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New class of post-Newtonian approximants to the waveform templates of inspiralling compact
binaries: Test mass in the Schwarzschild spacetime

P. Ajith,1,* Bala R. Iyer,1,† C. A. K. Robinson,2,‡ and B. S. Sathyaprakash2,x

1Raman Research Institute, Bangalore 560 080, India
2School of Physics and Astronomy, Cardiff University, 5, The Parade, Cardiff, CF24 3YB, United Kingdom

(Received 9 December 2004; published 25 February 2005)
*Electronic
Currently at M
Einstein-Instit

†Electronic
‡Electronic
xElectronic

1550-7998=20
The standard adiabatic approximation to phasing of gravitational waves from inspiralling compact
binaries uses the post-Newtonian expansions of the binding energy and gravitational wave flux both
truncated at the same relative post-Newtonian order. Motivated by the eventual need to go beyond the
adiabatic approximation we must view the problem as the dynamics of the binary under conservative
post-Newtonian forces and gravitational radiation damping. From the viewpoint of the dynamics of
the binary, the standard approximation at leading order is equivalent to retaining the 0PN and 2.5PN
terms in the acceleration and neglecting the intervening 1PN and 2PN terms. A complete mathematically
consistent treatment of the acceleration at leading order should include all PN terms up to 2.5PN without
any gaps. These define the standard and complete non-adiabatic approximants, respectively. We propose
a new and simple complete adiabatic approximant constructed from the energy and flux functions. At
the leading order it uses the 2PN energy function rather than the 0PN one in the standard approximation
so that in spirit it corresponds to the dynamics where there are no missing post-Newtonian terms in
the acceleration. We compare the overlaps of the standard and complete adiabatic approximant
templates with the exact waveform (in the adiabatic approximation) for a test particle orbiting
a Schwarzschild black hole. Overlaps are computed using both the white-noise spectrum and the
initial laser interferometer gravitational wave observatory (LIGO) noise spectrum. The complete adiabatic
approximants lead to a remarkable improvement in the effectualness (i.e., larger overlaps with the exact
signal) at lower PN (< 3PN) orders. However, standard adiabatic approximants of order � 3PN are
nearly as good as the complete adiabatic approximants for the construction of effectual templates. In
general, faithfulness (i.e., smaller biases in the estimation of parameters) of complete approximants is also
better than that of standard approximants. Standard and complete approximants beyond the adiabatic
approximation are next studied using the Lagrangian models of Buonanno, Chen, and Vallisneri in the test
mass limit. A limited extension of the results to the case of comparable mass binaries is provided. In this
case, standard adiabatic approximants achieve an effectualness of 0.965 at order 3PN. If the comparable
mass case is qualitatively similar to the test mass case then neither the improvement of the accuracy of
energy function from 3PN to 4PN nor the improvement of the accuracy of flux function from 3.5PN to
4PN will result in a significant improvement in effectualness in the comparable mass case for terrestrial
laser interferometric gravitational wave detectors.
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I. INTRODUCTION

The late-time dynamics of astronomical binaries con-
sisting of neutron stars and/or black holes is dominated by
relativistic motion and nonlinear general relativistic ef-
fects. The component bodies would be accelerated to
velocities close to half the speed of light before they plunge
towards each other, resulting in a violent event during
which the source would be most luminous in the gravita-
tional window. Such events are prime targets of interfero-
metric gravitational wave (GW) detectors like LIGO/
VIRGO/GEO/TAMA that are currently taking data at un-
precedented sensitivity levels and bandwidths [1–4].
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Binary coalescences are the end state of a long period of
adiabatic dynamics in which the orbital frequency of the
system changes as a result of gravitational radiation back-
reaction but the change in frequency per orbit is negligible
compared to the orbital frequency itself. Indeed, the adia-
batic inspiral phase is well-modeled by the post-Newtonian
(PN) approximation to Einstein’s equations but this ap-
proximation becomes less accurate close to the merger
phase. Additionally, there are different ways of casting
the gravitational wave phasing formula—the formula
that gives the phase of the emitted gravitational wave as
a function of time and the parameters of the system. These
different approaches make use of the post-Newtonian ex-
pansions of the binding energy and gravitational wave
luminosity of the system.1
1In the case of binaries consisting of spinning bodies in ec-
centric orbit one additionally requires equations describing the
evolution of the individual spins and the orbital angular momen-
tum, but this complication is unimportant for our purposes.
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A. Standard approach to phasing formula

The standard approach in deriving the phasing formula
uses the specific gravitational binding energy E�v� (i.e., the
binding energy per unit mass) of the system and its lumi-
nosity F �v�, both to the same relative accuracy [5].
Including the radiation reaction at dominant order, how-
ever, is not a first order correction to the dynamics of the
system, rather it is a correction that arises at O��v=c�5�;
where v is the post-Newtonian expansion parameter de-
scribing the velocity in the system and c is the speed of
light.2 Thus, the phasing of the waves when translated to
the relative motion of the bodies implies that the dynamics
is described by the dominant Newtonian force and a cor-
rection at an order �v=c�5, but neglecting conservative
force terms that occur at orders �v=c�2 and �v=c�4. Such
considerations have led to an approximation scheme in
which one constructs the phasing of gravitational waves
using the following ordinary, coupled differential equa-
tions:

d’
dt

�
2v3

m
;

dv
dt

� �
F �v�
mE0�v�

; (1.1)

where E0�v� � dE�v�=dv and m � m1 
m2 is the total
mass of the binary. The phasing obtained by numerically
solving the above set of differential equations is called the
TaylorT1 approximant [6]. If the detector’s motion can be
neglected during the period when the wave passes through
its bandwidth then the response of the interferometer to
arbitrarily polarized waves from an inspiralling binary is
given by

h�t� �
4Am
D

v2�t� cos�’�t� 
 ’C�; (1.2)

where ’�t� is defined so that it is zero when the binary
coalesces at time t � tC, ’C is the phase of the signal at tC,
 � m1m2=m

2 is the symmetric mass ratio, D is the dis-
tance to the source, and A is a numerical constant whose
value depends on the relative orientations of the interfer-
ometer and the binary orbit. It suffices to say for the present
purpose that for an optimally oriented source A � 1.

One can compute the Fourier transform H�f� of the
waveform given in Eq. (1.2) using the stationary phase
approximation:

H�f� �
4Am2

D

����������
5�
384

s
v�7=2
f ei�2�ftC�’C
 �f���=4�; (1.3)

where the phase of the Fourier transform obeys a set of
differential equation given by

d 
df

� 2�t;
dt
df

� �
�m2

3v2
f

E0�vf�

F �vf�
: (1.4)

In the above expressions, including the post-Newtonian
expansions of the energy and flux functions, the parameter
vf � ��mf�1=3. The waveform Eq. (1.3) computed by
2Throughout this paper we use units in which G � c � 1.
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numerically solving the differential equations Eq. (1.4) is
called TaylorF1 [6] approximant.

Before we proceed further, let us recall the notation used
in post-Newtonian theory to identify different orders in the
expansion. In the conservative dynamics of the binary,
wherein there is no dissipation, the energy is expressed
as a post-Newtonian expansion in ���v=c�2, with the
dominant order termed Newtonian or 0PN and a correction
at order �n��v=c�2n, n�1;2; . . . ; called nPN, with the
dynamics involving only even powers of

���
�

p
��v=c�:

When dissipation is added to the dynamics, then the equa-
tion of motion will have terms of both odd and even powers
of v=c. Thus, a correction of order �v=c�m is termed as
�m=2�PN.

In the case of a test-particle orbiting a Schwarzschild
black hole, the energy function E�v� is exactly calculable
analytically, while the flux function F �v� is exactly calcu-
lable numerically [7–10]. In addition, F �v� has been cal-
culated analytically to 5.5PN order [11] by black hole
perturbation theory [12]. In contrast, in the case of a
general binary including bodies of comparable masses,
the energy function E�v� has been calculated recently to
3PN accuracy by a variety of methods [13–18]. The flux
function F �v�; on the other hand, has been calculated to
3.5PN accuracy [19–29] up to now only by the multipolar-
post-Minkowskian method and matching to a post-
Newtonian source [30].

B. Complete phasing of the adiabatic inspiral:
An alternative

The gravitational wave flux arising from the lowest order
quadrupole formula, that is the 0PN order flux, leads to an
acceleration of order 2.5PN in the equations-of-motion.
This far-zone computation of the flux requires a control
of the dynamics, or acceleration, to only Newtonian accu-
racy. The lowest order GW phasing in the adiabatic ap-
proximation uses only the leading terms in the energy
(Newtonian) and flux (quadrupolar) functions. For
higher-order phasing, the energy and flux functions are
retained to the same relative PN orders. For example, at
3PN phasing, both the energy and flux functions are given
to the same relative 3PN order beyond the leading
Newtonian order. We refer to this usual physical treatment
of the phasing of GWs computed in the adiabatic approxi-
mation, and used in the current LIGO/VIRGO/GEO/
TAMA searches for the radiation from inspiralling com-
pact binaries, as the standard adiabatic approximation. We
will denote the nPN standard adiabatic approximant as
T�E�n�;F n�, where �p� denotes the integer part of p.

