energy and 3-momentum obtained
in [3] as

Ek �
1

2
mv2 �

m	2

2
�x� tv�2; (3.5)

P � mv: (3.6)

Then, to justify that we can extend Newton’s second law

dPi

dt
� Fi; (3.7)

to the NH space-time, it is expected that at least one side of
the above equation has good property under NH trans-
formation (2.34) and (2.35). In fact, we see from
Eq. (3.6) that the transformation property of dPi=dt is
the same as that of acceleration (3.2). So if we assume
that the force Fi has the same transformation property,
Newton’s second law can hold on NH , which we call
Newton-Hooke’s second law.

Differentiating the kinetic energy-momentum relation

Ek �
1

2m
P2 �

	2

2m
�mx� tP�2; (3.8)

obtained from Eqs. (3.5) and (3.6), we have

dEk � �1� 	2t2�F � dx� 	2tx � Fdt: (3.9)

This can be regarded as the kinetic energy theorem in
NH . A detailed discussion on the kinetic and potential
energy can be found in Appendix B.

Since the NH group N��1; d�, similar to the Galilei
group, has the space-translation subgroup Rd, one can
expect that the conservation law of momentum (for a
system of particles), or equivalently Newton’s third law,
is respected in some sense. In fact, it is easy to show from
the velocity composition law (3.1) that for a two-body
system the usual definitions

m � m1 �m2; p � p1 � p2 (3.10)

are invariant under NH transformations, which can be
generalized to many-body systems. The conservation of
total momentum will lead to the reversion of acting and
reacting forces, which again we call Newton-Hooke’s third
law. Later we will see that for the gravitational interaction
on NH Newton-Hooke’s third law is really respected.

C. On Newton-Hooke continuous medium mechanics

In a general curved spacetime, we have the covariant
conservation of stress-energy tensor,

D�T�	 � g�/�@/T�	 � ��/
�T�	 � �	/

�T��� � 0:

(3.11)
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In this paper, we use D� denoting the covariant derivative
and r the derivative operator in 3-space. Now considering
the dS spacetime, we substitute Eqs. (2.9), (2.10), and
(2.20) into the above equations. Under the NH limit, the
temporal component of Eq. (3.11) becomes the equation of
continuity:

��t�@t
%

�2�t�
� 	2txi@i

%

�2�t�
� 4	2t

%

�2�t�
� @i

|i

��t�
� 0;

(3.12)

where we have defined Ttt � ��2�t�% and Tit �
�c�2��1�t�|i. Taking the NH limit of coordinate trans-
formation law of the stress-energy tensor,

~T �	 �
@x�

@~x�
T�/

@x/

@~x	
; (3.13)

we see that % is a scalar under NH transformations and |
transforms as4

~| i �
��ta; t�

�1=2�ta�
Oi

j

�
|j � %

uj

��t�
� %

	2tbj

��t�

�
; (3.14)

which is similar to Eq. (3.4). If we further define

�̂ � ��3=2�t�%; (3.15)

and

ĵ � ��3=2�t�|� ��5=2�t�	2tx%; (3.16)

Equation (3.12) will become the same form

@t�̂�r � ĵ � 0; (3.17)

as in the flat spaces.
The stress-energy tensor for a perfect fluid is

T�	 � �%� p�U�U	 � pg�	; (3.18)

where U� is the 4-velocity. The covariant conservation
(3.11) gives rise to

U�D�%� �%� p�D�U� � 0; (3.19)

�%� p�U�D�U	 � �U�U	 � g�	�D�p � 0: (3.20)

Considering the dS spacetime and taking the NH limit,
we obtain from Eq. (3.19) the same equation of continuity
(3.17) if �̂ is still given by Eq. (3.15) and ĵ now given by

ĵ i �
%vi

�3=2�t�
�

%Vi

�3=2�t�
�
	2txi%

�5=2�t�
; (3.21)

where v and V now stand for the velocity fields of the NH
perfect fluid. Comparing this expression with Eq. (3.16),
one sees that
-6
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| � %V; (3.22)

for NH perfect fluid, which is consistent with the fact that
both sides of this equation have exactly the same NH
transformation property.

