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The conservative dynamics of two point masses given in harmonic coordinates up to the third post-
Newtonian order is treated within the framework of constrained canonical dynamics. A representation of
the approximate Poincaré algebra is constructed with the aid of Dirac brackets. Uniqueness of the
generators of the Poincaré group or the integrals of motion is achieved by imposing their action on
the point mass coordinates to be identical with that of the usual infinitesimal Poincaré transformations.
The second post-Coulombian approximation to the dynamics of two point charges as predicted by
Feynman-Wheeler electrodynamics in Lorentz gauge is treated similarly.
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I. INTRODUCTION

High post-Newtonian accurate description of general
relativistic dynamics of compact binaries in harmonic
gauge has many applications in relativistic astrophysics,
notably in connection with binary pulsars and future gravi-
tational wave astronomy, see e.g. [1–3]. Inspiralling com-
pact binaries are even the most promising sources to be
detected by ground-based interferometers such as LIGO,
VIRGO, and GEO600. The corresponding higher order
post-Coulombian approximation offers a simpler analogue
to post-Newtonian dynamics relevant also on its own [4,5].

The approximate analytical dynamics of compact binary
systems in general relativity is most often treated in har-
monic coordinates (see [6] and references therein). Quite
recently the dynamics of binary point masses has been
completed to the third post-Newtonian (3pN) order [7–
13]. Hereby results derived by means of the canonical
formalism of Arnowitt, Deser, and Misner have been con-
firmed [14–20]. In approaches based on the use of har-
monic coordinates, the dynamics was first obtained under
the form of ordinary second order 3pN equations of motion
satisfied by the particle trajectories. The Lagrangian cor-
responding to the conservative part of the motion turns out
to be of higher order in the time derivatives of the point
mass coordinates [21]. This feature is shared by the
Lagrangian of Feynman-Wheeler electrodynamics in
Lorentz gauge derived by Kerner [22,23]. In both cases,
Euler-Lagrange equations, of third order or higher, admit a
wide class of solutions including physically irrelevant ones
that do not reduce to the Newtonian solution in the limit
where the speed of light c tends to infinity. This can be seen
directly from the number of independent initial data in-
cluding higher than first order time derivatives of the
position variable. When demanding the Newtonian limit,
it becomes possible to rederive the ordinary second order
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equations of motion by an iterative order reduction
procedure.

The higher order property of these Lagrangians actually
arises from the fact that the dynamics in harmonic coor-
dinates as well as in Lorentz gauge for electromagnetism
are approximately Poincaré invariant. Indeed, the so-called
no-interaction theorem by Martin and Sanz [24] states that
Lagrangians of point particles derived by means of a slow-
motion approximation from some classical field theory
must contain higher order derivatives from second order
level in the 1=c2 expansion, if approximate manifest
Poincaré invariance is maintained. For arbitrary approxi-
mately Poincaré invariant point-particle dynamics, higher
order derivatives must be contained in the Lagrangian only
from the third order in powers of 1=c2 [25]. It can also
be shown that, if exact Poincaré invariance of a system
with finitely many degrees of freedom is required,
(i) Lagrangians including interactions must depend on
time derivatives of infinite order [26], (ii) for point-particle
systems, the positions may not be chosen as canonical
coordinates in Hamiltonian formalism (which reflects the
time nonlocality due to retardation) [27–29].

For the approximate dynamics, appropriate contact
transformations lead to an ordinary Lagrangian but in a
nonharmonic grid [30] or in a non-Lorentzian gauge. The
transformed representation of the dynamics can be de-
scribed by means of an ordinary canonical formalism.
Another approach consists in constructing the canonical
formalism corresponding to the dynamics directly in the
original frame.

The original higher order Lagrangian is of singular type
because of the higher order derivatives occurring in
‘‘small’’ corrections, i.e., in terms of higher order in
powers of 1=c2. The Hessian is thus multiplied with
some positive power of 1=c2. Therefore, it is noninvertible
on R�1=c2�=�1=c2n�2�, the ring of real polynomials in 1=c2

modulo O�1=c2n�2� we are working on at the nth order
level of approximation. Indeed, in expressing the highest
order derivative as a function of the others, the Euler-
-1  2005 The American Physical Society
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Lagrange equations are multiplied with the inverse matrix
of the Hessian, so that, in particular, the Newtonian part is
multiplied with some power of c2 and the Newtonian
limit does not exist anymore. Independently from the
1=c2-power prefactor, what we shall call the ‘‘matrix
part’’ of the Hessian may be singular by itself, leading to
an additional singular structure.

The canonical formalism for singular Lagrangians goes
back to Dirac [31,32], as well as Anderson and Bergmann
[33]. The first canonical treatment of dynamics derived
from a slow-motion approximation of a classical relativis-
tic theory described by a singular Lagrangian of higher
order (in the time derivatives) is due to Jaen, Llosa, and
Molina [34]. Specializing on a class of approximate
Lagrangians of a certain structure in the 1=c2-power ex-
pansion and demanding an invertible matrix part of the
Hessian, they developed a method aimed at deriving an
explicit expression for the Hamiltonian as well as the Dirac
brackets. They applied their formalism to the 2pC dynam-
ics in Lorentz gauge. However, the resulting Hamiltonian
was not correct because of computational errors. The first
correct 2pC Hamiltonian is due to Damour and Schäfer
[35], their approach having been detailed in [30]. Later,
Saito, Sugano, Ohta, and Kimura proposed a method how
to treat general higher order singular Lagrangians in ca-
nonical formalism. They proved the equivalence of
Lagrangian and Hamiltonian formulations for singular
Lagrangians of higher order [36,37]. A similar analysis
has later been performed by Gràcia, Pons, and Román-Roy
in a geometrical framework [38]. The formalism given in
[36] was applied to a class of 2pN Lagrangians to which the
post-Newtonian Lagrangians in harmonic coordinates do
not belong. It also was used by Ohta and Kimura for
investigating aspects of 2pC Feynman-Wheeler dynamics
in Lorentz gauge [39]. Note that the approaches of articles
[34,36] are crucially different. The singularity arising from
the fact that we are working on the ring R�1=c2�=�1=c2n�2�
is indeed not considered in Ref. [36].