As a prelude to go beyond the standard adiabatic ap-
proximation, let us consider the phasing of the waves in
terms of the equations of motion of the system. To this end,
it is natural to order the PN approximation in terms of its
dynamics or acceleration. From the viewpoint of the dy-
namics, the leading order standard adiabatic approxima-
-2
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tion is equivalent to using the 0PN (corresponding to 0PN
conserved energy) and 2.5PN (corresponding to the
Newtonian or 0PN flux) terms in the acceleration ignoring
the intervening 1PN and 2PN terms. A complete, mathe-
matically consistent treatment of the acceleration, how-
ever, should include all PN terms in the acceleration up
to 2.5PN, without any gaps. We refer to the dynamics of the
binary, and the resulting waveform, arising from the latter
as the 0PN complete non-adiabatic approximation. In con-
trast, the waveform arising from the former choice, with
gaps in the acceleration at 1PN and 2PN, is referred to as
the 0PN standard non-adiabatic approximation. Extension
to higher-order phasing is obvious. At 1PN the standard
non-adiabatic approximation would involve acceleration
terms at orders 0PN, 1PN, 2.5PN, and 3.5PN, whereas
the complete non-adiabatic approximation would addition-
ally involve the 2PN and 3PN acceleration terms.

Finally, we propose a simple extension of the above
construction to generate a new class of approximants in
the adiabatic regime. To understand the construction let us
examine the lowest order case. Given the 0PN flux (leading
to an acceleration at 2.5PN), one can choose the energy
function at 2PN (equivalent to 2PN conservative dynamics)
instead of the standard choice 0PN (equivalent to 0PN or
Newtonian conservative dynamics). This is the adiabatic
analogue of the complete non-adiabatic approximant.3

Extension to higher PN orders follows naturally. For in-
stance, corresponding to the flux function at 1PN (1.5PN),
the dissipative force is at order 3.5PN (4PN), and, there-
fore, the conservative dynamics, and the associated energy
function, should be specified up to order 3PN (4PN). In
general, given the flux at nPN-order, a corresponding
complete adiabatic approximant is constructed by choos-
ing the energy function at order �n
 2:5�PN, where as
mentioned before, �p� denotes the integer part of p. We
refer to the dynamics of the binary and the resulting
waveform arising from such considerations, as the com-
plete adiabatic approximation. We will denote the nPN
complete adiabatic approximant as T�E�n
2:5�;F n�.

Before moving ahead the following point is worth
emphasizing: The standard adiabatic phasing is, by con-
struction, consistent in the relative PN order of its con-
stituent energy and flux functions, and thus unique in its
ordering of the PN terms. Consequently, one can construct
different inequivalent, but consistent, approximations as
discussed in Ref. [6] by choosing to retain the involved
functions or re-expand them. The complete adiabatic phas-
ing, on the other hand, is constructed so that it is consistent
in spirit with the underlying dynamics, or acceleration,
rather than with the relative PN orders of the energy and
flux functions. Consequently, it has a unique meaning only
3In this case one may also choose the energy function to 3PN
accuracy and construct a complete approximant leading to 3PN
acceleration
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when the associated energy and flux functions are used
without any further re-expansions when working out the
phasing formula. As a result, though the complete non-
adiabatic approximant is more consistent than the standard
non-adiabatic approximant in treating the PN accelera-
tions, in the adiabatic case there is no rigorous sense in
which one can claim that either of the approximants is
more consistent than the other. The important point, as we
shall see is that, not only are the two approximants not the
same but the new complete adiabatic approximants are
closer to the exact solution than the standard adiabatic
approximants.

In our view, these new approximants should be of some
interest. They are simple generalizations of the standard
adiabatic approximants coding information of the PN
dynamics beyond the standard approximation without the
need for numerical integration of the equations of motion.
They should be appropriate approximants to focus on when
one goes beyond the adiabatic picture and investigates the
differences stemming from the use of more complete equa-
tions of motion (see Section III).

In the case of comparable mass binaries, the energy
function is currently known up to 3PN order and hence it
would be possible to compute the complete adiabatic phas-
ing of the waves to only 1PN order. One is thus obliged in
practice to follow the standard adiabatic approximation to
obtain the phasing up to 3.5PN order. Consequently, it is a
relevant question to ask how ‘‘close’’ are the complete and
standard adiabatic approximants. The standard adiabatic
approximation would be justified if we can verify that it
produces in most cases a good lower bound to the mathe-
matically consistent, but calculationally more demanding,
complete adiabatic approximation. In this paper we com-
pare the standard and complete models by explicitly study-
ing their overlaps with the exact waveform which can be
computed in the adiabatic approximation of a test mass
motion in a Schwarzschild spacetime. The availability, in
this case, of the exact (numerical) and approximate (ana-
lytical) waveforms to as high a PN order as �v=c�11, allows
one to investigate the issue exhaustively, and provides the
main motivation for the present analysis. Assuming that the
comparable mass case is qualitatively similar and a simple
-distortion of the test mass case would then provide a
plausible justification for the standard adiabatic treatment
of the GW phasing employed in the literature.4

C. Non-adiabatic inspiral

The phasing formulas derived under the various adia-
batic approximation schemes assume that the orbital fre-
just a -distortion of the test mass approximation is not univer-
sal. In particular, Blanchet [31] has argued that the dynamics of a
binary consisting of two bodies of comparable masses is very
different from, and possibly more accurately described by post-
Newtonian expansion than, the test mass case.
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quency changes slowly over each orbital period. In other
words, the change in frequency �� over one orbital period
P is assumed to be much smaller than the orbital frequency
��P�1: Denoting by _� the time-derivative of the fre-
quency, the adiabatic approximation is equivalent to the as-
sumption that ��� _�P� or _�=�2 1. This assumption
becomes somewhat weaker, and it is unjustified to use the
approximation _E��F , when the two bodies are quite
close to each other. Buonanno and Damour [32,33] intro-
duced a non-adiabatic approach to the two-body problem
called the effective one-body (EOB) approximation. In this
approximation one solves for the relative motion of the two
bodies using an effective Hamiltonian with a dissipative
force put in by hand. EOB allows to extend the dynamics
beyond the adiabatic regime, and the last stable orbit, into
the plunge phase of the coalescence of the two bodies [33–
36].

Recently, Buonanno, Chen, and Vallisneri [37] have
studied a variant of the non-adiabatic model but using the
effective Lagrangian constructed in the post-Newtonian
approximation. We shall use both the standard and com-
plete non-adiabatic Lagrangian models in this study and
see how they converge to the exact waveform defined using
the adiabatic approximation.5

D. What this study is about

In our study we will use the effectualness and faithful-
ness (see below) to quantify how good the various approxi-
mation schemes are. There are at least three different
contexts in which one can examine the performance of
an approximate template family relative to an exact one.
Firstly, one can think of a mathematical family of approx-
imants and examine its convergence towards some exact
limit. Secondly, one can ask whether this mathematical
family of approximants correctly represents the GWs from
some physical system. Thirdly, how does this family of
approximate templates converge to the exact solution in the
sensitive bandwidth of a particular GW detector. In the
context of GW data analysis, the third context will be
relevant and studied in this paper. Although there is no
direct application to GW data analysis, equally interesting
is the mathematical question concerning the behavior of
different approximations, and the waveforms they predict,
in the strongly nonlinear regime of the dynamics of the
binary, which is also studied in this paper. The latter
obviously does not require the details of the detector-
sensitivity and it is enough to study the problem assuming
a flat power spectral density (i.e., a white-noise back-
ground) for the detector noise.

To summarize, our approach towards the problem will
be two-pronged. First, we will study the problem as a
general mathematical question concerning the nature of
templates defined using PN approximation methods. We
5See Sec. III for a caveat in this approach.
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shall deal with four families of PN templates—the stan-
dard adiabatic, complete adiabatic, standard non-adiabatic,
and complete non-adiabatic (in particular, Lagrangian-
based) approximants—and examine their closeness, de-
fined by using effectualness and faithfulness, to the exact
waveform defined in the adiabatic approximation. Since
this issue is a general question independent of the charac-
teristics of a particular GW detector, we first study the
problem assuming the white-noise case. Having these re-
sults, we then proceed to see how and which of these
results are applicable to a specific detector, namely, the
initial LIGO.6 During the course of this study, we also
attempt to assess the relative importance of improving
the accuracy of the energy and flux functions by studying
the overlaps of the PN templates constructed from different
orders of energy and flux functions with the exact wave-
form. It should be kept in mind that this work is solely
restricted to the inspiral part of the signal and neglects the
plunge and quasi-normal mode ringing phases of the binary
[6,33,37–40].

E. Effectualness and Faithfulness

In order to measure the accuracy of our approximate
templates we shall compute their overlap with a fiducial
exact signal. We shall consider two types of overlaps
[6,41–43]. The first one is the faithfulness which is the
overlap of the approximate template with the exact signal
computed by keeping the intrinsic parameters (e.g., the
masses of the two bodies) of both the template and the
signal to be the same but maximizing over the extrinsic
(e.g., the time-of-arrival and the phase at that time) pa-
rameters. The second one is the effectualness which is the
overlap of the approximate template with the exact signal
computed by maximizing the overlap over both the intrin-
sic and extrinsic parameters. Faithfulness is a measure of
how good is the template waveform in both detecting a
signal and measuring its parameters. However, effectual-
ness is aimed at finding whether or not an approximate
template model is good enough in detecting a signal with-
out reference to its use in estimating the parameters. As in
previous studies, we take overlaps greater than 96.5% to be
indicative of a good approximation.