It can be shown that Eq. (3.20) becomes

%�@tv
i � vj@jv

i� � ���1�t�@ip; (3.23)

or

�̂�@tvi � vj@jvi� � ���5=2�t�@ip; (3.24)

under the NH limit, which is the Euler equation for a
perfect fluid on NH . It is also straightforward to check
the NH invariance of this equation.
IV. NEWTON-CARTAN-LIKE THEORY ON THE
NEWTON-HOOKE SPACETIME

It is well known that Newton’s gravity can be formulated
in torsion-free affine spaces [17,18] due to Cartan’s obser-
vation [19]. In Sec. II C, NH has been shown to be a
torsion-free affine space with nonzero curvature. (See
Eq. (2.40) for the connection coefficients.) So one may
naturally expect that some kind of Newton-Cartan theory
can be constructed to describe the gravitational interaction
on NH . In the present section, we try to follow Cartan to
set up a self-consistent Newton-Cartan-like theory of
gravitational interaction on NH . As a simple dynamical
model that takes the effect of cosmological constant into
account, this theory may be valuable in the study of
cosmology.

To construct any self-consistent, dynamical theories on
NH , the formulation of physical laws (or in other words,
dynamical equations) should be invariant under NH trans-
formations. Note that the connection in any Newton-
Cartan-like theory will not be NH invariant because in
the spirit of Newton-Cartan theory matter modifies the
connection on the space-time and because the NH invariant
connection has been determined up to a constant (see
Appendix A). Similar to the Newtonian case, it can be
shown that the Newton-Cartan-like connection cannot be
fully determined by the invariance of physical laws and the
gravitational field equation. Therefore, in order to obtain a
unique and simple description of the Newton-Cartan-like
theory, what we shall do in the following is to introduce
physical requirements to preserve the NH invariance of as
many as possible coefficients of the connection.

A. Physical requirements and gravitational field
equation

Following the Newton-Cartan theory, we require that a
test particle in gravitational field moves along a geodesic
with respect to the Newton-Cartan-like connection. We
also require, from physical considerations, that the abso-
lute time on empty NH is preserved, and that Newton-
044030
Hooke’s second law is valid for gravitational action. For
simplicity, the Newton-Cartan-like connection coefficients
are still denoted by ��	

�.
First, when the absolute time is not affected by the

introduction of interactions, including gravity, we have
from Eq. (2.37)

d2t

d'2
�

2	2t

1� 	2t2
dt
d'

dt
d'

� 0: (4.1)

Second, the Newton-Hooke’s second law (3.7) can be
rewritten as

d2xi

d'2
�
Fi

m
dt
d'

dt
d'

�
2	2t

1� 	2t2
dt
d'

dxi

d'
: (4.2)

In the spirit of Cartan, the two equations may be regarded
as the component ones of geodesic equation as long as
what is called the Newton-Cartan-like connection is taken:

�tt
t �

2	2t

1� 	2t2
; �tj

t � 0; �ij
t � 0; (4.3)

�tt
i � �

Fi

m
; �tj

i �
	2t

1� 	2t2
�j

i; �jk
i � 0:

(4.4)

Compared with the NH invariant connection in
Appendix A, only �tt

i among the Newton-Cartan-like con-
nection coefficients have different values. Though one can
easily see from Appendix A that the other coefficients are
still invariant under NH transformations in spite of non-
vanishing �tt

i, one may suspect the legality of the first
equation in Eq. (4.4) because Fi transforms under NH
transformations as acceleration does [see Eq. (3.2)] while
�tt

i are connection coefficients and have different trans-
formation law in general. Fortunately, they satisfy the same
transformation law for NH transformations, provided the
other coefficients of the connection are given as in
Eqs. (4.3) and (4.4). The transformation law of �tti under
NH transformations is discussed in detail in Appendix C.