The aim of this paper is to formulate the canonical
formalism for the conservative part of 3pN dynamics in
harmonic coordinates as well as for 2pC Feynman-
Wheeler electrodynamics for two particles in Lorentz
gauge and to analyze the dynamics in this framework.
For the formulation, we use a similar method as the one
developed in Ref. [34] generalized to 3pN conservative
binary dynamics. For the first time we give the 3pN
Hamiltonian in harmonic coordinates, the corresponding
Dirac brackets, as well as a canonical representation of the
Poincaré algebra of the 3pN and 2pC dynamics.

The canonical description is always helpful for a better
understanding of the dynamics. It is an extremely elegant
tool to derive features such as symmetries and integrals of
motion. The latter quantities, computed in harmonic coor-
dinates at the 3pN order and specialized to the center of
mass frame [40], are useful for the description of inspiral-
044021
ling compact binaries relevant as sources of gravitational
waves. They allow the derivation of an analytic parametric
‘‘generalized quasi-Keplerian’’ solution to the 3pN accu-
rate conservative equations of motion for compact binaries
moving in eccentric orbits [41]. This is relevant, in par-
ticular, to construct post-Newtonian search templates for
the detection of gravitational waves or to compare the
numerical and post-Newtonian descriptions of such sys-
tems. Our integrals of motion prove to be consistent with
those computed by Andrade, Blanchet, and Faye [21] in
Lagrangian formalism, providing a powerful cross check
for the results.

Furthermore the inclusion of spin in post-Newtonian
binary dynamics using covariant spin supplementary con-
dition also results in a dynamics that is described by a
higher order singular Lagrangian or Hamiltonian when
staying in harmonic coordinates [42]. Especially, the in-
vestigation of its canonical description derived using the
methods in the present article will likely be useful for the
prediction of gravitational wave templates.

This article continues work initiated by Stachel and
Havas who derived in 1976 the Hamiltonians describing
a class of dynamics including the 1pN and 1pC ones and
who computed the integrals of motion corresponding to the
approximate Poincaré invariance [43]. They announced a
further article, where special interactions allowing the
choice of the spatial coordinates as canonical coordinates
were to be treated up to second order, but this article was
never published. We do not follow the program they had
initially designed but rather concentrate on physically
relevant interactions incompatible with the latter choice
of canonical coordinates.

The plan of the paper is as follows: In Sec. II, we outline
the general constrained Lagrangian formalism for
Lagrangians containing higher order time derivatives. We
also show how to derive a full-time stable set of Lagrangian
constraints not only for Lagrangians having a similar
structure as in [34], but also for cases where the matrix
part of the Hessian is not invertible. In Sec. III, we outline
the theory of the corresponding Hamiltonian formalism.
Sec. IV is dedicated to a short description of the Poincaré
algebra and its action on spatial coordinates. In Sec. V we
apply the preceding results to the 3pN dynamics of two
point masses, showing the explicit Poincaré invariance and
deriving the corresponding integrals of motion. The 2pC
Lagrangian of Feynman-Wheeler electrodynamics for two
charged point masses is treated similarly in Sec. VI.
Finally, in Sec. VII, we summarize and discuss our results.
II. HIGHER ORDER SINGULAR LAGRANGIAN
POINT MASS DYNAMICS

We start from the action integral of a higher order
Lagrangian L that does not depend explicitly on time. It
simply reads [44,45]
-2
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S �
Z t1

t0
dtL�q; q�1�; :::; q�n��; (1)

where q is a short notation for the set of f independent
variables fq�g, � 	 1; :::; f, and where q�i� denotes the set

fq�i�� g of their ith derivatives with respect to time t. The
highest order of time derivative appearing in L is denoted
by n. From the action principle �S 	 0, we draw the
generalized Euler-Lagrange equations,

@L
@q�



d
dt
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�
d2

dt2
@L

@q�2��

 . . .� �
1�n

dn

dtn
@L

@q�n��
	 0;

(2)

with � 	 1; . . . ; f, d=dt denoting the total time derivative.
By collecting the terms of the �th equation that do not
depend on q�2n� into a single function f� and isolating the
highest order derivatives q�2n�, we may rewrite Eq. (2) as

Xf
�	1

q�2n��
@2L

@q�n�� @q
�n�
�

� f��q; :::; q
�2n
1�� 	 0: (3)

This relation shows that the highest order time derivatives
always occur multiplied with the Hessian matrix

H�� 	
@2L

@q�n�� @q
�n�
�

; (4)

so that the Euler-Lagrange equations can be solved for q�2n�

as a function of the configuration space variables
q; :::; q�2n
1� if and only if the Hessian is invertible.

We now want to specialize to Lagrangians derived
within slow-motion approximation schemes of relativistic
theories. These are for instance the Lagrangian describing
the conservative part of post-Newtonian dynamics that has
been determined up to third post-Newtonian order in
Ref. [21], or the Lagrangian describing the nth post-
Coulombian dynamics of two particles in the Feynman-
Wheeler theory of electromagnetism [23]:

L�x; x�1�; :::; x�n�� 	 
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1
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�
;

(5)

where the letter x is used to refer to configuration space
variables in order to emphasize the physical interpretation
of x�j�ai as the jth derivative of the ith component (i 	
1; 2; 3) of the position vector of the particle a 	 1; 2; where
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x�j�a stands for the jth time derivative of the position vector
of particle a, and x�j� 	 fx�j�a g for the set of all configuration
space variables that are time derivatives of jth order (x �
x�0�). Round brackets �: :� indicate the scalar product, e.g.
�x�1�1 x

�1�
2 � 	

P3
i	1 x

�1�
1i x

�1�
2i ; if both vectors are identical we

denote, e.g. �x�1�1 �
2. We further introduced the operator Da,

which represents the time derivative acting exclusively on
the configuration space variables belonging to the particle
numbered a. r is the absolute value of the relative separa-
tion vector, and ea denotes the charge of the particle a.
Note that, since the square root may be expanded into a
binomial series up to order 1=c2n�2, it makes sense to
consider N-particle Lagrangians of the type [34]

L 	
1

2

XN
a	1

ma�x
�1�
a �2 �

Xn
s	0

"sVs�x; :::; x
�s�� �O�"n�1�;

(6)

with " � 1
c2

. Whereas for the 3pN dynamics there is ac-
tually no x�3� dependence, the formalism can be adapted to
this case (see Sec. V). The Hessian of the above
Lagrangian

Haibj 	 "n
@2Vn

@x�n�ai @x
�n�
bj

(7)

is not invertible on the ring R�"�=�"n�1� on which the
approximation scheme is defined. Thus, the Lagrangian
is singular and the system is subject to constraints which
are now to be determined.