F. Organization of the paper

In the next section we study the test mass waveforms in
the adiabatic approximation. We discuss the construction
of the exact energy and flux functions as well as the
respective T-approximants. The overlaps of various stan-
dard adiabatic and complete adiabatic approximants are
x � f=f0 by [6], Sh�x� � 9 � 10 ��4:49x� 
 0:16x 

0:52 
 0:32x2� where f0 � 150 Hz and the PSD rises steeply
below a lower cut-off fc � 40 Hz.
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also compared in this Section. Section III deals with the
non-adiabatic approximation. Section IV explores the ex-
tension of the results in the comparable mass case. It
presents the energy and flux functions which are the crucial
inputs for the construction of the fiducial ‘‘exact’’ wave-
form as well as the approximate waveforms followed by a
discussion of the results. In the last section we summarize
our main conclusions.

One of the main conclusions of this paper is that the
effectualness of the test mass approximants significantly
improves in the complete adiabatic approximation at PN
orders below 3PN. However, standard adiabatic approxim-
ants of order � 3PN are nearly as good as the complete
adiabatic approximants for the construction of effectual
templates. In the comparable mass case the problem can
be only studied at the lowest two PN orders. No strong
conclusions can be drawn as in the test mass case. Still, the
trends indicate that the standard adiabatic approximation
provides a good lower bound to the complete adiabatic
approximation for the construction of both effectual and
faithful templates at PN orders � 1:5PN. From the detailed
study of test mass templates we also conclude that, pro-
vided the comparable mass case is qualitatively similar to
the test mass case, neither the improvement of the accuracy
of energy function from 3PN to 4PN nor the improvement
of the accuracy of flux function from 3.5PN to 4PN will
result in a significant improvement in effectualness in the
comparable mass case. As far as faithfulness is concerned,
it is hard to reach any conclusion. To achieve the target
sensitivity of 0.965 in effectualness corresponding to a
10% loss in the event-rate, standard adiabatic approxim-
ants of order 2PN and 3PN are required for the
(10M�; 10M�) and (1:4M�; 1:4M�) binaries, respectively,
when restricting to only the inspiral phase. (Be warned that
this is not a good approximation in the BH-BH case since
the approach to the plunge and merger lead to significant
differences.)
8

II. TEST MASS WAVEFORMS IN THE ADIABATIC
APPROXIMATION

Our objective is to compare the effectualness (i.e., larger
overlaps with the exact signal) and faithfulness (i.e.,
smaller bias in the estimation of parameters) of the stan-
dard adiabatic T�E�n�;F n� and complete adiabatic
T�E�n
2:5�;F n� approximants. As a by-product of this
study, we would also like to have an understanding of the
relative importance of improving the accuracy of the en-
ergy function and flux function. Thus, what we will do is to
take all possible combinations of T-approximants7 of en-
ergy and flux functions, construct PN templates, and cal-
culate the overlap of these templates with the exact
7We follow [6] in denoting the precise scheme used for
constructing the approximant.
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waveform. In all cases, the exact waveform is constructed
by numerically integrating the phasing formula in the time-
domain [TaylorT1 approximant cf. Eqs. (1.1) and (1.2)].
The waveforms (both the exact and approximate) are all
terminated at vlso �1=

���
6

p
, which corresponds to Flso ’

43Hz for the (1M�;100M�) binary, Flso ’ 86 Hz for the
(1M�;50M�) binary and Flso ’ 399 Hz for the
(1M�;10M�) binary.8 The lower frequency cut-off of the
waveforms is chosen to be Flow �20Hz.

In this study, we restrict to approximants TaylorT1 and
TaylorF1 since they do not involve any further re-
expansion in the phasing formula and hence there is no
ambiguity when we construct the phasing of the waves
using approximants with unequal orders of the energy and
flux functions.

A. The energy function

In the case of a test-particle m2 moving in circular orbit
in the background of a Schwarzschild black hole of mass
m1, where m2=m1 ! 0, the energy function E�x� in terms
of the invariant argument x � v2 is given by

Eexact�x��
1�2x�������������
1�3x

p : (2.1)

The associated v-derivative entering the phasing formula
is

E0
exact�v� � 2v

dE�x�
dx

��������x�v2
� �v

�1 � 6v2�

�1 � 3v2�3=2
: (2.2)

We use the above exact E0�v� to construct the exact wave-
form in the test mass case. In order to construct various
approximate PN templates, we Taylor-expandE0

exact�v� and
truncate it at the necessary orders.

E0
7PN�v� � �v

�
1 �

3v2

2
�

81v4

8
�

675v6

16
�

19845v8

128

�
137781v10

256
�

1852389v12

1024
�

12196899v14

2048


O�v16�

�
: (2.3)

Different T-approximants of the energy function E0
T�v�

along with E0
exact�v� are plotted in Fig. 1(a).

B. The flux function

In the test-particle limit, the exact gravitational-wave
flux has been computed numerically with good accuracy
[8]. We will use this flux function [see Fig. 1(b)], along
with the energy function given by Eq. (2.2), to construct an
exact waveform in the test mass case. In the test-particle
limit, the GW flux is also known analytically to 5.5PN
order from black hole perturbation theory [11] and given
by
Here, vlso is the velocity at the last stable circular orbit of
Schwarzschild geometry having the same mass as the total mass
m1 
m2 of the binary (we adopt units in which c � G � 1) and
Flso is the GW frequency corresponding to it.
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FIG. 1 (color online). Various T-approximants of Newton-normalized (v-derivative of) energy function E0
T�v�=E

0
N�v� (left), and flux

function F T�v�=F N�v� (right) in the test mass limit along with the exact functions (denoted by X). Also plotted is the amplitude
spectral density (per

������
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p
) of initial LIGO noise in arbitrary units.
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F �v��
32

5
2v10

�X11

k�0

Akvk

�X11

m�6

Bmvm
�
lnv
O�v12�

�
; (2.4)

where the various coefficients Ak and Bk are [11],

A0 � 1; A1 � 0; A2 � �
1247

336
; A3 � 4�; A4 � �

44 711

9072
; A5 � �

8191�
672

;

A6 �
6 643 739 519

69 854 400



16�2

3
�

1712$
105

�
1712 ln4

105
; A7 � �

16 285�
504

;

A8 � �
323 105 549 467

3 178 375 200



232 597$
4410

�
1369�2

126



39 931 ln2

294
�

47 385 ln3

1568
;

A9 �
265 978 667 519�

745 113 600
�

6848$�
105

�
13 696� ln2

105
;

A10 � �
2 500 861 660 823 683

2 831 932 303 200



916 628 467$
7 858 620

�
424 223�2

6804
�
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1 122 660
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;
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784
; B6 � �

1712
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4410
; B9 �

�6848�
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; B10 �
916 628 467

7 858 620
; B11 �

177 293�
1176

:

(2.5)
9For the sake of convenience we also tabulate the results
shown in Figs. 2–4 in Tables I and II.
We will use the energy and flux functions given by
Eqs. (2.3), (2.4), and (2.5) to construct various approximate
templates by truncating the expansions at the necessary
order. The different T-approximants of the flux function
F T�v� along with the (numerical) exact flux F exact�v� are
plotted in Fig. 1(b).

C. Comparison of standard and complete adiabatic
approximants

We present the results of our study in the test mass limit
in four parts. In the first part we discuss our conclusions on
the mathematical problem of the closeness of the standard
adiabatic and complete adiabatic template families with
the family of exact waveforms in the adiabatic approxima-
tion. In the next part we exhibit our results in the case of the
initial LIGO detector. In the third part we compare the
relative importance of improving the accuracy of the en-
ergy and flux functions. Finally, in the fourth part we
compare the total number of GW cycles and the number
044029
of useful cycles accumulated by various standard adiabatic
and complete adiabatic approximants.

1. White-noise case

First, we explore the general question of the closeness of
the standard adiabatic and complete adiabatic templates to
the exact waveform assuming flat power spectral density
for the detector noise. Figs. 2–4 show the effectualness
and faithfulness of various PN templates for three arche-
typical binaries with component masses (1M�; 10M�),
(1M�; 50M�), and (1M�; 100M�), respectively.9

The central result of this study is that complete adiabatic
approximants bring about a remarkable improvement in
the effectualness for all systems at low PN orders (<
3PN). The complete adiabatic approximants converge to
-6
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FIG. 2 (color online). Effectualness (left panels) and faithfulness (right panels) of various test mass TaylorT1 and TaylorF1 templates
in detecting a signal from a (1M�; 10M�) binary in white noise. Different lines in the panels correspond to different orders of the flux
function. Each line shows how the overlaps are evolving as a function of the accuracy of the energy function. Standard adiabatic
approximants T�E�n�;F n� are marked with thick dots.
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the adiabatic exact waveform at lower PN orders than the
standard adiabatic approximants. This indicates that at
these orders general relativistic corrections to the conser-
vative dynamics of the binary are quite important contrary
to the assumption employed in the standard post-
Newtonian treatment of the phasing formula. On the other
hand, the difference in effectualness between the standard
and complete adiabatic approximants at orders greater than
3PN is very small. Thus, if we have a sufficiently accurate
(order � 3PN) T-approximant of the flux function, the
standard adiabatic approximation is nearly as good as
the complete adiabatic approximation for construction of
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effectual templates. But at all orders the standard adiabatic
approximation provides a lower bound to the complete
adiabatic approximation for the construction of effectual
templates.