If the above connection coefficients are chosen, the
proper-time ' on empty NH is still acting as an affine
parameter in a gravitational field. It also can be verified
that in this case a geodesic tangent to the hypersurface
of simultaneity t � t0 at �t0; x0� will not leave this
hypersurface.

For the gravitational field equation, we have three con-
straints: the first is that its form must be invariant under NH
transformations; the second is that it must reduce to its
Newtonian counterpart when 	! 0; the third is that it
must reduce to the empty case (2.42) if there is no matter
at all. Thus we can assume the following form of this
equation:

Rtt � 43G%�x; t�gtt � 3	2gtt; (4.5)

where G is the Newton-like gravitational constant and the
mass density %�x; t� is a scalar under NH transformations.
-7
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The connection (4.3) and (4.4) gives the only nonvanishing
components of curvature tensor

Ritt
j � �Rtit

j � @i�tt
j � 	2�1� 	2t2��2�ji ; (4.6)

and Ricci tensor

Rtt � @i�tt
i � 3	2�1� 	2t2��2; (4.7)

where the second terms of both equations coincide with the
empty case (2.41). From Eq. (4.5) we have the following
field equation:

@i�tti �
43G%�x; t�

�1� 	2t2�2
: (4.8)

B. Law of gravity for spherical source

To solve Eq. (4.8), a curl-free condition must be intro-
duced as usual. This implies that �tti can be expressed as
the gradient of a scalar potential V (cf Appendix B), which
is responsible to the gravity induced by compact objects:

�tt
i�t; x� �

@iV�t; x�

1� 	2t2
: (4.9)

Thus we have

4V � 43G%�x; t�; (4.10)

where 4: � ĝij@i@j and ĝij is the inverse of ĝij in
Eq. (2.39). This equation has the same form of Poisson
equation for Newton’s gravity.

For pointlike gravitational source at X, the mass density
has the form

%�x; t� � �1� 	2t2�3=2M�3�x�X�; (4.11)

which is an NH scalar and comes back to the Newtonian
case when 	! 0. Here M is the mass of the pointlike
source. (Such a density is consistent with the density of
probability from the NH Schrödinger equation, as we can
see in the next section.) For boundary condition V ! 0 as
jxj ! 1, Eq. (4.10) is straightforward to be solved with

V � �
�1=2�t�GM
jx� Xj

: (4.12)

So the connection

�tt
i �

GM

�1=2�t�

xi � Xi

jx� Xj3
; (4.13)
5We call them static coordinates for convenience.
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and the equation of motion for the test particle is obtained
as

d2xi

dt2
� �

GM

�1=2�t�

xi � Xi

jx� Xj3
: (4.14)

Compared with the ordinary (Newton’s) law of gravity, it is
interesting to see that the effect of Newton-Hooke parame-
ter 	 can be totally embodied by a time-dependent gravi-
tational ‘‘constant’’ ~G�t�: � ��1=2�t�G, at least from the
viewpoint of particle mechanics. One can check that the
form of Eq. (4.14) is invariant under NH transformations.
We also learn from this law of gravity that Newton-
Hooke’s third law holds in this case.

In terms of the well-used coordinates on NH as ho-
mogeneous space N��1; d�=N̂��1; d� [5,12],5 whose rela-
tion to the Beltrami coordinates is [3]:

' � 	�1tanh�1	t; (4.15)

qi �
xi

�1=2�t�
; (4.16)

Eq. (4.14) becomes

d2qi

d'2
� 	2qi � �GM

qi �Qi

jq�Qj3
: (4.17)

This is exactly a particular case of the so-called Dimitriev-
Zel’dovich equation [12,20,21]. As in the usual
(Newtonian) case, the result for pointlike source can be
readily extended to the exterior of spherical source.
V. SCHRÖDINGER EQUATION ON THE
NEWTON-HOOKE SPACE-TIME