The primary Lagrangian constraints are given by all
independent linear combinations of the Euler-Lagrange
equations that do not contain 2nth order time derivatives,
imposing thereby conditions on the configuration space
variables (cf., e.g., [46,47]). From Eq. (3) we see that
they can be derived by contracting the Euler-Lagrange
equations with some null vectors of the Hessian (7), we
shall refer to as �r. Let us first suppose that the matrix part
�@2Vn�=�@x

�n�
ai @x

�n�
bj � of Haibj is invertible [34], a restriction

we will skip later. Then, in our approximation scheme, the
null vectors of the Hessian are those that are multiples of ".
The contraction of the Euler-Lagrange equations with the
canonical basis vectors of R3N multiplied by " yields all
the primary constraints. In the notation of Eq. (3) with the
generalized coordinates being the spatial coordinates x and
their time derivatives, these are given by

"fbj�x; :::; x�2n
1�� 	 O�"n�1�: (8)

Since �@2Vn�=�@x
�n�
ai @x

�n�
bj � is invertible, there are no more

independent ones. Requiring the special form (6) of the
Lagrangian, the Euler-Lagrange equations read
-3
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m x
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Xs
r	0
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d
dt

�
r @Vs
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;

(9)

with  	 ai and ma 	 m . Now, by means of Eq. (9), we
rewrite the primary constraints (8) as

"m x
�2�
 	 "

Xn
1
s	0

"sA s�x; :::; x�2s�� �O�"n�1�: (10)

We observe that they coincide up to the factor " with the
equations of motion of lower order in ". Starting with the
above equation, we can derive a minimal stable set of
constraints as explained in Appendix A,

x�2�r� 	
1

m 

"Xn
s	0

"sB ;2�r;s�x; x
�1��

#
�O�"n�1�; (11)

for r 	 0; :::; 2n
 3. The precise definition of the func-
tions B ;2�r;s from the A s’s is specified in the appendix. It
is worth noticing that the constraints corresponding to the
case r 	 0 agree with the equations of motion after they
have been iteratively reduced to order two in the time
derivatives by removing higher order time derivatives
with the help of the equations of motion of lower order
in ". Similarly, the additional constraints agree with the
appropriately reduced time derivatives of the reduced
equations of motion. This justifies the preceding statement
saying that the constraints emerge by requiring the
Newtonian limit.

The matrix part �@2Vn�=�@x
�n�
ai @x

�n�
bj � of the Hessian of

post-Newtonian Lagrangians linear in the accelerations, is
not invertible. This can be cured by adding so-called
double zeros. While this may change the rank of the matrix
part of the Hessian, it does not influence the order-reduced
equations of motion [48,49]. Because of the agreement
between the latter equations and the constraints (11), es-
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tablished for an invertible matrix �@2Vn�=�@x
�n�
ai @x

�n�
bj �, we

do not expect double zeros to change the constraints either.
A closer investigation shows that this is indeed the case.
We can state even more generally that the expression for
the constraints and the construction of the Hamiltonian
remains unchanged if the matrix part of the Hessian is
noninvertible.

We thus suppose that �@2Vn�=�@x
�n�
ai @x

�n�
bj � is not inverti-

ble and has a constant rank 3N 
 R all over the configu-
ration space. Then, in the considered approximation
scheme, all multiples of " are still null vectors of the
Hessian, but there are also R additional null vectors say
�$ , $ 	 1; :::; R, of order zero in ". The primary con-
straints are obtained by contracting any of them with the
equations of motion. We shall first consider the constraints
emerging from the contraction of the Euler-Lagrange equa-
tions with the canonical basis vectors of R3N times ". Since
the regularity of �@2Vn�=�@x

�n�
ai @x

�n�
bj � is actually not used in

the derivation of the minimal time stable set they belong to,
this set is again given by Eq. (11). The primary constraints
generated by the additional null vectors �$ read

X
 

�$ �x; :::; x
�n��

"

m x

�2�
 �

Xn
s	0

"sA s�x; :::; x
�2s��

#

	 O�"n�1�; (12)

where $ 	 1; :::; R and where
P
 denotes the sum over all

pairs  	 ai with a 	 1; 2 and i 	 1; 2; 3; �$ may de-
pend on x; :::; x�n� for the Hessian itself possibly depends on
these variables. We must now examine the additional re-
strictions imposed by Eqs. (12) to the already derived
constraint surface given by the set of relations (11). On
this surface, by definition all higher order derivatives
x�2�; :::; x�2n
1� entering Eqs. (12) may be expressed by
means of the coordinates x; x�1� with the help of
Eqs. (11). We find thus
X
 

�$ �x; :::; x�n��

"

m x

�2�
 �

Xn
s	0

"sA s�x; :::; x�2s��

#
�O�"n�1� �

X
 

�$ �x; x�1��

"

m x

�2�
 �

Xn
s	0

"sB ;2;s�x; x�1��

#

�O�"n�1� �
�11�

O�"n�1�: (13)
We emphasize the fact that these relations only hold on the
constraint surface by using the weak equality symbol ‘‘�’’.
The system of Eqs. (13) tells us that the constraints result-
ing from the additional null vectors of the Hessian are
already fulfilled on the surface defined by the constraints
(11). It is satisfied for all times due to the time-stability
property, so that the seemingly additional constraints are
covered by the set (11). In short, the additional null vectors
do not generate additional constraints. This fact enables us
to perform the transition to Hamiltonian formalism regard-
less of the invertibility of the matrix part of the Hessian.
Moreover, the Lagrangian constraints of the considered
dynamics are still identical with the reduced equations of
motion or their reduced derivatives. In particular, double
zero terms, though they may change the rank of the
Hessian, do not influence the formalism as long as the
general structure (6) is maintained. We observe that ac-
cording to above computation, unlike the usual theory,
there are no arbitrary functions of time emerging in the
dynamics, even if the contraction of some of the additional
null vectors with the Euler-Lagrange equations vanishes
identically [46,47]. This is ultimately a consequence of the
-4
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linear independence of the equations of motion at lowest
order.
III. HIGHER ORDER SINGULAR CANONICAL
FORMALISM