The faithfulness of both the approximants fluctuates
as we go from one PN order to the next and is generally
much smaller than our target value of 0.965. The fluctua-
tion continues all the way up to 5PN order reflecting
the oscillatory approach of the flux function to the exact
flux function at different PN orders. It is again interesting
to note that complete adiabatic approximants are generally
more faithful than the standard adiabatic approximants. It
0
1
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2
2.5
3
3.5
4
4.5
5
5.5
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TaylorT1
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e signal corresponds to a (1M�; 50M�) binary.
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TABLE I. Effectualness of standard adiabatic T�E�n�;F n� and complete adiabatic T�E�n
2:5�;F n� templates in the test mass limit.
Overlaps are calculated assuming a flat spectrum for the detector noise (white noise).

(1M�; 10M�) (1M�; 50M�) (1M�; 100M�)
TaylorT1 TaylorF1 TaylorT1 TaylorF1 TaylorT1 TaylorF1

Order (n) S C S C S C S C S C S C

0PN 0.6250 0.8980 0.6212 0.8949 0.5809 0.9726 0.5917 0.9644 0.8515 0.9231 0.8318 0.9017
1PN 0.4816 0.5119 0.4801 0.5086 0.4913 0.9107 0.4841 0.5871 0.8059 0.9169 0.7874 0.8980
1.5PN 0.9562 0.9826 0.9448 0.9592 0.9466 0.9832 0.9370 0.9785 0.8963 0.9981 0.7888 0.9788
2PN 0.9685 0.9901 0.9514 0.9624 0.9784 0.9917 0.9719 0.9872 0.9420 0.9993 0.9178 0.9785
2.5PN 0.9362 0.9924 0.9298 0.9602 0.7684 0.9833 0.7326 0.9772 0.8819 0.9858 0.8610 0.9730
3PN 0.9971 0.9991 0.9677 0.9713 0.9861 0.9946 0.9821 0.9886 0.9965 0.9959 0.9756 0.9792
3.5PN 0.9913 0.9996 0.9636 0.9688 0.9902 0.9994 0.9858 0.9914 0.9885 1.0000 0.9690 0.9800
4PN 0.9937 0.9973 0.9643 0.9663 0.9975 0.9996 0.9903 0.9914 0.9968 0.9992 0.9769 0.9795
4.5PN 0.9980 0.9999 0.9671 0.9690 0.9967 1.0000 0.9902 0.9913 0.9996 1.0000 0.9787 0.9801
5PN 0.9968 0.9979 0.9661 0.9667 0.9994 0.9994 0.9913 0.9914 0.9992 0.9991 0.9790 0.9797

TABLE II. Faithfulness of standard adiabatic T�E�n�;F n� and complete adiabatic T�E�n
2:5�;F n� templates in the test mass limit.
Overlaps are calculated assuming a flat spectrum for the detector noise (white noise).

(1M�; 10M�) (1M�; 50M�) (1M�; 100M�)
TaylorT1 TaylorF1 TaylorT1 TaylorF1 TaylorT1 TaylorF1

Order (n) S C S C S C S C S C S C

0PN 0.6124 0.1475 0.6088 0.1446 0.2045 0.4683 0.2104 0.4750 0.2098 0.4534 0.2208 0.4641
1PN 0.1322 0.1433 0.1350 0.1461 0.1182 0.1446 0.1236 0.1508 0.1395 0.1901 0.1432 0.1994
1.5PN 0.5227 0.4005 0.5241 0.3967 0.3444 0.3947 0.3505 0.3866 0.3260 0.7869 0.3399 0.7700
2PN 0.7687 0.5707 0.7680 0.5689 0.5518 0.6871 0.5535 0.6827 0.4377 0.8528 0.4506 0.8486
2.5PN 0.4735 0.5268 0.4748 0.5278 0.2874 0.3561 0.2933 0.3625 0.2787 0.4001 0.2918 0.4133
3PN 0.8629 0.8165 0.8932 0.8277 0.9420 0.6317 0.9334 0.6222 0.7579 0.8407 0.7570 0.8194
3.5PN 0.9309 0.9979 0.9194 0.9609 0.6689 0.9681 0.6695 0.9632 0.5740 0.9425 0.5805 0.9383
4PN 0.9174 0.9303 0.9087 0.9176 0.6693 0.7227 0.6701 0.7230 0.6129 0.7112 0.6236 0.7159
4.5PN 0.9525 0.9744 0.9330 0.9415 0.7829 0.9242 0.7827 0.9229 0.7286 0.9689 0.7308 0.9632
5PN 0.9370 0.9392 0.9225 0.9241 0.7275 0.7417 0.7276 0.7420 0.6972 0.7409 0.7027 0.7500
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FIG. 4 (color online). As in Fig. 2 except that the signal corresponds to a (1M�; 100M�) binary.
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FIG. 5 (color online). Effectualness (left panels) and faithfulness (right panels) of various test mass TaylorT1 and TaylorF1 templates
in detecting a signal from a (1M�; 10M�), calculated for the initial LIGO noise PSD. Different lines in the panels correspond to
different orders of the flux function. Each line shows how the overlaps are evolving as a function of the accuracy of the energy
function. Standard adiabatic approximants T�E�n�;F n� are marked with thick dots.
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is certainly worth exploring, in a future study, the anoma-
lous cases where it performs worse than the standard.

2. Initial LIGO noise spectrum

Having addressed the general question concerning the
closeness of standard adiabatic and complete adiabatic
templates to the exact waveforms, we now compare the
overlaps in the specific case of the initial LIGO detector.
The effectualness and faithfulness of various test mass
PN templates for the (1M�; 10M�) binary and
(1M�; 50M�) binary are plotted in Fig. 5 and Fig. 6, re-
spectively, and are shown in Tables III, IV, and V. As in the
case of white-noise, here too we see that standard adiabatic
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FIG. 6 (color online). As in Fig. 5 except that th
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approximants of order less than 3PN have considerably
lower overlaps than the corresponding complete adiabatic
approximants and the difference in overlaps between stan-
dard adiabatic and complete adiabatic approximants of
order � 3PN is very small. Thus, as in the white-noise
case, if we have a sufficiently accurate (order � 3PN) T-
approximant of the flux function, the standard adiabatic
approximation is nearly as good as the complete adiabatic
approximation for the construction of effectual templates.
Unlike in the white-noise case, for the initial LIGO noise
spectrum the plots and Table V indicate that the faithful-
ness of PN templates greatly improves in a complete adia-
batic treatment, for all orders studied.
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e signal corresponds to a (1M�; 50M�) binary.
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TABLE III. Effectualness of standard adiabatic T�E�n�;F n� and complete adiabatic
T�E�n
2:5�;F n� approximants in the test mass limit. Overlaps are calculated for the initial
LIGO noise spectrum. Percentage biases &m and & in determining parameters m and  are
given in brackets.

(1M�; 10M�)
TaylorT1 TaylorF1

Order (n) S C S C

0PN 0.5910 (12, 5.7) 0.9707 (36, 45) 0.5527 (31, 28) 0.8395 (48, 53)
1PN 0.5232 (22, 105) 0.8397 (125, 69) 0.4847 (18, 9.7) 0.8393 (147, 74)
1.5PN 0.9688 (52, 51) 0.9887 (8.3, 15) 0.8398 (61, 57) 0.8606 (4.7, 10)
2PN 0.9781 (18, 25) 0.9942 (0.4, 0.6) 0.8485 (32, 40) 0.8693 (15, 22)
2.5PN 0.9490 (96, 68) 0.9923 (26, 32) 0.8963 (123, 75) 0.9071 (49, 50)
3PN 0.9942 (0.3, 1.1) 0.9989 (3.7, 6.2) 0.8713 (16, 23) 0.8822 (12, 18)
3.5PN 0.9940 (6.9, 11) 0.9998 (0.6, 1.4) 0.8685 (23, 31) 0.8834 (17, 25)
4PN 0.9974 (6.2, 11) 0.9996 (3.9, 6.9) 0.8746 (23, 30) 0.8817 (21, 28)
4.5PN 0.9988 (3.3, 5.5) 1.0000 (0.8, 1.6) 0.8795 (19, 27) 0.8868 (18, 26)
5PN 0.9992 (4.0, 6.9) 0.9997 (3.5, 5.7) 0.8792 (21, 29) 0.8825 (20, 28)

TABLE IV. Same as Table III except that the values corresponds to the (1M�; 50M�) binary.

(1M�; 50M�)
TaylorT1 TaylorF1

Order (n) S C S C

0PN 0.8748 (24, 29) 0.9471 (19, 14) 0.8294 (21, 34) 0.8974 (17, 13)
1PN 0.8101 (28, 104) 0.9392 (19, 40) 0.7662 (23, 116) 0.8898 (18, 43)
1.5PN 0.9254 (21, 4.1) 0.9996 (6.7, 20) 0.8772 (18, 0.2) 0.9590 (6.4, 20)
2PN 0.9610 (18, 16) 0.9993 (7.5, 16) 0.9113 (16, 14) 0.9583 (7.7, 17)
2.5PN 0.9104 (21, 6.9) 0.9940 (8.3, 0.7) 0.8630 (19, 8.7) 0.9574 (9.1, 1.9)
3PN 0.9968 (11, 21) 0.9992 (2.6, 10) 0.9500 (11, 21) 0.9648 (2.7, 11)
3.5PN 0.9923 (13, 19) 0.9997 (2.4, 5.2) 0.9445 (12, 18) 0.9679 (2.8, 6.5)
4PN 0.9979 (8.8, 13) 0.9995 (3.5, 4.3) 0.9560 (8.9, 14) 0.9672 (3.9, 5.6)
4.5PN 0.9995 (7.1, 14) 1.0000 (0.9, 1.9) 0.9590 (7.0, 14) 0.9698 (1.5, 3.4)
5PN 0.9994 (5.2, 7.7) 0.9990 (2.6, 2.4) 0.9634 (5.9, 10) 0.9690 (3.4, 5.1)

TABLE V. Faithfulness of standard adiabatic T�E�n�;F n� and complete adiabatic
T�E�n
2:5�;F n� templates in the test mass limit. Overlaps are calculated for the initial LIGO
noise spectrum.