A. Schrödinger equation from geometric contraction

From the algebraic viewpoint, the usual Schrödinger
equation can be deduced from the second Casimir operator
of the extended Galilei algebra galC. This standard method
can be applied to the NH case, which is shown in
Appendix D. Here we want to show how the Schrödinger
equation on NH can be directly obtained from a geo-
metric contraction. Rewrite the Klein-Gordon equation on
dS spacetime in terms of Beltrami coordinates [3] as
	@i@i � c�2@t@t � R�2�t2@2t � 2txi@t@i � xixj@i@j � 2t@t � 2xi@i�
8 � m2c2��18: (5.1)

In order to subtract the static energy, we substitute

8 �  �x; t�e�imc2f�t�; (5.2)

into the above equation and require the terms of order c2 to cancel out, which gives the condition
-8
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df
dt

� �1� 	2t2��1: (5.3)

Noting Eq. (2.37) it is easy to see f � ' and the explicit
form is given by Eq. (4.15), which makes Eq. (5.2) of clear
physical meaning. Now omitting terms of order c�2, we
obtain the following Schrödinger equation for free particle
on NH :

i @t �

�
�

r2

2m
�

i	2txi@i
��t�

�
m	2x2

2�2�t�

�
 : (5.4)

The invariance of Eq. (5.4) under NH transformations is
interesting, which actually gives the realization of the
extended NH group NC

�.6 For simplicity, we consider ro-
tation, time-translation, space-translation, and boost one by
one. First, Eq. (5.4) is obviously invariant under rotation if
the wave function  is invariant. Second, time-translation
(2.34) gives an overall factor

��ta��
�2�ta; t�;

to Eq. (5.4) for ~t if the wave function  keeps invariant, so
Eq. (5.4) is again invariant. Third, the NH space-translation

~x i � xi � ai; (5.5)

needs some careful consideration. In fact, the wave func-
tion cannot keep invariant in this case, in contrast to that of
the ordinary Schrödinger equation. It transforms as

 � ~ exp
�
im	2t�1� 	2t2��1

�
a � ~x�

1

2
a2

��
: (5.6)

It is easy to check that its inverse transformation takes the
same form, which in fact imposes strong restriction on the
possible forms of the wave function transformation. The
calculation to substitute Eqs. (5.5) and (5.6) into Eq. (5.4)
and check the invariance is straightforward but a little
laborious. Finally, the case of boost

~x i � xi � uit (5.7)

is even more complicated. Equation (5.4) turns out to be
invariant under this transformation when the wave function
transforms as

 � ~ exp
�
im�1� 	2t2��1

�
u � ~x�

1

2
u2t

��
: (5.8)

As expected, the wave function transformations (5.6) and
(5.8) come back to their familiar forms when 	 � 0, which
gives the Galilean invariance of the ordinary Schrödinger
equation. Because an arbitrary NH transformation can be
composed by the above transformations, we have verified
the Newton-Hooke invariance of Eq. (5.4).
6There is standard method to obtain the realization of the
extended group [5,22]. The really interesting thing here is that
the local exponents are rational expressions in terms of the
Beltrami coordinates.
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To introduce interactions into Schrödinger Eq. (5.4), one
just adds a term to it:

i @t �

�
�

r2

2m
�

i	2txi@i
��t�

�
m	2x2

2�2�t�
�
U�x; t�
��t�

�
 ; (5.9)

where U�x; t� is a real scalar under NH transformations.
Then one can easily check the NH invariance of this
Schrödinger equation based on the above discussion.