A system described by a Lagrangian of higher order
allows for a canonical description with phase-space varia-
bles q�j� and canonically conjugate momenta �j with j 	
0; :::; n
 1 [50,51]; �j is the set of jth so-called
Ostrogradski momenta �j1; :::;�jf defined by

�j�: 	
Xn
j
1
k	0

�


d
dt

�
k @L

@q�k�j�1��

; (14)

with j 	 0; :::; n
 1, � 	 1; :::; f, n being the highest
order derivative entering the Lagrangian and f the number
of degrees of freedom. For j 	 0; :::; n
 2 we may write
alternatively

�j� 	
Xf
�	1

�
1�n
j
1q�2n
j
1�� H��

� Kj��q; :::; q�2n
j
2��; (15)

showing that the highest order time derivatives occur mul-
tiplied with the Hessian. For j 	 n
 1 we have

�n
1� 	
@L

@q�n��
: (16)

It is of the form (15) with Kj� 	 0 if L is quadratic in the

q�n�� . (This special case has not been accounted for in
Ref. [34].) Let us first assume that the Hessian is regular.
In this case, the Ostrogradski transformation can be in-
verted by using an iterative algorithm. The implicit
Eq. (16) is locally solvable for the q�n� and yields
q�n��q; :::; q�n
1�;�n
1�. Having computed the variables
q�n�i� with i < j, we can invert the equation for the n

j
 1th Ostrogradski momentum for
q�n�j��q; :::; q�n
1�;�n
j
1; :::;�n
1�.

The Hamiltonian of the system is

H 	 
L�q; :::; q�n
1�; q�n��q; :::; q�n
1�;�n
1��

�
Xn
2
j	0

Xf
�	1

�j�q
�j�1�
�

�
Xf
�	1

��n
1��q
�n�
� �q; :::; q�n
1�;�n
1�; (17)

while the Hamiltonian equations of motion take the famil-
iar form
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d
dt
q�k�� 	

@H
@�k�

; (18a)

d
dt

�k� 	 

@H

@q�k��
; (18b)

with k 	 0; :::; n
 1. Introducing the (Ostrogradski-)
Poisson bracket

fF;Gg �
Xn
1
j	0

Xf
�	1

@F

@q�j��

@G
@�j�



@G

@q�j��

@F
@�j�

; (19)

the time evolution equations for a smooth function F of the
phase-space variables and time t takes the form

d
dt
F 	 fF;Hg �

@F
@t
: (20)

Let us now turn to the case where the Hessian is singular.
Then, the Ostrogradski transformation �q; :::; q�2n
1�� !
�q; :::; q�n
1�;�0; :::;�n
1� is not invertible anymore, or
equivalently, the phase-space variables considered as func-
tions of q; :::; q�2n
1� are not all independent. If the Hessian
has rank f
 r (for a maximum rank f), they are linked by
r independent relations. These are the primary constraints

	
 a�q; :::; q
�n
1�;�0; :::;�n
1� 	 0; (21)

following from the definition (14) of the momenta. To
make sure that the resulting constraint surface � be a
submanifold of phase space, we impose the ‘‘regularity
condition’’, demanding that zero be a regular value of 	

regarded as a map on phase space to Rr.

The Hamiltonian H as a function of the configuration
space variables reads

H�q; :::; q�2n
1�� 	 
L�q; :::; q�n��

�
Xn
1
j	0

Xf
�	0

�j��q; :::; q
�2n
j
1��q�j�1�� :

(22)

The remarkable fact is that the coordinates q�n�; :::; q�2n
1�

appear only through the combinations �j��q; :::; q
�2n
j
1��

due to the particular form of the dependence of L and �j�

on those coordinates. Hence, H actually depends only on
q; :::; q�n
1� and �0; :::;�n
1. This can be verified in a
similar way as in the absence of higher order derivatives
[52,53]. Therefore, we may view the Hamiltonian as a
function of the phase-space variables H 	 H�q; :::;
q�n
1�;�0; :::;�n
1� although it is not unique in the case
where the Hessian is not invertible but defined modulo a
linear combination of the primary constraints

Pr
a	1 c

a 	
a,
with ca being functions of the phase-space coordinates
[52,53]. The time evolution of a smooth function F of
the phase-space coordinates and time is given by
-5
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d
dt
F 	 fF;Hg �

Xr
a	1

uafF; 	
ag �
@F
@t
; (23)

where ua, a 	 1; :::; r are extra parameters, and f:; :g refers
to the Poisson bracket (19). Additionally, at this level,
	
a 	 0 has to be imposed on the motion. The relation
d 	
a=dt 	 0, a 	 1; :::; rmay entail restrictions to the ua’s
and/or lead to new, secondary, constraints. Using again the
time-stability property, we may get further conditions, and
so on. At the end we are left with a complete set of, say, K,
time-stable constraints including the primary ones


k�q; :::; q
�n
1�;�0; :::;�n
1� 	 0; k 	 1; :::; K;

(24)

subject to the same regularity assumptions.
In constrained dynamics, there is an important distinc-

tion between two types of constraints: (i) First-class con-
straints are characterized by the property that their Poisson
brackets (19) with all the other constraints vanish on the
constraint surface, (ii) second-class constraints have at
least one nonvanishing Poisson bracket on �. If the
Poisson-bracket matrixD, defined in components asDkl 	
f
k;
lg for k; l 	 1; :::; K, has rank A on �, then the set of
constraints (24) can always be linearly transformed into an
equivalent set consisting of K 
 A first-class constraints
and A second-class constraints with invertible Poisson-
bracket matrix on � [52]. Conversely, if no first-class
constraints can be obtained from Eqs. (24) by linear trans-
formations, the Poisson-bracket matrix D is invertible on
�. In this case, the Dirac bracket of two phase-space
functions may be defined by

fF;Gg� 	 fF;Gg 

XK
k;l	1

fF;
kgD
1kl f
l; Gg; (25)

where D
1 is the inverse matrix of D, existing at least in a
neighborhood of �.