(1M�; 10M�) (1M�; 50M�)
TaylorT1 TaylorF1 TaylorT1 TaylorF1

Order (n) S C S C S C S C

0PN 0.2186 0.6272 0.2108 0.5879 0.2134 0.3498 0.2145 0.3593
1PN 0.1342 0.1615 0.1308 0.1563 0.1511 0.2196 0.1527 0.2210
1.5PN 0.3788 0.4492 0.3449 0.6471 0.2915 0.9223 0.2956 0.9195
2PN 0.7449 0.7633 0.6279 0.7782 0.3613 0.8157 0.3674 0.8318
2.5PN 0.3115 0.3970 0.2905 0.3532 0.2608 0.4233 0.2606 0.4161
3PN 0.9633 0.7566 0.7913 0.8297 0.7194 0.9686 0.7057 0.9323
3.5PN 0.8385 0.9984 0.6582 0.7464 0.4941 0.9273 0.5046 0.9442
4PN 0.8356 0.8909 0.6527 0.6725 0.5960 0.7934 0.5864 0.8131
4.5PN 0.9395 0.9851 0.6967 0.7195 0.7594 0.9644 0.7605 0.9614
5PN 0.8960 0.9129 0.6770 0.6821 0.7344 0.8350 0.7432 0.8579
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FIG. 7 (color online). The fractional absolute difference 'N n between the number of cycles accumulated by various approximants
and the exact waveform, plotted against the corresponding overlaps. Standard adiabatic T�E�n�;F n� approximants are marked with
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We also calculate the bias in the estimation of parame-
ters while maximizing the overlaps over the intrinsic pa-
rameters of the binary. The (percentage) bias in the
estimation of the parameter p is defined as

&p �
jpmax � pj

p
� 100; (2.6)

where pmax is the value of the parameter p which gives the
maximum overlap. Along with the maximized overlaps
(effectualness), the bias in the estimation of the parameters
m and  are also quoted in Tables III, IV. It can be seen that
at lower PN orders (order <3PN) the complete adiabatic
approximants show significantly lower biases. Even at
higher PN orders complete adiabatic approximants are
generally less biased than the corresponding standard adia-
batic approximants.

3. Accuracy of energy function vs flux function

In most of the cases, TaylorT1 and TaylorF1 templates
show trends of smoothly increasing overlaps as the accu-
racy of the energy function is increased keeping the accu-
racy of the flux function constant. This is because the T-
approximants of the energy function smoothly converge to
the exact energy as we go to higher orders [see Fig. 1(a)].
On the other hand, if we improve the accuracy of the flux
function for a fixed order of energy, the overlaps do not
show such a smoothly converging behavior. This can be
understood in terms of the oscillatory nature of the T-
approximants of the flux function. For example, templates
constructed from 1PN and 2.5PN flux functions can be seen
to have considerably lower overlaps than the other ones.
044029
This is because of the poor ability of the 1PN and 2.5PN T-
approximants to mimic the behavior of the exact flux
function [see Fig. 1(b)]. This inadequacy of the 1PN and
2.5PN T-approximants is prevalent in both test mass and
comparable mass cases. Hence it is not a good strategy to
use the T-approximants at these orders for the construction
of templates. On the other hand, 3.5PN and 4.5PN T-
approximants are greatly successful in following the exact
flux function in the test mass case, and consequently lead to
larger overlaps.

We have found that in the test mass case if we improve
the accuracy of energy function from 3PN to 4PN, keeping
the flux function at order 3PN, the increase in effectualness
(respectively, faithfulness) is ’ 0:36% ( � 16%). The same
improvement in the energy function for the 3.5PN flux will
produce an increase of ’ 0:36% (13%). On the other hand,
if we improve the accuracy of flux function from 3.5PN to
4PN, keeping the energy function at order 3PN, the in-
crease in effectualness (respectively, faithfulness) is ’
�0:17% ( � 12%). The values quoted are calculated using
the TaylorT1 method for the (1M�; 10M�) binary for the
initial LIGO noise PSD. The effectualness trends are simi-
lar in the case of the (1M�; 50M�) binary also. If the
comparable mass case is qualitatively similar to the test
mass case, this should imply that neither the improvement
in the accuracy of the energy function from 3PN to 4PN nor
the improvement in the accuracy of the flux function from
3.5PN to 4PN will produce significant improvement in the
effectualness in the comparable mass case. The trends in
the faithfulness are very different for different binaries so
that it is hard to make any statement about the improve-
ment in faithfulness.
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TABLE VI. Number of GW cycles accumulated by various standard adiabatic T�E�n�;F n�
and complete adiabatic T�E�n
2:5�;F n� approximants in the test mass limit. The number of
useful cycles calculated for the initial LIGO noise PSD is also shown in brackets. We choose a
low frequency cut-off of 40 Hz.

(1M�; 10M�) (1M�; 50M�) (1M�; 100M�)
Order (n) S C S C S C

0PN 481 (92.3) 424 (74.6) 118 (110) 77.8 (64.4) 13.6 6.7
1PN 560 (117) 526 (102) 180 (186) 124 (104) 25.7 10.6
1.5PN 457 (81.7) 433 (71.8) 88.8 (76.3) 58.5 (38.2) 8.4 2.3
2PN 447 (77.7) 440 (74.0) 77.0 (61.8) 62.5 (41.5) 6.1 2.6
2.5PN 464 (84.5) 454 (79.6) 96.8 (85.5) 74.5 (50.5) 9.7 2.9
3PN 442 (74.7) 440 (73.3) 64.5 (45.2) 58.1 (35.5) 3.4 1.6
3.5PN 445 (76.1) 442 (74.5) 68.7 (49.7) 60.6 (36.8) 4.0 1.4
4PN 445 (75.8) 443 (75.2) 66.4 (45.1) 62.9 (39.0) 2.9 1.6
4.5PN 443 (75.1) 442 (74.5) 63.7 (42.0) 60.0 (35.6) 2.5 1.2
5PN 444 (75.3) 443 (75.0) 63.8 (40.9) 62.2 (37.8) 2.1 1.4
Exact 442 (74.1) 59.1 (34.3) 0.9
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4. Number of gravitational wave cycles

The number of GW cycles accumulated by a template is
defined as [42]

N tot �
1

2�
�’lso � ’low� �

Z Flso

Flow

dF
N�F�
F

; (2.7)

where ’lso and ’low are the GW phases corresponding to
the last stable orbit and the low frequency cut-off, respec-
tively, and N�F� � F2= _F is the instantaneous number of
cycles spent near some instantaneous frequency F (as
usual, _F is the time derivative of F). However, it has
been noticed that [42] the large number N tot is not sig-
nificant because the only really useful cycles are those that
contribute most to the signal-to-noise ratio (SNR). The
number of useful cycles is defined as [42]

N useful �

�Z Flso

Flow

df
f
w�f�N�f�

��Z Flso

Flow

df
f
w�f�

�
�1
;

(2.8)

where w�f� � a2�f�=h2
n�f�. If Sn�f� is the two-sided PSD

of the detector noise, hn�f� is defined by h2
n�f� � fSn�f�,

while a�f� is defined by jH�f�j ’ a�tf�=� _F�tf��
1=2 where

H�f� is the Fourier transform of the time-domain wave-
form h�t� (See Eqs. (1.2) and (1.3)) and tf is the time when
the instantaneous frequency F�t� reaches the value f of the
Fourier variable.

The total numbers of GW cycles accumulated by various
standard adiabatic T�E�n�;F n� and complete adiabatic
T�E�n
2:5�;F n� approximants in the test mass limit are
tabulated in Table VI along with the number of useful
cycles calculated for the initial LIGO noise PSD. We use
Eq. (1.4) to calculate _F and numerically evaluate the
integrals in Eq. (2.8) to compute the number of useful
cycles. In order to compute the total number of cycles,
we numerically evaluate the integral in Eq. (2.7).
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It can be seen that all complete adiabatic approximants
accumulate fewer number of (total and useful) cycles than
the corresponding standard adiabatic approximants. This is
because the additional conservative terms in the complete
adiabatic approximants add extra acceleration to the test
mass which, in the presence of radiation reaction, would
mean that the test body has to coalesce faster, and therefore
such templates accumulate fewer number of cycles.
Notably enough, approximants (like 3PN and 4.5PN) pro-
ducing the highest overlaps with the exact waveform,
accumulate the closest number of cycles as accumulated
by the exact waveform. This is indicative that the phase
evolution of these approximants is closer to that of the
exact waveform. On the other hand, the fractional absolute
difference in the number of cycles of the approximants
producing the lowest overlaps (like 0PN, 1PN, and 2.5PN)
as compared to the exact waveform is the greatest, which
indicates that these templates follow a completely different
phase evolution.