B. Conservation of probability

It is interesting to ask whether there is something for
Eq. (5.9) corresponding to the conservation of probability
for the ordinary Schrödinger equation. Take the complex
conjugation of Eq. (5.9):

�i@t 
� �

�
�

r2

2m
�

i	2txi@i
��t�

�
m	2x2

2�2�t�
�
U�x; t�
��t�

�
 �:

(5.10)

By constructing��3=2�t�	 �  �5:9� �   �5:10�
 and re-
arranging it, we get

@t	��3=2�t� � 
 � r �

�
��3=2�t�

i

2m
� �r �  r ��

� ��5=2�t�	2t� �x �
�
:

So if we define the density of probability as

� � ��3=2�t� � ; (5.11)

and the flux of probability as

j � ��3=2�t�
i

2m
� r � �  �r � � ��5=2�t�	2t� �x �;

(5.12)

we do have something like the conservation of probability:

@t��r � j � 0: (5.13)

In fact, one can check that the expression i
2m � r 

� �

 �r � in Eq. (5.12) has the same NH transformation
property (3.14) as | defined in the NH continuous medium
mechanics. So it is easy to see from the NH invariance of
 � that � and j defined here have the same NH trans-
formation properties as �̂ and ĵ in the NH continuous
medium mechanics, respectively, and that Eq. (5.13) can
be regarded as the quantum correspondence of the equation
of continuity (3.17). This correspondence justifies
Eq. (5.13) as the genuine equation for the conservation of
probability.

VI. CONCLUSION AND DISCUSSION

In this article we have mainly discussed the dynamical
aspects on Newton-Hooke space-time and established the
consistent theory of gravity on this space-time as a kind of
-9
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Newton-Cartan-like theory. In our discussion, we concen-
trate on the geometric properties of NH space-time and the
NH invariance of physics on it. We obtain the NH space-
time manifold, NH transformation (2.34) and (2.35) and
NH Schrödinger Eq. (5.9) etc., directly from Inönü-Wigner
contraction of their dS counterparts under the Beltrami
coordinates. For the NH quantum mechanics, we find
that a conservative probability can be defined and related
to the mass density in NH fluid mechanics.

For NH space-time the two most useful coordinates are
the Beltrami coordinates and the static coordinates, their
relation being Eqs. (4.15) and (4.16). It is interesting to see
from the NH transformation (2.34) and (2.35) that in the
Beltrami coordinates NH space-time is spatially uniform,
while in the static coordinates it is temporally uniform. The
Beltrami coordinates are introduced through some
projective-geometrylike method [14–16]. It is not strange
that Beltrami-dS spacetime or NH space-time has some-
thing to do with projective-geometry, since there is
systematic projective-geometrylike method to deal with
constant curvature spaces [4]. If the so-called ‘‘elliptic’’
interpretation of dS spacetime [23], i.e., dS spacetime with
topology SR=Z2, is taken, one can examine dS spacetime
really from projective-geometry point of view. It should be
mentioned that the key difference between SR and SR=Z2

is that the latter is not orientable while the former is
orientable.

For the Newton-Cartan-like theory on NH space-time,
unlike the previous papers that take serious the diffeomor-
phism invariance, we concentrate on the NH invariance and
construct a theory of gravity which preserves the NH
invariance of the formulation of physical laws and of as
many as possible coefficients of the connection. We see
from Eqs. (4.3) and (4.4) that in the Beltrami coordinates
the contributions from the cosmological background and
material gravitation to the connection are completely de-
coupled, while in other coordinates, say the static coordi-
nates (4.15) and (4.16) they are not. One can reasonably
expect that Beltrami-coordinate systems are the only one
having this property, for there exists Newton-Hooke’s first
law, i.e., the law of inertia.

The discussion in this article can be easily applied to
Beltrami-AdS spacetime and the corresponding NH�. It
is also readily extended to space-time dimensions other
than four. Especially, our Newton-Cartan-like formalism in
Sec. IV can be contracted to the Newton-Cartan theory on
the Galilei space-time as the case of 	! 0.
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APPENDIX A: NEWTON-HOOKE INVARIANT
CONNECTION

In this appendix, we investigate connections that are
invariant under NH transformations. We shall prove that
the connection (2.40) contracted from Beltrami-dS space-
time is the only NH invariant connection that keeps the
proper-time d' invariant under NH transformations.

