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I. INTRODUCTION

Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation
was originally formulated in the context of 2d topological
field theory [1,2]. Being a consequence of specific recur-
sion relations for correlation functions which underlie a 2d
topological model [1], the WDVV equation can be under-
stood as providing a ring structure for local observables of
a perturbed topological theory [2,3]. As within the topo-
logical framework the identity operator is physical, one
coordinate in a parameter space of a perturbed topological
model plays a distinguished role. In particular, some of the
WDVV coefficients are identified with the two-point cor-
relator on a sphere, and the latter is assumed to be a
constant nondegenerate matrix (a metric on a physical
Hilbert space) [2,3]. A very attractive link between the
WDVVequation and differential geometry was established
in Ref. [4] where it was demonstrated that locally any
solution of the WDVV equation defines in the domain the
structure of a Frobenius manifold and vice versa.

A generalization of the WDVV equation which treats all
the coordinates on equal footing was proposed in Ref. [5]
(see also Ref. [6]). The corresponding solution proved to be
applicable to Seiberg-Witten theory where it was inter-
preted as the prepotential entering the low-energy effective
action of N � 2 supersymmetric Yang-Mills theory [5].

The purpose of the present paper is to discuss one more
physical application of the WDVV equation. As will be
demonstrated below, in a slightly modified form it under-
lies the construction of N � 4 superconformal multi–par-
ticle models in one dimension, including a N � 4
superconformal Calogero model.

Notice also that there is an extensive literature on N � 4
supersymmetric mechanics in various dimensions. So far,
the attention focused mainly on building appropriate
Lagrangian and Hamiltonian models of supersymmetric
mechanics and studying partial supersymmetry breaking.
For approaches similar to ours see Refs. [7,8], which report
on N � 4 supersymmetric mechanics in arbitrary D and
also contain an extensive list of references onN � 4 super-
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symmetric mechanics. In [9] N � 4; D � 2 supersymmet-
ric mechanics described by chiral superfield actions was
considered. Geometric models of N � 4 supersymmetric
mechanics with �2dj2d�C dimensional phase superspace
have been proposed in [10]. These models reduce to the
one considered in [9], in the simplest case of d � 1 and no
central charges.

The interest in N � 4 superconformal multi-particle
mechanics is due in part to a potential application in black
hole physics. It was conjectured by Gibbons and Townsend
[11] that the large n limit of a N � 4 superconformal
Calogero model might be relevant for a microscopic de-
scription of the extreme Reissner-Nordström black hole, at
least near the horizon. The conjecture originated from the
fact that the near horizon geometry in this case has the
isometry group SU�1; 1j2� which includes the conformal
group SO�1; 2� as a subgroup. Taking into account that the
extreme Reissner-Nordström black hole can be viewed as
the configuration of four intersecting supergravity
D3-branes wrapped on T6 [12,13] and assuming that
each of the supergravity D3-branes can be interpreted as
a large number of coinciding microscopic D3-branes [11],
one comes to the conjecture that there exists a
SU�1; 1j2�-invariant mechanics governing the fluctuation
of the branes in the region of intersection [11]. Being
conformally invariant, the Calogero model seems to be a
good candidate for the bosonic limit of such a N � 4
superconformal multiparticle mechanics.

Motivated by these issues, in the next section we con-
struct a set of generators yielding a representation of
su�1; 1j2� superalgebra on a phase space which includes
n copies of that corresponding to a conventional N � 4
superconformal particle [14]. These are designed to de-
scribe symmetries of a multiparticle mechanics in one
dimension. As the Hamiltonian is part of the superalgebra,
the dynamics is automatically taken into account. One
reveals a central charge in the superalgebra which shows
up in the Poisson brackets of the supersymmetry charges
with the superconformal ones.