In order to illustrate the correlation between the number
of (total/useful) cycles accumulated by an approximant and
its overlap with the exact waveform, we introduce a quan-
tity 'N n �

jN n�N exactj
N exact

which is the fractional absolute
difference between the number of (total/useful) cycles
accumulated by a template and the exact waveform. Here
N n and N exact are the number of (total/useful) cycles
accumulated by the nPN approximant and exact waveform,
respectively. In Fig. 7, we plot 'N n of various standard
adiabatic and complete adiabatic approximants against the
corresponding overlaps in the case of a (1M�; 10M�)
binary. The following points may be noted while compar-
ing the results quoted here for the number of cycles with
those of other works, e.g., Refs. [25,44,45]. As emphasized
in Ref. [6] one can get very different results for the phasing
depending on whether one consistently re-expands the
constituent energy and flux functions or evaluates them
-12
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without re-expansion. In the computation of the number of
useful cycles different authors treat the function _F differ-
ently, some re-expand and others do not, leading to differ-
ences in the results. The other important feature we would
like to comment upon is a result that appears, at first, very
counter-intuitive. It is the fact that in some cases the
number of useful GW cycles is greater than the total
number of GW cycles! A closer examination reveals that
while for most cases of interest this does not happen, in
principle its occurrence is determined by the ratio fr �
Flow=Flso. To understand this in more detail let us consider
the ratio N r of the number of useful cycles to the total
number of cycles in the case of white-noise (in a frequency
band Flow to Flso) for which

N r �
N useful

N tot
�

5

12
f1=3

r
1 � f4=3

r

1 � f1=3
r

: (2.9)

For fr  1, N r < 1. However, as fr increases to about
fr � 0:52;N r transits from being less than one to becom-
ing greater than one! Essentially this arises due to the
details of the scalings of the various quantities involved
and the point of transition depends on the PN order and the
precise form of the noise PSD. For fr ’ 1, the calculation
of useful cycles does not make much physical sense. This
explains the absence of N useful results for the
(1M�; 100M�) binary in Table VI.
III. NON-ADIABATIC MODELS

Before introducing new non-adiabatic models in this
section, let us recapitulate our point of view in summary.
Contrary to the standard adiabatic approximant which is
constructed from consistent PN expansions of the energy
and flux functions to the same relative PN order, we
considered a new complete adiabatic approximant (still
based on PN expansions of the energy and flux functions
but of different PN orders) but consistent with a complete
PN acceleration. Viewed in terms of the acceleration terms
they include, the standard adiabatic approximation is in-
consistent by neglect of some intermediate PN order terms
in the acceleration. The complete adiabatic approximation
on the other hand is constructed to consistently include all
the relevant PN acceleration terms neglected in the asso-
ciated standard approximant. These models were a prelude
to phasing models constructed from the dynamical equa-
tions of motion considered in this section. However, we
have worked solely within the adiabatic approximation. It
is then pertinent to ask whether one can construct natural
non-adiabatic extensions of both the standard and complete
adiabatic approximants. And if so, how do their perfor-
mances compare? Indeed, the work of Buonanno and
Damour [33] within the effective one-body approach to
the dynamics did find differences between the adiabatic
and non-adiabatic solutions. In this Section we investigate
whether it is possible to introduce non-adiabatic formula-
044029
tions of the standard and complete approximants consid-
ered in the previous Section.

The Lagrangian models studied by Buonanno, Chen,
and Vallisneri [37] seem to be the natural candidates for
the purpose since they are specified by the acceleration
experienced by the binary system. The Lagrangian models
considered in Ref. [37] can be thought of as the standard
non-adiabatic approximants, since, following standard
choices, they lead to gaps in the post-Newtonian expansion
of the acceleration. Generalizing these Lagrangian models
so that there are no missing PN terms, or gaps, in the
acceleration we can construct the complete non-adiabatic
approximants. With a non-adiabatic variant of the standard
and complete approximants we can then compare their
relative performances. However, we will be limited in
this investigation because of two reasons: Firstly, the
Lagrangian models are available only up to 3.5PN order,
and higher-order PN accelerations are as yet unavailable.
Secondly, the only exact waveform we have, has however
been constructed only in the adiabatic approximation.
Even in the test mass limit, the exact waveform is not
known beyond the adiabatic approximation. Because of
lack of anything better, we continue to use the exact
waveform in the adiabatic approximation to measure the
effectualness and faithfulness of the non-adiabatic
approximants.

Thus to obtain non-adiabatic approximants, the signal is
constructed by integrating the equations of motion directly
using a Lagrangian formalism. The equations are sche-
matically written as:

dx
dt

� v;
dv
dt

� a: (3.1)

For the complete non-adiabatic model of order n, all terms
in the PN expansion for acceleration are retained up to
order n
 2:5 without any gaps. For the standard non-
adiabatic models, on the other hand, only terms in the
acceleration consistent with the treatment of standard phas-
ing are retained in the acceleration, resulting in gaps in the
acceleration corresponding to intermediate PN terms ne-
glected in the treatment. E.g., for n � 0 the standard non-
adiabatic approximation includes only the aN and a2:5PN

while the complete non-adiabatic approximation would
include in addition the a1PN and a2PN. Given the current
status of knowledge of the two-body equations of motion,
we have only two complete non-adiabatic approximants, at
0PN and 1PN retaining all acceleration terms up to 2.5PN
and 3.5PN, respectively. The associated 0PN (1PN) stan-
dard non-adiabatic approximation retains acceleration
terms corresponding to 0PN and 2.5PN (0PN, 1PN,
2.5PN, and 3.5PN).

The explicit terms for accelerations for each order are
given as follows [37,46,47]

a N � �
M

r2
n̂; (3.2)
-13



AJITH, IYER, ROBINSON, AND SATHYAPRAKASH PHYSICAL REVIEW D 71, 044029 (2005)
a 1PN � �
M

r2



n̂
�
�1 
 3�v2 � 2�2 
 �

M
r
�

3

2
 _r2

�
� 2�2 � � _rv

�
; (3.3)

a2PN � �
M
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��
; (3.4)
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where n̂ � r=r. In the above Eq. (3.5), the logarithmic
terms present in a3PN in [46] have been transformed
away by an infinitesimal gauge transformation following
[47].10

The above equations are solved numerically to attain the
dynamics of the system. Then the orbital phase ,�t� is
calculated by numerically solving the equations

d,
dt

� !; v2 � !2r2; (3.8)

where the calculation of the orbital angular frequency !
assumes that the orbit is circular. Once we have the orbital
phase, the waveform is generated using Eq. (1.2) since the
orbital phase , is related to the GW phase ’ by ’ � 2,.

A. Standard and complete non-adiabatic approximants
in the test mass case

In the following we discuss the results of our study for
the non-adiabatic waveforms in the test mass limit. To
10We thank Luc Blanchet for pointing this to us and providing
us this form.
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determine the appropriate expressions for the acceleration
in the test mass case, we start with the general expression
for the acceleration and set  � 0 in the conservative 1PN,
2PN, and 3PN terms. Since doing the same in the dissipa-
tive terms at 2.5PN and 3.5PN orders prevents the orbit
from decaying, we retain terms linear in  at these orders
and set to zero terms of higher order in . In the first part
we discuss results found on the problem of the closeness of
the standard and complete non-adiabatic template families
with the fiducial exact waveform. In the second part we
extend our results to the noise spectrum expected in initial
LIGO.

1. White noise

First, we explore the general question as to the closeness
of the standard non-adiabatic and complete non-adiabatic
templates assuming a flat power spectral density for the
detector noise. Tables VII and VIII show the effectualness
and faithfulness of Lagrangian models for the same
three archetypical binaries as before: (1M�; 10M�),
(1M�; 50M�), and (1M�; 100M�) binaries. At present,
-14



TABLE VII. Effectualness of the Lagrangian templates in the
test mass case for the white noise.

(1M�; 10M�) (1M�; 50M�) (1M�; 100M�)
Order (n) S C S C S C

0PN 0.5521 0.4985 0.5553 0.8399 0.6775 0.7789
1PN 0.4415 0.4702 0.5760 0.8327 0.6557 0.7591

TABLE VIII. Faithfulness of the Lagrangian templates in the
test mass case for the white noise.

(1M�; 10M�) (1M�; 50M�) (1M�; 100M�)
Order (n) S C S C S C

0PN 0.0450 0.0441 0.1778 0.0991 0.5959 0.1851
1PN 0.0471 0.0474 0.3195 0.1235 0.3646 0.2404
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the results are available at too few PN orders to make
statements of general trends in effectualness and faithful-
ness. However, the main result obtained for the adiabatic
approximants seems to hold good again for the non-
adiabatic approximants: the effectualness is higher for
the complete non-adiabatic model as opposed to the stan-
dard non-adiabatic model. This is indicative of the fact that
corrections coming from the conservative part of the dy-
namics (i.e., the well-known general relativistic effects at
1PN and 2PN) make an improvement of the effectualness.
However, as in the adiabatic case, the faithfulness of both
standard and complete non-adiabatic models is very poor.
But, in sharp contrast to the adiabatic case, here it appears
that the complete non-adiabatic approximation results in a
decrease in the faithfulness of the templates.

2. Initial LIGO noise spectrum

Having addressed the question concerning the closeness
of standard non-adiabatic and complete non-adiabatic tem-
TABLE IX. Effectualness of the Lagrangian te
LIGO noise PSD. Percentage biases &m and & in
brackets.