By the term NH invariant connection, we refer to a
connection with coefficients depending on the Beltrami
coordinates in the same way under NH transformations:

~� �	
��~x� � ��	

��~x�; (A1)

while, at the same time, the transformation law

~� �	
��~x� �

@~x�

@x�
@x�

@~x�
@x/

@~x	
��/

��x� �
@~x�

@x�
@2x�

@~x�@~x	
(A2)

is satisfied.
First, space-translation f~t � t, ~xi � xi � big results in

@~x�
@x	 � ��	 and thus ~��	

��~x� � ��	
��x� according to

Eq. (A2). Substituting it into Eq. (A1), we immediately
obtain ��	

��t; x� b� � ��	
��t; x�; which implies that

each ��	
� depends on t only. Next, for boosts f~t � t, ~xi �

xi � uitg,

@~t
@t

� 1;
@~t

@xi
� 0;

@~xi

@t
� �ui;

@~xi

@xj
� �ij;

and inversely,

@t
@~t

� 1;
@t
@~xi

� 0;
@xi

@~t
� ui;

@xi

@~xj
� �ij:

The transformation law (A2) gives rise to

~�tt
t�~t� � �tt

t�t� � 2�tj
t�t�uj � �ij

t�t�uiuj;

�tt
i�t� � ��tt

t�t�ui � �tt
i�t� � 2�jt

i�t�uj � �jk
i�t�ujuk:

On the other hand, the invariance of the connection indi-
cates ~�tt

t�~t� � �tt
t�~t� � �tt

t�t� and ~�tt
i�~t� � �tt

i�~t� �
�tt

i�t�. These, together with the above results, imply that

�tj
t�t� � �jt

t�t� � 0; �ij
t�t� � 0; (A3)

�jk
i�t� � 0; �tj

i�t� � �jt
i�t� �

1

2
�tt

t�t��ij: (A4)

As for �ttt�t�, its transformation law and invariance under
NH time-translation indicate

�tt
t
�
t� ta

1� 	2tat

�
�

�1� 	2tat�2

1� 	2t2a
�tt

t�t�

�
2	2ta�1� 	2tat�

1� 	2t2a
: (A5)

Taking the derivative of the above equation with respect to
ta at ta � 0, then we have
-10
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�1� 	2t2�
d�ttt

dt
� 2	2 � 2	2t�tt

t: (A6)

The general solution of this ordinary differential equation
reads

�tt
t�t� �

2	2t� 2C	

1� 	2t2
; (A7)

with C the integral constant. Finally, under space rotations
f~t � t, ~xi � Oi

jx
jg, the transformation law (A2) reduces to

~�tt
i�~t� � Oi

j�tt
j�t�. Because of the invariance, we have

�tt
i�t� � Oi

j�tt
j�t� for arbitrary �Oi

j� 2 SO�3;R�. This is
only possible when

�tt
i � 0: (A8)

The above NH invariant connection is almost the same
as that (2.40) contracted from Beltrami-dS spacetime, ex-
cept for an arbitrary integral constant C. It is easy to prove
that the NH invariance of proper-time element d' �
��1�t�dt requires C � 0, because the first integral of the
temporal component of the geodesic equation

d2t

d'2
� ��	

t�t; x�
dx�

d'
dx	

d'
� 0; (A9)

is

dt
d'

� �1� 	2t2�
�
1� 	t
1� 	t

�
C
; (A10)

which leads to C � 0.
APPENDIX B: ENERGY IN NEWTON-HOOKE
MECHANICS

In our formulism, the manifest time-translation invari-
ance is lost. However, since there is ‘‘timelike’’ Killing
vector H (2.36) in NH (which is @' in terms of the
coordinates (4.15) and (4.16),, actually), we can expect
that some kind of energy conservation law should exist.
Before investigating the energy conservation law, we first
give some justifications for the kinetic energy (3.5) ob-
tained from contraction of Beltrami-dS spacetime in [3].
Under coordinate transformation (4.15) and (4.16),(4.16) it
becomes

Ek �
m
2

�
dq
d'

�
2
�

1

2
m	2q2; (B1)

which is just the (conservative) total energy of an antihar-
monic oscillator, as is well known as the conservative
energy in (empty) NH [5,11]. It has obvious
'-translational invariance. For its full NH transformation
property, we can consider v2 � 	2�x� vt�2 from Eq. (3.5).
A lengthy but straightforward calculation gives

~v 2 � 	2�~x� ~v~t�2 � �v� u�2 � 	2�x� b� vt�2; (B2)
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which is elegant and whose ta independence is what we
wanted.