The explicit form of the generators involves two scalar
functions V and F, which depend on position of particles
only. The first of them specifies a potential of the problem,
while the second function controls higher order fermionic
-1  2005 The American Physical Society
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contributions into the Hamiltonian. The structure relations
of N � 4 superconformal algebra force V and F to obey a
system of partial differential equations. One of them states
that the vector @iV is covariantly constant with respect to
the ‘‘connection’’ @i@j@kF � Wijk. Then the WDVVequa-
tion, WijkWkpl � WljkWkpi, arises as the integrability con-
dition. Notice that, similarly to the case of topological
theories, the metric entering the equation is flat (the indices
are contracted with the use of the ordinary Euclidean
metric). However, there is no distinguished coordinate
around and, as thus, no identification of some of the
WDVV coefficients with the metric hold.

As we discuss in more detail below, the arising system of
partial differential equations can be treated in two ways.
One can take a particular solution of the WDVV equation
(the prepotential F) and then construct a N � 4 super-
conformal multiparticle model associated to it (the prepo-
tential V). Alternatively, one can start with a bosonic
conformally invariant multiparticle mechanics and then
look for a solution of the WDVVequation that will provide
a N � 4 superconformal extension.

Motivated by the search for a N � 4 superconformal
Calogero model, in this paper we follow the second line. In
Sec. III we take V which reproduces the Calogero potential
and then move on to fix F. As will be shown below, in
general, the solution is not unique. We treat in detail the
two-body problem and show that at the classical level there
are two families of N � 4 superconformal models which
are parameterized by the value of the central charge in the
su�1; 1j2� superalgebra. We present also partial results on
the three-body problem. In particular, the nonlinear
WDVV equations are reduced to a system of four linear
partial differential equations of the Euler type. In Sec. IV
we summarize our results and discuss possible further
developments.
II. ALGEBRAIC STRUCTURE

First of all, let us fix the notation. Working in phase
space, different particles are labeled by the index i �
1; . . . ; n attached to a pair �x; p�. These variables obey
the conventional Poisson bracket

fxi; pjg � �ij: (1)

Although we are primarily concerned with the construction
of N � 4 superconformal many-body models, it seems
natural to require that the conventional N � 4 supercon-
formal mechanics (see Ref. [14] for details) be reproduced
in the one-particle case. In particular, this suggests the
correct way to introduce fermions. One assigns a SU�2�
spinor  �, � � 1; 2 and its complex conjugate to each
particle. Our convention for the conjugation reads

� i��� � � i�: (2)
044023
In what follows we use the bracket

f i�; � 
j�g � 	i����ij (3)

and sum up over repeated indices.

A. R-symmetry generators

In order to construct a representation of su�1; 1j2� super-
algebra on the phase space described above, it proves to be
instructive to start with R-symmetry generators. For the
case at hand, they form su�2� subalgebra. Given the latter
and half of the supercharges, one can consistently fix the
other half. The same applies to superconformal generators.
Besides, having chosen the su�2� currents, one could also
specify the dependence of the odd generators on the fer-
mionic coordinates.

In this paper we adhere to the simplest representation of
su�2� which can be constructed out of the fermionic vari-
ables alone

J� � 	i i1 
i
2; J	 � 	i � i1 � i2;

J3 �
1

2
� i1 � 

i1 �  i2 � 
i2�:

(4)

These generators obey the standard algebra

fJ�; J	g � 	2iJ3; fJ�; J3g � iJ�; fJ	; J3g � 	iJ	:

(5)

Notice that J3 measures the U�1� charge of the fermionic
coordinates

f i�; J3g �
i
2
 i�; f � i�; J3g � 	

i
2
� i�: (6)

It is worth mentioning also that J� and J	 are complex
conjugates of each other, while J3 is a self-conjugate
generator.

B. Supersymmetry charges

We now proceed to the construction of four supersym-
metry charges G1, G2, �G1, �G2. Taking into account the
brackets

fG1; J�g � 0; fG1; J	g � �G2; fG1; J3g �
i
2
G1;

fG2; J�g � 0; fG2; J	g � 	 �G1; fG2; J3g �
i
2
G2;

(7)

which make part of N � 4 superconformal algebra in one
dimension, and the conjugation properties

�G1�
� � �G1; �G2�

� � �G2; (8)

one concludes that it is instructive to start with an Ansatz
for G1. Then, the rest can be fixed with the use of Eq. (7),
the N � 4 supersymmetry algebra

fG�; �G�g � 	2iH��� (9)
-2
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and the conjugation relations. The function H appearing in
the r.h.s. defines the Hamiltonian of a multiparticle system
at which we aim.