The Dirac bracket keeps important features of the
Poisson bracket; namely, it is bilinear, antisymmetric,
acts as a derivation on each argument, and fulfills the
Jacobi identity. It actually is the restriction of the Poisson
bracket on the constraint surface [54]. Finally, it has by
construction two additional important properties

f
k; Fg� 	 0; (26)

fG;Fg� � fG;Fg; (27)

valid for arbitrary phase-space functions F and for func-
tions G of first-class, i.e., functions whose Poisson bracket
with any constraint vanishes on �; ‘‘�’’ represents the
weak equality holding only on �. We are thus allowed to
simplify expressions entering the Dirac bracket by using
044021
the constraint equations, which amounts to setting the 
k
to zero, before the final computation of the bracket. With
the help of such a tool we are in position to reformulate the
time evolution equations equivalent to Eq. (23) on the
constraint surface as

d
dt
F 	 fF;Hrg

� �
@F
@t
; (28)

where Hr is the reduced Hamiltonian, derived from H 	


L�
Pn
1
j	0

Pf
�	0 �j�q

�j�1�
� by eliminating all the other

coordinates in favor of the coordinates of the constraint
surface with the help of the system’s constraints
[34,47,52,53]. The preceding canonical formalism has
been shown to be equivalent to the corresponding
Lagrangian formalism in Ref. [36,38].

We now want to specialize on systems described by a
Lagrangian of the form (6). From Eq. (14) we compute the
Ostrogradski momenta,

�j 	 m x
�1�
 �j0 � "

j�1
j �x; . . . ; x
�2n
j
1��

�O�"n�1�;


j 	
Xn
j
1
s	0

"s
Xs
l	0

�


d
dt

�
l @Vs�j�1

@x�l�j�1� 

:

(29)

The Lagrangian constraints (11) are already known. Owing
to the equivalence theorems proved in [36,38], they can be
translated into constraints of the canonical formalism
by keeping the first n
 2 relations and eliminating
x�2�; :::; x�2n
1� from the n identities (29) by means of
Eqs. (11) (cf. Ref. [34], in which this method is applied
whereas the equivalence had not yet been formally stated).
We find

!r � x�r� 

1

m 

Xn
s	0

"sB ;r;s�x; x
�1�� 	 O�"n�1�; (30a)

!1 � x�1� 

1

m 
��0 
 "
0 �x; x

�1��� 	 O�"n�1�; (30b)

,j � �j 
 "j�1
j �x; x�1�� 	 O�"n�1�; (30c)

with r 	 2; :::; n
 1 and j 	 1; :::; n
 1. The

j �x; x�1��’s are derived from the 
j �x; :::; x�2n
j
1��’s
by eliminating higher order derivatives with the help of
Lagrangian constraints. As the constraints (30a)–(30c)
obviously fulfill the regularity conditions, they define a
constraint surface � that is a submanifold of phase space.
As coordinates, we may choose e.g. x and �0, another
possibility would be x and x�1�.

First-class Hamiltonian constraints occur only if there
are configuration space variables that are arbitrary func-
-6
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tions of time in Lagrangian formalism. We have already
seen that these are not present in our case so that there are
no first-class constraints in the dynamics under considera-
tion. This result also can be proven by direct computation
of the Poisson-bracket matrix (cf. Appendix C and [34]). It
can be checked that

D 	
f,k ; ,r-g f,k ;!r-g
f!k ; ,r-g f!k ;!r-g

� �
(31)

is indeed invertible, which implies, in particular, that the
number of constraints is even. Hence the constraint surface
� has an even dimension, say g. Now, by an iterative
procedure,D
1 may be expressed by means of submatrices
of D (cf. Appendix C and [34]). Adopting the splitting

D
1 	
X Y

YT Z

� �
; (32)

we may then write the Dirac bracket of two functions f and
g on the phase space as

ff; gg� 	 ff; gg 

Xn
1
k;l	1

X
 ;-

ff; ,k gXk ;l-f,l-; gg



Xn
1
k;l	1

X
 ;-

ff; ,k gYk ;l-f!l-; gg

�
Xn
1
k;l	1

X
 ;-

ff;!k gYl-;k f,l-; gg



Xn
1
k;l	1

X
 ;-

ff;!k gZk ;l-f!l-; gg: (33)

This bracket defines a symplectic form on the constraint
surface. According to the theorem of Darboux, we can
locally find canonically conjugate coordinates Q;P of �
such that it takes the familiar shape

fF;Gg� 	
Xg=2
 	1

@F
@Q 

@G
@P 



@G
@Q 

@F
@P 

: (34)

We shall see in Secs. V and VI that, for the dynamics
investigated in this article, it will even be possible to
exhibit global coordinates of this kind, which will greatly
simplify computations involving Dirac brackets. The
global existence of canonically conjugate coordinates en-
tails that the group of generalized canonical transforma-
tions, i.e., the group of transformations that leave the Dirac
bracket invariant, is necessarily a subgroup of the group of
canonical transformations on the phase space [47].
044021
IV. POINCARÉ ALGEBRA

The symplectic structure on the phase space (or on the
constraint surface) allows us to endow the vector space of
scalar fields defined on � with the structure of a Lie
algebra. The Poisson-bracket (or Dirac-bracket) relations
satisfied by the generators of the infinitesimal (generalized)
canonical transformations corresponding to the action of a
transformation group are known to be identical to the Lie-
bracket relations of the generators of this group. In other
words, there exists a Lie algebra homomorphism between
the Lie algebra of the transformation group and that of the
generators of the infinitesimal (generalized) canonical
transformations (see, e.g., [55]).

Knowing the latter Lie algebra, we are enabled to re-
construct the symmetry group locally. This can be done
globally only for simply connected groups (unlike the
Poincaré group). As we aim at determining the symmetry
group of some system in the phase space or on the con-
straint surface locally, it will be sufficient for us to consider
the Lie algebra of the generators of infinitesimal (general-
ized) canonical transformations (see, e.g., [56]).