Let us write down the total energy E as

E � Ek � V; (B3)

where V is the potential energy. We require the conserva-
tion of E along the world line, which gives from Eq. (3.9)

dE
dt

� 	�1� 	2t2�Fi � @iV

dxi

dt
� �	2txiFi � @tV� � 0:

(B4)

Since this equation is valid for arbitrary dx=dt, we will
have

�1� 	2t2�Fi � @iV � 0; (B5)

	2txiFi � @tV � 0; (B6)

if the velocity independence of both F � F�t; x� and V �
V�t; x� is assumed. Equation (B5) is a generalization of the
usual relation @iV � �Fi.

Thus, we have the equation

@V
@t

�
	2t

1� 	2t2
xi@iV � 0; (B7)

for V. This partial differential equation can be solved with
general solution

V � V	��1=2�t�x
: (B8)

Noticing Eq. (4.16), it is

V � V�q�; (B9)

which is reasonable because of the manifest time-
translation invariance in coordinates (4.15) and (4.16).
APPENDIX C: TRANSFORMATION PROPERTY
OF �tt

k

It is necessary and interesting to investigate �tt
k in

Eq. (4.4). The k-tt component equation of transformation
law Eq. (A2), the first equation of (4.3), and the latter two
equations of (4.4) give

~� tt
k�~t; ~x� � �tt

i�t; x�
@t
@~t
@t
@~t
@~xk

@xi
�

2	2t

1� 	2t2
@t
@~t

�
@t
@~t
@~xk

@t

�
@xi

@~t
@~xk

@xi

�
�
@2x�

@~t@~t
@~xk

@x�
:

The second term on the right-hand side vanishes since

@t
@~t

@~xk

@t
�
@xi

@~t
@~xk

@xi
�
@~xk

@~t
� 0: (C1)

The third term on the right-hand side actually includes two
parts:
-11
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@2t
@~t@~t

@~xk

@t
�
@2xi

@~t@~t
@~xk

@xi
; (C2)

which exactly cancels each other, as shown by careful
calculation. The following identity is useful to this calcu-
lation:

��ta; t����ta;~t� � ��ta�: (C3)

Thus, the NH transformation of �ttk has the following
form:

~� tt
k�~t; ~x� � �tt

i�t; x�
@t
@~t
@t
@~t
@~xk

@xi
�
�3�ta; t�

�3=2�ta�
Ok

i�tt
i; (C4)

which is, in fact, the same as that of acceleration (3.2). This
justifies the first equation in Eq. (4.4).

APPENDIX D: SCHRÖDINGER EQUATION FROM
ALGEBRAIC VIEWPOINT

As is well known, the familiar Schrödinger equation can
be written as

C2 �x; t� � 2mU�x; t� �x; t�; (D1)

TIAN, GUO, HUANG, XU, AND ZHOU
044030
where C2 is the second order Casimir operator of the
central extension galC of Galilei algebra:

C2 � 2imH� P2; (D2)

and U�x; t� is a scalar under NH transformations. Since
Eq. (D1) satisfies the requirement of symmetry and is
rather general, the Schrödinger equation in NH also
should be given by it. For the extended NH algebra nC

�,
the second Casimir is

C2 � 2imH� P2 � 	2K2; (D3)

where the realization (2.36) is modified to

P i � @i �
im	2txi

1� 	2t2
; Ki � t@i �

imxi

1� 	2t2
: (D4)

It is straightforward to check that the above realization
satisfies the nC

� algebra (2.4). After a little calculation, one
obtains the Schrödinger equation on NH same as
Eq. (5.9).
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