As it was mentioned earlier, the one-particle case should
reproduce the conventional N � 4 superconformal me-
chanics. Since the supersymmetry generators of the latter
are cubic in the fermionic coordinates, for a generic multi-
particle model it seems reasonable to terminate the expan-
sion in fermions at that order. Then, a straightforward
calculation yields ( �G1 and �G2 follow by hermitian conju-
gation)

G1 � 
pi � i@iV�x�� i1 � 
pi 	 i@iV�x�� i2

	 iWijk�x� i1 
j
2
� k1 � iWijk�x� i1 

j
2
� k2;

G2 � 
pi � i@iV�x�� i1 	 
pi 	 i@iV�x�� i2

� iWijk�x� i1 
j
2
� k1 � iWijk�x� i1 

j
2
� k2;

(10)

where the coefficient functions V�x� and Wijk�x� obey the
following restrictions:

@i@jV 	Wijk@kV � 0; (11)

Wijk � @i@j@kF; WijkWkpl � WljkWkpi; (12)

where F is a scalar. Surprisingly enough, in the last line one
recognizes the Witten-Dijkgraaf-Verlinde-Verlinde equa-
tion which underlies a 2d topological field theory [1,2].

In the context of the Calogero model considerations like
the above ones were presented in Ref. [15], where a similar
set of equations was derived. However, only partial solu-
tions for V and F were examined which led the author to
conclude that there was no a SU�1; 1j2�-invariant extension
of the Calogero model for generic values of coupling
constant. Below we give a more rigorous procedure of
solving these equations which relies upon general solutions
for V and F.

According to Eq. (9) the Hamiltonian, which governs the
dynamics of the model, has the form

H � pipi � @iV�x�@iV�x� 	 2@i@jV�x� i1 � 
j1

� 2@i@jV�x� i2 � 
j2 � 2@iWjkl�x� i1 

j
2
� k1 � l2: (13)

Thus, given a solution of the WDVV Eq. (12), one can
construct a N � 4 supersymmetric multiparticle mechan-
ics associated to it. The bosonic part of the corresponding
potential is of the form @iV@iV. It should be mentioned that
Eqs. (11) and (12) hold also if one examines a smaller N �
2 subalgebra.

The inverse problem is also worthy to consider. One can
start with a model governed by a potential U�x1; . . . ; xn�
and set

U�x� � @iV�x�@iV�x�; (14)

which will fix V. In general, the corresponding solution is
not unique. Then, solving the system of partial differential
Eqs. (11) and (12) for Wijk will provide a N � 4 super-
044023
symmetric extension of the model we started with. Below,
we examine this possibility for the Calogero model.

Curiously enough, Eqs. (11) and (12) can be restated as
the condition of the existence of a vector field Vi�x�
covariantly constant with respect to the connection Wijk �
@i@j@kF

D iVj � @iVj 	WijkVk � 0: (15)

AsWijk is completely symmetric, the previous line implies

@iVj 	 @jVi � 0 ���! Vi � @iV; (16)

for some scalar V, while the WDVV equation comes about
as the integrability condition


Di;Dj�Vk � 0: (17)

It would be interesting to find a geometrical interpretation
behind these equations. Because the problem is formulated
in a flat space, we anticipate that a geometric description, if
any, is related to symplectic structures on the manifold (in
this respect see Refs. [16,17]).

Concluding this section we notice that the su�2� gener-
ators displayed in Eq. (4) commute with the Hamiltonian
(13). Conservation of the supersymmetry charges follows
from Eq. (9) and Jacobi identities.