By construction, the conservative pN dynamics in har-
monic coordinates as well as the pC dynamics of the
Feynman-Wheeler theory in Lorentz gauge are approxi-
mately Poincaré invariant. Therefore, in a neighborhood of
the identity there exists an approximate representation of
the Poincaré group as a generalized canonical transforma-
tion group on �. This means that on the constraint surface,
there are generators H;Pi; Ji; Gi with i 	 1; 2; 3 of infini-
tesimal generalized canonical transformations that ap-
proximately fulfill the Poincaré algebra with respect to
Dirac bracket: We have thus

fPi; Pjg
� 	 O

�
1

c2�n�1�

�
; (35a)

fPi; Jjg
� 	

X3
k	1

6ijkPk �O

�
1

c2�n�1�

�
; (35b)

fJi; Jjg
� 	

X3
k	1

6ijkJk �O

�
1

c2�n�1�

�
; (35c)

fH;Pjg� 	 O

�
1

c2�n�1�

�
; (35d)

fH; Jjg� 	 O

�
1

c2�n�1�

�
; (35e)

fGi;Gjg� 	 

1

c2
X3
k	1

6ijkJk �O

�
1

c2�n�1�

�
; (35f)

fGi;Hg
� 	 Pi �O

�
1

c2�n�1�

�
; (35g)

fJi; Gjg
� 	

X3
k	1

6ijkGk �O

�
1

c2�n�1�

�
; (35h)

fGi; Pjg� 	
1

c2
�ijH �O

�
1

c2�n�1�

�
; (35i)
-7
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where i; j 	 1; 2; 3 are spatial indices and where n is the
order of approximation (n 	 3 for the 3pN, n 	 2 for the
2pC dynamics). In the nonrelativistic limit c! 1, the
algebra (35a)–(35i) reduces to the Galilean one. In par-
ticular Eq. (35i) becomes

fGi; Pjg� 	 �ijM; (36)

M being the total nonrelativistic mass of the system. Since
all quantities are defined on the ring R�1=c2�=�1=c2�n�1��,
strictly speaking, the term Mc2 appearing in the generator
H is not allowed. However, because it is a mere constant, it
does not change the dynamics of the system. We may keep
it for it suggests the physical interpretation ofH as the total
conserved energy. To harmonize the argument, we shall
work with a slightly modified form of Eq. (35i), namely,

fGi; Pjg
� 	 �ij

�
M�

1

c2
H
�
�O

�
1

c2�n�1�

�
: (35j)

The statement that a dynamics is Poincaré invariant
usually signifies more than the existence of generators
satisfying the Poincaré algebra. Namely, that the genera-
tors of the infinitesimal canonical invariance transforma-
tions H;Pi; Ji; Gi are the generators of the linear
representation of infinitesimal time translations, spatial
translations, spatial rotations, and Lorentz boosts acting
on the particle components. In short, the members of the
Poincaré group are to have the usual action on the physical
system, when the phase-space coordinates x�t� are inter-
preted as the positions of the particles in Cartesian coor-
dinates parameterized by the time t. This is often
emphasized by referring to this type of dynamics as ‘‘man-
ifestly’’ Poincaré invariant.

In this perspective, we shall investigate one by one the
actions of the preceding generators on the phase-space
variables, acting on the coordinates x�t� regarded as the
spatial coordinates of the system of N point particles at
time t. The time evolution of x�j��t�;�j�t�, j 	 0; . . . ; n

1 is given by the trajectories on the constraint surface; the
argument t will be dropped below for the sake of simplic-
ity. Throughout this article we shall adopt the point of view
of active transformations.

We start with the generator of infinitesimal time trans-
lations H. By definition it generates a transformation that
can be interpreted, when regarded as active, as a translation
of the particles along their trajectory. Now, the effect of an
infinitesimal time translation about 8 is

8
d
dt
x�k�ai 	 �8x

�k�
ai 	 8fx�k�ai ; Hg

� �O

�
1

c2�n�1�

�
; (37a)

8
d
dt

�kai 	 �8�kai 	 8f�kai; Hg
� �O

�
1

c2�n�1�

�
: (37b)

Note the use of Dirac brackets due to the fact that the
trajectories are restricted to �. From the equations of
motion (28), we see that H may be chosen as the
Hamiltonian or the reduced Hamiltonian of the system as
044021
has been anticipated by the notation. Since H can be
interpreted as the total energy of the system, the identity
fH;Hg� 	 0 traduces the conservation of energy in time.

The generators Pi and Ji, interpreted as linear and
angular momentum, are the generators of infinitesimal
spatial translations and rotations. Even in absence of in-
formation on the dynamics, we know their Poisson bracket
with arbitrary scalar fields defined on the phase space. We
know furthermore that generalized velocities are contra-
variant while generalized momenta are covariant vectors.
Therefore, under an infinitesimal translation about 6i gen-
erated by Pi, and an infinitesimal rotation about ’i, gen-
erated by Ji, i 	 1; 2; 3, the phase-space coordinates
representing the particle components transform as

6i 	 �6xai 	
X3
j	1

6jfxai; Pjg;

0 	 �6x
�l�
ai 	

X3
j	1

6jfx
�l�
ai ; Pjg;

0 	 �6�mai 	
X3
j	1

6jf�mai; Pjg;

X3
j;k	1

6ijk’jx
�m�
ak 	 �’x

�m�
ai 	

X3
j	1

’jfx
�m�
ai ; Jjg;

X3
j;k	1

6ijk’j�mak 	 �’�mai 	
X3
j	1

’jf�mai; Jjg;

with l 	 1; :::; n
 1 andm 	 0; :::; n
 1. They lead to the
differential equations

@Pi
@�mak

	 �ik�0m;
@Pi
@x�m�ak

	 0; (38a)

@Ji
@�mak

	
X3
j	1

6ijkx
�m�
aj ;

@Ji
@x�m�aj

	
X3
k	1

6ijk�mak; (38b)

which fix the momenta Pi and Ji up to a constant. The
Poisson-bracket relations of the these generators are well
known; we have for instance

fPi; Jjg 	
X3
k	1

6ijkPk; (39a)

fJi; Jjg 	
X3
k	1

6ijkJk: (39b)

From Eqs. (38a), (38b), (39a), and (39b) we derive the
unique result

Pi 	
XN
a	1

�0ai; (40)
-8
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Ji 	
Xn
1
m	0

XN
a	1

X3
j;k	1

6ijkx
�m�
aj �mak: (41)

If a given dynamics is invariant under spatial translations
and rotations, so must be the constraint equations and the
constraint surface. In this case, the generators of spatial
translations and rotations are thus first-class functions.
From Eq. (27), valid on the constraint surface, we see
then that all Poisson-bracket relations including Pi and Ji
also hold on � as Dirac-bracket relations. This means that
the momenta Pi and Ji displayed above are the generators
of infinitesimal spatial translations and rotations repre-
sented as generalized canonical transformations on �.