(1M�; 10M�)
Order (n) S C

0PN 0.5848 (30, 26) 0.9496 (55, 10
1PN 0.6762 (37, 49) 0.9273 (3.1, 2

TABLE X. Faithfulness of the Lagrangian templates in the test
mass case for the initial LIGO noise PSD.

(1M�; 10M�) (1M�; 50M�)
Order (n) S C S C

0PN 0.2463 0.1216 0.5048 0.1747
1PN 0.4393 0.1823 0.3650 0.3119

044029
plates to exact waveforms, we now compare the overlaps in
the case of the initial LIGO detector.

Tables IX and X show the effectualness and faithfulness,
respectively, of Lagrangian templates for the (1M�; 10M�)
and (1M�; 50M�) binaries. In this case, we see that the
effectualness of the approximants gets significantly im-
proved in the complete non-adiabatic approximation and
is greater than 0.9 for all the systems studied in this paper.
Faithfulness appears to be decreased by the use of com-
plete non-adiabatic approximation (this result also is in
sharp contrast with the corresponding adiabatic case where
we find that the complete approximation brings about a
significant improvement in the faithfulness), but again
there is no indication that either standard or complete
templates are reliable in extracting the parameters of the
system.

IV. COMPARABLE MASS WAVEFORMS

In the case of comparable mass binaries there is no exact
template available and the best we can do is to compare the
performance of the standard adiabatic and complete adia-
batic templates by studying their overlaps with some plau-
sible fiducial exact waveform. As in the case of the test
masses, here too we will consider all possible combinations
of the T-approximants of the energy and flux functions,
construct PN templates and calculate the overlaps of these
templates with the fiducial exact waveform. In all cases,
the fiducial exact waveform is constructed by numerically
integrating the phasing formula in the time-domain
(TaylorT1 approximant), and terminating the waveforms
(exact and approximate) at vlso � 1=

���
6

p
which corre-

sponds to Flso ’ 1570 Hz for a (1:4M�; 1:4M�) binary
and Flso ’ 220 Hz for a (10M�; 10M�) binary.11 The lower
frequency cut-off of the waveforms is chosen to be Flow �
40 Hz.
mplates in the test mass case for the initial
determining parameters m and  are given in

(1M�; 50M�)
S C

7) 0.8741 (3.3, 9.2) 0.9835 (35, 4.2)
7) 0.8530 (34, 191) 0.9784 (24, 28)

11Here also, vlso is the velocity at the last stable circular orbit of
the Schwarzschild geometry having the same mass as the total
massm1 
m2 of the binary. Strictly speaking, in the comparable
mass case, vlso at nPN order should be determined by solving
E0
n�v� � 0 where E0

n�v� is the v-derivative of the nth PN order
energy function. Since we found that our results are qualitatively
independent of such considerations, we stick to the choice in the
test mass limit.
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A. The energy function

Unlike in the test mass limit, the energy function E�x;�
is not known exactly in the comparable mass case but only
a post-Newtonian expansion, which has been computed at
present up to 3PN accuracy [13–17].

E3PN�x;���
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2
x
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; (4.1)

where . � �1987=3080 ’ �0:6451 [15–18]. The corre-
sponding E0�v;� appearing in the phasing formula reads,
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We use this expression truncated at the necessary orders
to construct the various approximate templates. To com-
pute a fiducial exact waveform, we use the exact energy
function in the test mass limit supplemented by the finite
mass corrections up to 3PN in the spirit of the hybrid
approximation [48]. In other words, the fiducial exact
energy E0�v;� will look like

E0
exact�v;���v
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where E0
exact�v� is the v-derivative of the exact energy

function in the test mass limit given by Eq. (2.2). The T-
approximants of the energy function E0

T�v;� as well as
the fiducial exact energy E0

exact�v;� are plotted in
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FIG. 8 (color online). Various T-approximants of Newton-normaliz
function F T�v�=F N�v� (right) in the comparable mass case, along
Also plotted is the amplitude spectral density (per
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Hz

p
) of initial L
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Fig. 8(a). The vlso corresponding to the fiducial exact
energy function can be determined by solving
E0

exact�v;� � 0. This will yield a value v3PN-hybrid
lso ’

0:4294 against the vlso ’ 0:4082 in the test mass case
(more precisely it is the vMECO [37]). If the -corrections
are included only up to 2PN instead of 3PN, v2PN-hybrid

lso ’
0:4113. It is worth pointing out that v2PN-Pade

lso ’ 0:4456
[41] and it is not unreasonable to expect that, with 3PN
-corrections the differences between various different
ways of determining the lso converge. (For the purposes
of our analysis, we have checked that there is no drastic
change in our conclusions due to these differences and
hence we use uniformly the value vlso � 0:4082).

B. The flux function

The flux function in the case of comparable masses has
been calculated up to 3.5PN accuracy [19–25], and is
given by:
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and the value of . has been recently calculated to be
�11831=9240 ’ �1:28 [27] by dimensional regula-
rization.

To construct our fiducial exact waveform, we will use
the energy function given by Eq. (4.3) and the flux function

F exact�v;��
32
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�Akv
k
B6v

6 lnv�
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k�0

�Ak��vk
B6��v6 lnv�
�
; (4.6)

where F exact�v� is the Newton-normalized (numerical)
exact flux in the test mass limit. The expansion coefficients
Ak’s and B6 refer to the test mass case and Ak��’s and
B6�� refer to the comparable mass case. The exact flux
function is thus constructed by superposing all that we
know in the test mass case from perturbation methods
and the two-body case by post-Newtonian methods. It
supplements the exact flux function in the test body limit
by all the -dependent corrections known up to 3.5PN
order in the comparable mass case. The T-approximants
of the flux function F T�v;� and the fiducial exact flux
F exact�v;� are plotted in Fig. 8(b).

C. Comparable mass results in the adiabatic
approximation

The effectualness and faithfulness of various PN tem-
plates in the case of comparable mass binaries are plotted
in Fig. 9(a) and Fig. 9(b), respectively, and are tabulated in
Tables XI, XII, and XIII. The overlaps of the fiducial exact
waveform are calculated with the TaylorT1 and TaylorF1
approximants using the initial LIGO noise spectrum.
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Different lines in the panels of Fig. 9 correspond to differ-
ent PN orders of the flux function. Let us note that in the
case of comparable mass binaries the complete adiabatic
approximants can be calculated, at present, at most up to
1PN order. From the Tables XI, XII, and XIII one can see
that the complete adiabatic approximation generally im-
proves the effectualness of the templates at 0PN and 1PN
orders. But, as far as faithfulness is concerned, it is hard to
conclude that one approximation is better than the other at
these PN orders.

Even though complete adiabatic approximants are not
calculated for higher PN orders, the general conclusion one
can make from Fig. 9 is that the complete adiabatic ap-
proximation of the phasing will not result in a significant
improvement in overlaps if we have a flux function of order
� 1:5PN. We, thus, conclude that, provided we have a
sufficiently accurate (order � 1:5PN) T-approximant of
the flux function, the standard adiabatic approximation
provides a good lower bound to the complete adiabatic
approximation for the construction of both effectual and
faithful templates in the case of comparable mass binaries.
It should be kept in mind that unlike the test mass case
where the exact energy and flux functions are known
leading to an exact waveform in the adiabatic approxima-
tion, in the comparable mass case we are only talking about
fiducial energy and flux functions constructed from what is
known. Probably, the fiducial waveform in this case has
much less to do with the exact waveform predicted by
general relativity.

Tables XI and XII indicate that, to achieve the target
sensitivity of 0.965 in effectualness corresponding to a
10% loss in the event-rate, standard adiabatic approxim-
ants of order 2PN and 3PN are required for the
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TABLE XIII. Faithfulness of the standard adiabatic T�E�n�;F n� and complete adiabatic
T�E�n
2:5�;F n� templates in the comparable mass case. The overlaps are calculated for the
initial LIGO noise spectrum.

(10M�; 10M�) (1:4M�; 1:4M�)
TaylorT1 TaylorF1 TaylorT1 TaylorF1

Order (n) S C S C S C S C
0PN 0.5590 0.8590 0.5595 0.8403 0.3848 0.1627 0.4148 0.1634
1PN 0.3022 0.3487 0.3025 0.3500 0.1519 0.1612 0.1518 0.1612
1.5PN 0.7866 0.7771 0.7044 0.6900
2PN 0.9795 0.9640 0.5650 0.5955
2.5PN 0.5736 0.5736 0.5962 0.5922
3PN 0.9525 0.9505 0.9915 0.9275
3.5PN 0.9522 0.9508 0.9914 0.9276

TABLE XII. Same as Table XI except that the values corresponds to the (1:4M�; 1:4M�)
binary.

(1:4M�; 1:4M�)
TaylorT1 TaylorF1

Order (n) S C S C
0PN 0.8594 (1.1, 0.5) 0.7014 (4.3, 0.1) 0.8450 (1.1, 0.3) 0.7613 (4.3, 0.2)
1PN 0.5391 (5.0, 0.0) 0.5633 (4.3, 0.1) 0.5375 (5.0, 0.0) 0.5608 (4.3, 0.2)
1.5PN 0.9447 (0.4, 0.0) 0.9013 (0.0, 0.1)
2PN 0.8815 (0.0, 0.0) 0.9351 (0.0, 0.1)
2.5PN 0.8535 (0.4, 0.1) 0.8346 (0.0, 0.1)
3PN 0.9963 (0.0, 0.1) 0.9370 (0.4, 0.1)
3.5PN 0.9963 (0.0, 0.1) 0.9370 (0.0, 0.1)

TABLE XI. Effectualness of standard adiabatic T�E�n�;F n� and complete adiabatic
T�E�n
2:5�;F n� approximants in the comparable mass case. Overlaps are calculated for the
initial LIGO noise spectrum. Percentage biases &m and & in determining parameters m and 
are given in brackets.