C. Superconformal generators

Now let us see what restrictions on the form of the
functions V and Wijk follow if one wishes to make the
model superconformal. Guided by the experience with the
conformal mechanics [18], one takes the generators of
dilatations and special conformal transformations in the
form

D � tH	
1

2
xipi; K � t2H 	 txipi �

1

2
xixi: (18)

Being combined with the Hamiltonian they obey the con-
formal algebra in one dimension

fH;Dg � H; fH;Kg � 2D; fD;Kg � K; (19)

provided

xi@iV � C1; xiWijk � C2�
jk; (20)

where C1 and C2 are arbitrary real constants.
At this stage only superconformal generators, which in

what follows we denote by S� and �S�, are missing. Taking
into account that the structure relations of su�1; 1j2� super-
algebra involve the bracket

fK;G�g � 	S�; (21)

these can be consistently specified
-3
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S1 � tG1 	
1

2
xi i1 	

1

2
xi i2;

S2 � tG2 	
1

2
xi i1 �

1

2
xi i2:

(22)

The generators �S1 and �S2 follow by hermitian conjugation.
Finally, it remains to check that the entire algebra closes.

This proves to be the case provided

S. BELLUCCI, A. GALAJINSKY, AND E. LATINI
044023
C2 � 	1: (23)

The last constraint follows immediately if one considers
Poisson brackets of the superconformal generators with the
supersymmetry ones. The explicit verification of the alge-
bra turns out to be rather tedious. The use of Jacobi
identities considerably simplifies the calculation. In the
basis chosen one finds (vanishing brackets are omitted)
fD;G�g � 	
1

2
G�; fD; S�g �

1

2
S�; fH; S�g � G�; fS�; �S

�g � 	2iK���;

fS1; J	g � �S2; fS1; J3g �
i
2
S1; fS2; J	g � 	 �S1; fS2; J3g �

i
2
S2;

fG1; S2g � 	2iJ�; fG1; �S1g � 	2iD� 2J3; fG1; �S2g � Z;

fG2; S1g � 2iJ�; fG2; �S1g � Z; fG2; �S2g � 	2iD� 2J3;

(24)
plus their complex conjugates. Notice the appearance of
the central charge

Z � 	C1 (25)

with C1 from Eq. (20), in the brackets involving the super-
symmetry generators and the superconformal ones.

Let us recapitulate. On a phase space spanned by 2n real
bosons �xi; pi� and 4n real fermions � i�; � i��, i �
1; . . . ; n, � � 1; 2, one can build a representation of N �
4 superconformal algebra. The corresponding generators
contain two scalar functions V and F which obey the
system of partial differential equations

xi@iV � C1; @i@jV 	Wijk@kV � 0; (26)

xiWijk � �jk � 0; WijkWkpl � WljkWkpi; (27)

whereWijk � @i@j@kF and C1 is an arbitrary constant. The
bosonic part of the Hamiltonian which governs the dynam-
ics of the resulting N=4 superconformal many-body model
reads

HBose � pipi � @iV@iV: (28)

It is worth mentioning that no contradiction results from
contracting Eqs. (26) and (27) with xi, @iV, or Wijk. This
provides a naive compatibility check for the system.

III. N � 4 SUPERCONFORMAL
CALOGERO MODEL

As it was mentioned earlier, there are two ways to treat
the system (26) and (27). One can start with a particular
solution of the WDVVequation and then construct aN � 4
superconformal multi-particle model associated to it.
Alternatively, one can take a specific bosonic conformally
invariant multi-particle mechanics and then search for a
solution of the WDVV equation that will provide a N � 4
superconformal extension of the theory. For the rest of the
paper we take the second path and consider the Calogero
model which is governed by the Hamiltonian [19]

H � pipi �
X
i<j

g2

�xi 	 xj�2
: (29)

Here g is a dimensionless coupling constant. It was known
for a long time that the Calogero model exhibits the
conformal invariance [20,21]. Yet a consistent N � 4
superconformal extension has not been constructed. For
earlier work on this subject, see Refs. [15,22–24].

A. One-particle case

For the one-particle case the system (26) and (27) re-
duces to ordinary differential equations which are easily
integrated

V � g lnjxj � C0; W � 	
1

x
;

F � 	
1

2
x2 lnjxj;

(30)

withC0 a constant. Notice that by definition F is defined up
to a polynomial quadratic in x. In what follows we dis-
regard those terms as they do not contribute to W. The
WDVV equation is trivial. The corresponding N � 4
superconformal mechanics coincides with that constructed
in Ref. [14].