The physical interpretation of Gi as generator of infini-
tesimal Lorentz boosts allows us to determine its action on
the particle coordinates xai [43]. An infinitesimal boost
about :j, j 	 1; 2; 3 acts on the space-time coordinates
of a particle following

�ta 	 

1

c2
X3
j	1

:jxaj; (42a)

�xai 	 
:it: (42b)

A particle, located at xai at time t, is located after the active
transformation at position x0ai 	 xai � �xai at time t0a 	
t� �ta. In the three-dimensional space, this results in

x0ai�t
0
a� 	 xai�t� � �xai 	 xai�t� 
 :it: (43)

Let us stress that, because we interpret the transformation
as active, we keep the same space-time coordinate system
and simply boost the particles. We choose the time coor-
dinate t to be eliminated in favor of t0a up to first order in :i.
(However, since we are dealing with functional identities
valid for all the times, we could also proceed by substitut-
ing for t.) Applying t 	 t0a �

1
c2
P3
j	1 :jxaj�t� and expand-

ing Eq. (43) up to the linear order in :i, we arrive at the
relation

x0ai�t
0
a� 	 xai�t0a��

1

c2
X3
j	1

:jxaj�t0a� _xai�t0a�
:it0a�O�:2�:

(44)

We have now expressed both sides of Eq. (43) through the
coordinate time t0a. Since Eq. (44) is valid at any time, t0a is
a mere ‘‘dummy’’ variable; it may be denoted by t again or
even be dropped as a function argument. This yields the
following expression for the action of the generator Gi on
the spatial coordinates x valid for any boost vector :i
044021
X3
j	1

:j

�
1

c2
xaj _xai 
 �ijt

�
	 �:xai

	
X3
j	1

:jfxai; Gjg
� �O

�
1

c2�n�1�

�
;

(45)

with n being again the order of approximation. Inserting
the equations of motion (28) into Eq. (45), we deduce the
world line condition

fxai; Gjg
� 	

1

c2
xajfxai; Hg

� 
 �ijt�O

�
1

c2�n�1�

�
: (46)

This condition joined to the Poincaré algebra, to the ex-
pression of the action of Pi; Ji on the phase-space varia-
bles, and to the physical requirement that H is the
Hamiltonian of the system will be sufficient to determine
Gi uniquely (up to arbitrary generalized canonical
transformations).

In the following, it will be useful to perform computa-
tions with the quantity Ki 	 Gi � Pit instead of Gi.
Because of Eqs. (35a), (35b), (35d), and (35j) Ki fulfills
the same Dirac-bracket relations as Gi but is not explicitly
time dependent; it is not an integral of motion either.
Indeed, we conclude from Eq. (35g) combined with the
conservation law dGi

dt 	 0 that @Gi
@t 	 
Pi. Applying the

definition of Ki we find @Ki
@t 	 0 and fKi;Hg� 	 Pi. The

world line condition for Kj reads,

fxai; Kjg
� 	

1

c2
xajfxai; Hg

� �O

�
1

c2�n�1�

�
: (47)

It can be derived from Eq. (46) and from the first of the two
Eqs. (38a), which, due to the first-class property of Pi and
relation (27), also holds as Dirac-bracket relation on the
constraint surface as mentioned above.
V. APPLICATION TO 3PN DYNAMICS

The conservative part of 3pN equations of motion for
compact binaries in harmonic coordinates allows for a
Lagrangian of the form [21]

L�x; x�1�; x�2�� 	
1

2

X2
a	1

ma�x
�1�
a �2 � V0�x� �

1

c2
V1�x; x�1��

�
1

c4
V2�x; x�1�; x�2�� �

1

c6
V3�x; x�1�; x�2��

�O

�
1

c8

�
; (48)

with V0�x� 	 Gm1m2

r . Beyond the fact it is restricted to a
two-body system, it does not show any dependence on x�3�

in the term V3 by contrast to the general Lagrangian (6).
The investigation of the dynamics can be performed in two
different ways: First, since the original formalism as dis-
-9
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played in Secs. II and III does not require the invertibility
of the Hessian, it may be applied on an artificially extended
configuration space putting up however with lengthier
computations. Second, we may consider V3�x; x

�1�; x�2��
as a higher order correction to V2�x; x�1�; x�2��, gathering
both functions into a new quantity,

	V 2�x; x�1�; x�2�� 	 V2�x; x�1�; x�2�� �
1

c2
V3�x; x�1�; x�2��:

(49)

In this approach we write the 3pN Lagrangian (substituting
" � 1

c2 ) as

L3pN 	
1

2

X2
a	1

ma�x
�1�
a �2 � V0�x� � "V1�x; x�1��

� "2 	V2�x; x
�1�; x�2�� �O�"4�; (50)

without affecting the original accuracy. The formalism
described in Secs. II and III has to be appropriately
modified.

It has been checked explicitly that both methods lead to
equivalent constraints, to identical expressions for the ele-
mentary Dirac brackets, and to identical conserved quan-
tities on the constraint surface. However, since the second
method is more adapted to the problem, it demands less
computational effort. Furthermore it can be employed for
the computations of 2pC dynamics when the terms of third
order are neglected. We shall therefore use it for the sub-
sequent calculations.