(10M�; 10M�)
TaylorT1 TaylorF1

Order (n) S C S C
0PN 0.8818 (14, 0.0) 0.9503 (3.6, 0.0) 0.8813 (11, 0.0) 0.9485 (3.9, 0.0)
1PN 0.8453 (59, 0.1) 0.8944 (45, 10) 0.8088 (52, 0.0) 0.8627 (37, 0.2)
1.5PN 0.9535 (3.9, 0.3) 0.9735 (22, 29)
2PN 0.9846 (0.1, 0.6) 0.9757 (0.7, 0.1)
2.5PN 0.8803 (9.4, 0.1) 0.9412 (35, 35)
3PN 0.9838 (1.4, 0.0) 0.9751 (1.2, 0.1)
3.5PN 0.9832 (1.3, 0.0) 0.9751 (1.2, 0.1)
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(10M�; 10M�) and (1:4M�; 1:4M�) binaries, respectively,
when restricting to only the inspiral phase. Even though the
2PN standard adiabatic approximants produce the required
overlaps in the case of the (10M�; 10M�) binary, in the real
physical case of BH-BH binaries the inspiral family would
not be adequate and must be supplemented by the plunge
part of waveform as first discussed in [6,33] and later in
[37,39]. A discussion of plunge requires a 3PN description
of dynamics so that the 2PN templates are no longer
adequate.
044029
D. Comparable mass results beyond the adiabatic
approximation

Finally, for the comparable mass case, non-adiabatic
waveforms were generated in the Lagrangian formalism,
using the complete equations Eq. (3.1), (3.2), (3.3), (3.4),
(3.5), (3.6), and (3.7).

Tables XIV and XV show the effectualness and faithful-
ness of the standard and complete non-adiabatic
Lagrangian waveforms for the initial LIGO detector. The
-18



TABLE XV. Faithfulness of the Lagrangian templates in the
comparable mass case for the initial LIGO noise spectrum.

(1:4M�; 1:4M�) (10M�; 10M�)
Order (n) S C S C

0PN 0.0717 0.0658 0.6689 0.3146
1PN 0.0810 0.0771 0.7380 0.6568

TABLE XIV. Effectualness of the Lagrangian templates in the comparable mass case for the
initial LIGO noise spectrum. Percentage biases &m and & in determining parameters m and 
are given in brackets.

(1:4M�; 1:4M�) (10M�; 10M�)
Order (n) S C S C

0PN 0.9282 (27, 1.6) 0.5848 (32, 3.6) 0.8533 (14, 2.5) 0.9433 (35, 8.9)
1PN 0.5472 (22, 1.3) 0.6439 (24, 3.1) 0.8137 (3.6, 0.2) 0.9329 (11, 7.4)
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results are more mixed in this case than for the test mass
case. For the 0PN order, for the NS-NS binary, the standard
non-adiabatic approach seems to be more effectual and
faithful than its complete non-adiabatic counterpart.
However, in the BH-BH case, the complete non-adiabatic
seems to be more effectual, but less faithful. At the 1PN
order, the effectualness is always higher for the complete
non-adiabatic case, but faithfulness is always lower. It is
interesting to note that the effectualness trends shown by
the adiabatic and non-adiabatic approximants are the same
at orders 0PN and 1PN. However, further work will be
necessary to make very strong statements in this case.
V. SUMMARY AND CONCLUSION

The standard adiabatic approximation to the phasing of
gravitational waves from inspiralling compact binaries is
based on the post-Newtonian expansions of the binding
energy and gravitational wave flux both truncated at the
same relative post-Newtonian order. To go beyond the
adiabatic approximation one must view the problem as
the dynamics of a binary under conservative relativistic
forces and gravitation radiation damping. In this viewpoint
the standard approximation at leading order is equivalent to
considering the 0PN and 2.5PN terms in the acceleration
and neglecting the intermediate 1PN and 2PN terms. A
complete treatment of the acceleration at leading order
should include all PN terms up to 2.5PN. These define
the standard and complete non-adiabatic approximants,
respectively. A new post-Newtonian complete adiabatic
approximant based on energy and flux functions is pro-
posed. At the leading order it uses the 2PN energy function
rather than the 0PN one in the standard approximation so
that heuristically, it does not miss any intermediate post-
Newtonian terms in the acceleration. We have evaluated
044029
the performance of the standard adiabatic vis-a-vis com-
plete adiabatic approximants, in terms of their effectual-
ness (i.e., larger overlaps with the exact signal) and
faithfulness (i.e., smaller bias in estimation of parameters).
We restricted our study only to the inspiral part of the
signal neglecting the plunge and quasi-normal mode ring-
ing phases of the binary [6,33,37–40]. We have studied the
problem both for the white-noise spectrum and initial
LIGO noise spectrum.

The main result of this study is that the conservative
corrections to the dynamics of a binary that are usually
neglected in the standard treatment of the phasing formula
are rather important at low PN orders. At the low PN
orders, they lead to significant improvement in the overlaps
between the approximate template and the exact wave-
form. In both the white-noise and initial LIGO cases we
found that at low (< 3PN) PN orders the effectualness of
the approximants significantly improves in the complete
adiabatic approximation. However, standard adiabatic ap-
proximants of order � 3PN are nearly as good as the
complete adiabatic approximants for the construction of
effectual templates.

In the white-noise case, the faithfulness of both the
approximants fluctuates as we go from one PN order to
the next and is generally much smaller than our target value
of 0.965. The fluctuation continues all the way up to 5PN
order probably reflecting the oscillatory approach of the
flux function to the exact flux function with increasing PN
order. Poor faithfulness also means that the parameters
extracted using these approximants will be biased. It is
again interesting to note that complete adiabatic approx-
imants are generally more faithful than the standard adia-
batic approximants. For the initial LIGO noise case on the
other hand, the faithfulness of the complete adiabatic
approximants is vastly better at all orders.

To the extent possible, we also tried to investigate
this problem in the case of comparable mass binaries by
studying the overlaps of all the approximants with a
fiducial exact waveform using initial LIGO noise spec-
trum. It is shown that, provided we have a T-approximant
of the flux function of order � 1:5PN, the standard adia-
batic approximation provides a good lower bound to the
complete adiabatic approximation for the construction of
both effectual and faithful templates. This result is in
contrast with the test mass case where we found that
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the complete adiabatic approximation brings about signifi-
cant improvement in effectualness up to 2.5PN order
and significant improvement in faithfulness at all orders.
To achieve the target sensitivity of 0.965 in effectualness,
standard adiabatic approximants of order 2PN and 3PN are
required for the (10M�; 10M�) and (1:4M�; 1:4M�)
binaries, respectively. Whether the complete adiabatic
approximant achieves this at an earlier PN order is an
interesting question. It is worth stressing that this result
is relevant only for the family of inspiral waveforms. In
the real physical case of BH-BH binaries the inspiral
family would not be adequate and must be supplemented
by the plunge part of waveform as first discussed in [6,33]
and later in [37,39]. A discussion of plunge requires a 3PN
description of dynamics so that the 2PN templates are
no longer adequate. This is an example of the second
variety of questions one can study in this area referred to
in our introduction related to whether a template family
indeed represents the GWs from a specific astrophysical
system.

We have also constructed both standard and complete
non-adiabatic approximants using the Lagrangian models
in Ref. [37]. However, we were limited in this investigation
because of two reasons: Firstly, the Lagrangian models are
available only up to 3.5PN order, and higher-order PN
accelerations are as yet unavailable which makes it impos-
sible to calculate the complete non-adiabatic approximants
of order >1PN. Secondly, the only exact waveform we
have has, however, been constructed only in the adiabatic
approximation. So we are unable to make strong state-
ments of general trends and view this effort only as a first
step towards a more thorough investigation. From the non-
adiabatic models studied, the conclusion one can draw is
that while complete non-adiabatic approximation improves
the effectualness, it results in a decrease in faithfulness.

There is a limitation to our approach which we should
point out: complete adiabatic models can be very well
tested in the test mass where both approximate and exact
expressions are available for the various quantities.
However, complete models cannot be worked out to high
orders in the comparable mass case since they need the
044029
energy function to be computed to 2.5PN order greater than
the flux and currently the energy function is only known to
3PN accuracy. Also, due to the lack of an exact waveform,
one is constrained to depend upon some fiducial exact
waveform constructed from the approximants themselves.
Though in the present paper we have used the new approx-
imants to construct waveform templates, one can envisage
applications to discuss the dynamics of the binary using
numerical integration of the equations of motion.

During the course of this study, we also attempted to
assess the relative importance of improving the accuracy of
the energy function and the flux function by systematically
studying the approach of the adiabatic PN templates con-
structed with different orders of the energy and the flux
functions to the exact waveforms. From the study of test
mass templates we also conclude that, provided the com-
parable mass case is qualitatively similar to the test mass
case, neither the improvement of the accuracy of energy
function from 3PN to 4PN nor the improvement of the
accuracy of flux function from 3.5PN to 4PN will result in a
significant improvement in effectualness in the comparable
mass case.
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