B. Two-body problem

Let us start with the linear inhomogeneous partial dif-
ferential equation xi@iV � C1, i � 1; 2. Making the sub-
stitution V � C1 lnjx1j � ~V one reduces it to the
homogeneous equation xi@i ~V � 0 which is equivalent to
the system of ordinary differential equations dx

1

x1
� dx2

x2
. The

only integral of the latter, x
1

x2
� const, provides the general

solution ~V � ��x
1

x2
� for the former, with � being an arbi-
-4
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trary function. As a result, for V one has

V � C1 lnjx1j ��
�
x1

x2

�
: (31)

We next wonder what � corresponds to the Calogero
potential. This information is encoded in the condition

�@1V�2 � �@2V�2 �
g2

�x1 	 x2�2
; (32)

which causes � to obey the ordinary differential equation

�1� y2�y2
�
d�
dy

�
2
� 2yC1

d�
dy

� C2
1 	

g2y2

�y	 1�2
� 0;

(33)

where we denoted x1

x2 � y. This is a quadratic algebraic
equation with respect to the derivative which means that
there are two distinct possibilities for �. The solutions
explicitly depend on the constant C1 and acquire the sim-
plest form for the following choice:�

C1

g

�
2
�

1

2
: (34)

For this particular value one finds

�1 � C1 ln

��������1	 1

y

���������const; (35)

and

�2 � C1 ln

�������� y2 � 1

y�y	 1�

���������const: (36)

Thus, given the two-body Calogero model, the prepo-
tential V generating a N � 4 superconformal extension is
not unique. In fact, there are two families of models which
are parameterized by the central charge C1. For example,
for the particular value of C1 displayed in Eq. (34) above
one gets either

V1 � C1 lnjx1 	 x2j � const; (37)

which is of common use in the literature or

V2 � C1 ln

���������x
1�2 � �x2�2

x1 	 x2

���������const; (38)

which is an alternative. When constructing a N � 4 super-
conformal extension of the two-body problem both options
are to be considered on equal footing. Worth mentioning
also is that both solutions exhibit cyclic symmetry.

Having fixed V, let us discuss the equations which
determine F. Taking into account that in the context of
our problem F is defined up to a second order polynomial
in the variable x, one can bring the first equation in (27) to
the form

xi@iF	 2F�
xixi

2
� 0; (39)
044023
which is an analog of the scaling law for the free energy of
a perturbed topological theory (see Ref. [3] for more de-
tails). This is an inhomogeneous partial differential equa-
tion which is readily integrated by conventional means
(see, e.g., Ref. [25]). The general solution reads

F � 	
1

2
xixi lnjx1j �

1

2
�x1�2�

�
x1

x2

�
; (40)

where � is an arbitrary function of the ratio x1

x2 .
With F at hand one can calculate the WDVV coeffi-

cients. These take the most readable form if one introduces
into consideration a subsidiary function

��y� �
1

2
y3
d3�

dy3
� 3y2

d2�

dy2
� 3y

d�
dy

; (41)

where as above we denoted x1

x2
� y. Making use of the latter

one derives the following expressions for Wijk:

W111 � 	
1

x1

�
1�

1

y2
	 ��y�

�
;

W112 �
1

x1

�
1

y
	 y��y�

�
;

W122 � 	
1

x1

1	 y2��y��;

W222 � 	
1

x1
y3��y�:

(42)

The convenience of such a representation becomes evident
if one turns to analyze the WDVV equation. A simple
calculation shows that the only nontrivial condition for
the two-particle case

W11kWk22 � W12kWk12; (43)

is identically satisfied without imposing any restriction on
the form of the function ��y�.

Thus, it remains to solve the second equation in (26)
which involves both V and F. No special effort is needed to
demonstrate that three components forming the system are
functionally dependent as there are two identities between
them. This statement is easily verified with the use of the
condition xi@iV � C1. The only independent equation—
the ”22”-component-allows one to express � in terms of V
algebraically

� �
@1V � x1@2@2V

y2�@1V 	 y@2V�
: (44)

Taking into account the explicit form of � from Eq. (41)
one finally arrives at the inhomogeneous Euler equation
which completely determines � and, as thus, F.

As we have seen above, given the value of C1, there are
two prepotentials V1 and V2 which reproduce the two–
particle Calogero model in the bosonic limit. As an ex-
ample, consider V1 and V2 displayed in Eqs. (37) and (38)
above. For this particular choice of C1 one readily gets
-5
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�1�y� �
1

y2�1	 y2�
; (45)

and

�2�y� �
1

y2�1	 y2�
�

4y�1	 y�

�1� y��1� y2�2
; (46)

respectively. In view of Eq. (42) the WDVV coefficients
can be calculated by purely algebraic means. Thus, for the
two-body problem actually there is no need to know the
explicit form of the prepotential F.

C. Three-body problem

In the preceding section we have constructed a N � 4
superconformal extension for the two-particle Calogero
model following the recipe proposed in Sec. II. However,
that the extension exists might have been expected on
general grounds. Indeed, employing the canonical trans-
formation

�x1; p1� ���! �
1���
2

p �x1 	 x2�;
1���
2

p �p1 	 p2�

�
;

�x2; p2� ���! �
1���
2

p �x1 � x2�;
1���
2

p �p1 � p2�

�
;

(47)

one brings the Hamiltonian of the two–body Calogero
model to the sum of a free particle (the center of mass)
and the conventional conformal mechanics [18], both ad-
mitting a N � 4 superconformal extension. Thus, the most
interesting situation occurs when the number of particles is
greater than two. In this section we discuss the three-body
problem.

For the case of three particles the system of ordinary
differential equations corresponding to the homogeneous

S. BELLUCCI, A. GALAJINSKY, AND E. LATINI
044023
equation xi@i ~V � 0 has two independent integrals

x1

x2
� const;

x1

x3
� const0: (48)

As a result, the general solution of the first equation in (26)
reads

V � C1 lnjx
1j ���y; z�; (49)

where � is an arbitrary function of two variables y � x1

x2

and z � x1

x3
. In order to pick out � which corresponds to the

Calogero model one has to impose the constraint

�@1V�2 � �@2V�2 � �@3V�2 �
g2

�x1 	 x2�2
�

g2

�x1 	 x3�2

�
g2

�x2 	 x3�2
; (50)

which implies a partial differential equation for �. Like the
two-body case there are many solutions to the latter equa-
tion. The simplest one reads

V �
C1

3
�lnjx1 	 x2j � lnjx1 	 x3j � lnjx2 	 x3j�; (51)

where �C1�
2 � �3g�2=2.

In much the same way the general solution of Eq. (39) is
found to be of the form

F � 	
1

2
xixi lnjx1j �

1

2
�x1�2��y; z�; (52)

where ��y; z� is an arbitrary function. Triple differentiation
of F then gives ten WDVV coefficients
W111 � 	
1

x1

�
1�

1

y2
�

1

z2
	�1 	�2 	 3�3 	 3�4

�
;

W112 �
1

x1

�
1

y
	 y�1 	 y�3 	 2y�4

�
; W113 �

1

x1

�
1

z
	 z�2 	 2z�3 	 z�4

�
;

W122 � 	
1

x1
�1	 y2�1 	 y2�4�; W123 �

1

x1
yz��3 � �4�;

W133 � 	
1

x1
�1	 z2�2 	 z2�3�; W222 � 	

1

x1
y3�1; W223 � 	

1

x1
zy2�4;

W233 � 	
1

x1
yz2�3; W333 � 	

1

x1
z3�2;

(53)
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which are conveniently expressed in terms of four subsid-
iary functions

�1 �
1

2
y3
@3�

@y3
� 3y2

@2�

@y2
� 3y

@�
@y

;

�2 �
1

2
z3
@3�

@z3
� 3z2

@2�

@z2
� 3z

@�
@z
;

�3 �
1

2
yz2

@3�

@y@z2
� yz

@2�
@y@z

;

�4 �
1

2
zy2

@3�

@z@y2
� yz

@2�
@y@z

:

(54)

As we see from Eq. (53) the first six functions can be
expressed in terms of the latter four. This observation
simplifies an analysis of the WDVV equations consider-
ably. Actually, it is a matter of straightforward calculation
to verify that out of six WDVVequations which are present
for the case under consideration

W11kWk22 � W12kWk12; W11kWk23 � W12kWk13;

W11kWk33 � W13kWk13; W12kWk23 � W13kWk22;

W12kWk33 � W13kWk23; W22kWk33 � W23kWk23;
(55)

only the last one is independent while the first five equa-
tions contain just the same information.

Thus, the only constraint on the model coming on the
WDVV side reads

W22kWk33 � W23kWk23; (56)

which can be viewed as an algebraic equation involving
four subsidiary functions �1, �2, �3, �4.

As the last step we analyze the second equation in (26).
Similar to the two-body problem one can demonstrate that
among six relations available for this case only half,
namely, the ‘‘22’’–, ‘‘23’’–, and ‘‘33’’–components, are
independent. These are simple algebraic equations which
allow one to express �1, �2 and �3 in terms of V and �4.
Substituting the resulting expressions in Eq. (56) one fi-
nally gets a quadratic algebraic equation which completely
determines �4 in terms of V.

Thus, similar to the two-body case, all the subsidiary
functions are fixed by purely algebraic means and Eqs. (54)
become a system of four linear partial differential equa-
tions for the function ��y; z�. In order to integrate this
system, one can proceed with the first equation which is
of the Euler type. The corresponding solution will fix the
dependence of � on y and will involve three arbitrary
functions of z. Their explicit form will be determined
from three equations remaining in (54).

When constructing an explicit solution, it should be
remembered that there are nontrivial integrability condi-
tions associated with the system (54). For example, from
Eq. (54) one readily gets the following restrictions:
044023
z
@�1

@z
	 y

@�4

@y
	 2�4 � 0;

y
@�2

@y
	 z

@�3

@z
	 2�3 � 0;

y
@�3

@y
	 z

@�4

@z
��3 	�4 � 0:

(57)

As was explained above, all the subsidiary functions are
expressed in terms of V. So, the integrability conditions
(57) will be either identically satisfied, or they will give
rise to a nontrivial additional constraint on the form of the
prepotential V. A closed expression for such a constraint is
still to be found.

Thus, we have demonstrated that for the three-body
Calogero model the problem of constructing a N � 4
superconformal extension reduces to the integration of
four linear partial differential Eqs. (54).
IV. CONCLUSION

To summarize, in this paper we have constructed a set of
generators which comprise symmetries of a multi-particle
mechanics in one dimension and form a N � 4 supercon-
formal algebra. The WDVV equation was shown to play
the central role in this framework. We treated in detail the
two-body N � 4 superconformal Calogero model and pre-
sented some partial results on the three-body problem.

Since the connection between the WDVV equation and
N � 4 supeconformal multiparticle mechanics seems quite
intriguing, a few related problems deserve further inves-
tigation. First of all, it would be interesting to find a
topological field theory interpretation of a generalization
of the WDVV equation considered in this paper. Then, as
mentioned above, the WDVV equation may be viewed as
the integrability condition for the existence of a vector field
covariantly constant with respect to the connection Wijk.
The geometry behind this equation remains to be clarified.

When considering the Calogero model in Sec. III, we
found that the corresponding N � 4 superconformal ex-
tension is not unique. A similar observation for a N � 2
Calogero model was recently made in Ref. [26]. It would
be interesting to investigate whether the different exten-
sions are equivalent or related by a kind of a duality
transformation. As we have seen above, the arbitrariness
is controlled by the value of the central charge in the
su�1; 1j2� superalgebra. Then, an interesting question is
whether the central charge is fixed upon quantization. It
would be also interesting to construct multiparticle gener-
alizations of the N � 8 supersymmetric mechanics models
constructed recently [27].

Finally, N � 4 superconformal algebra examined in this
work can be consistently reduced to N � 2 superconfor-
mal algebra. Then, one may wonder how this reduction is
related to N � 2 superconformal Calogero model con-
structed by Freedman and Mende [28].
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