The equations of motion for the Lagrangian (50) read


m x
�2�
 �

X2
s	0

"sA s�x; . . . ; x
�2s�� 	 O�"4�;

A 0 	
@V0

@x 
; A 1 	

@V1

@x 


d
dt
@V1

@x1 
;

A 2 	
@ 	V2

@x 


d
dt
@ 	V2

@x�1� 
�
d2

dt2
@ 	V2

@x�2� 
:

(51)

The computation of the constraints for a system described
by the above Lagrangian is performed in Appendix B. The
main difference to the formalism exposed in Sec. II is that
the equations of motion have to be employed twice at the
end to guarantee time stability. Finally we obtain a minimal
set of time-stable Lagrangian constraints (B7)

m x
�r�
 


X2
s	0

"sB ;r;s�x; x�1�� 	 O�"4�; (52)

for  	 ai and r 	 2; 3. The Ostrogradski momenta de-
044021
rived from (29) are given by

�0 	 m x
�1�
 � "
0 �x; :::; x�3�� �O�"4�; (53a)

�1 	 "2
1 �x; x�1�; x�2�� �O�"4�; (53b)

where the 
0 , 
1 are now constructed with V1 and 	V2:


0 	
@V1

@x�1� 
� "

@ 	V2

@x�1� 

 "

d
dt
@ 	V2

@x�2� 
(54a)


1 	
@ 	V2

@x�2� 
: (54b)

The transformation of the Lagrangian constraints into con-
straints on the phase-space coordinates yields the
Hamiltonian constraints

,1 � �1 
 "2
1 �x; x�1�� 	 O�"4�; (55a)

!1 � x�1� 

1

m 
��0 
 "
0 �x; x

�1��� 	 O�"4�: (55b)

The 
j �x; x
�1��’s are derived from the 
j �x; :::; x

�3
j��’s
by eliminating higher order derivatives by means of
Eqs. (52). The Poisson-bracket matrix D of the constraints
(55a) and (55b) is regular, as shown in Appendix C by an
explicit computation of D
1. It is thus possible to endow
phase space with the Dirac brackets (25). Their explicit
expression can be found at the end of Appendix C.

We are now in position to give the representation of the
generators of the Poincaré group as generators of infini-
tesimal generalized canonical transformations with respect
to the Dirac bracket for the conservative 3pN binary dy-
namics in harmonic coordinates. The phase-space varia-
bles x1 and x2 are the positions of the two point masses.
The generators act as usual on them and on their conjugate
momenta, in the way specified in Sec. IV.

The reduced Hamiltonian, generator of infinitesimal
time translation, can be computed from

H3pN 	 
L3pN �
X2
a	1

X3
i	1

�0aix
�1�
ai �

X2
a	1

X3
i	1

�1aix
�2�
ai ;

(56)

by using the constraints to eliminate x�1�, x�2�, and �1 in
favor of the coordinates of the constraint surface. The latter
are chosen to be x and �0 because of their ‘‘Hamiltonian’’
character (a possible alternative is x and x�1�). In this grid,
the reduced 3pN Hamiltonian explicitly reads

Hr;3pN 	
0HN �

1

c2
1HN �

1

c4
2HN �

1

c6
3HN; (57)
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0HN 	
�01

2

2m1
�

�02
2

2m2

G

m1m2

r
;

1HN 	

�01

4

8m1
3


�02
4

8m2
3�

G
2r

�
7��01�02� 


3m1

m2
�02

2

3m2

m1
�01

2� ��01n12���02n12�
�
�
G2m1m2�m1�m2�

2r2
;

2HN 	
�01

6

16m1
5
�

G

16m1
2m2

2r

�
10m2

3

m1
�01

4
 15m1m2�02
2�01

2� 14m1m2��02n12�
2�01

2


 4m2
2��02n12���01n12��01

2� 4m2
2��01�02��01

2
 2m1m2��01�02�
2


 12m1m2��02n12���01n12���01�02� 
 3m1m2��01n12�2��02n12�2
�

�
G2

8m1m2r
2

�
22m2

3�01
2� 47m1m2

2�01
2
 4m2

3��01n12�
2
 70m1

2m2��01�02� � 16m1
2m2��01n12���02n12�


 13m1m2
2��01n12�2

�


G3m1m2

8r3
�19m1m2� 4m1

2� � 1 !2;

3HN 	

5�01

8

128m1
7�

G

32m1
2m2

2r

�


14m2

3�01
6

m1
3 �

58m2

m1
�02

2�01
4�

28m2
2

m1
2 ��01n12���02n12��01

4



28m2

2

m1
2 ��01�02��01

4

36m2

m1
��02n12�

2�01
4�

12m2

m1
��01n12�

2��02n12�
2�01

2�
8m2

m1
��01�02�

2�01
2


 12��02n12�
2��01�02��01

2

20m1

m2
��02n12�

4�01
2
 4��02n12�

3��01n12��01
2
 17�02

2��01�02��01
2



8m2

m1
�02

2��01n12�2�01
2�

16m2

m1
��01�02���02n12���01n12��01

2� 25�02
2��02n12���01n12��01

2


 10��01n12���01�02�
2��02n12� 
 2��01�02�

3� 5��01n12�3��02n12�3� 15��01n12�2��02n12�2��01�02�

�

�
G2

144r2

�


957m2�01

4

m1
2 


261m2
2�01

4

m1
3 


90m2

m1
2 ��01�02��01

2�
654

m2
��02n12�2�01

2�
798

m1
�02

2�01
2

�
1848m2

m1
2 ��01n12�2�01
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�
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2

3192
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20160r3

�

501760m2
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85680m2
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 496736m1m2�01
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� 147840m1m2 ln
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�
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We have again adapted the notation of Ref. [21] introduced
after Eq. (5). Furthermore, we have posed n12 	

x1
x2
r . The

term ‘‘�1 !2’’ represents the expression that precedes
but with interchanged particle indices, including the con-
tributions that are already symmetric in the particle indi-
ces, particularly n12 must be changed into n21 	 
n12
there. Note that it is possible to remove the logarithm terms
through a coordinate transformation preserving the har-
monicity conditions outside the bodies [10].

The generators of infinitesimal spatial translations and
rotations are given on the whole phase space by Eqs. (40)
and (41) as

Pi 	
X2
a	1

�0ai 	 �01i ��02i; (58)

Ji 	
X1
m	0

X2
a	1

X3
j;k	1

6ijkx
�m�
aj �mak

	
X2
a	1

X3
j;k	1

6ijkxaj�0ak �
X2
a	1

X3
j;k	1

6ijkx
�1�
aj�1ak: (59)
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For the dynamics, only their restrictions to the constraint
surface are relevant as integrals of motion and generators
of symmetry transformations. They can be computed by
eliminating x�1� and �1 from Eqs. (58) and (59) with the
help of the constraints (55a) and (55b). The result is

Pij� 	 �01i ��02i; (60)

Jij�	
X2
a	1

X3
j;k	1

6ijk

��
xaj
"2

1

ma

1aj�x;x�1��x;�0��

�
�0ak


"3
1

ma

0aj�x;x

�1��x;�0��
1ak�x;x
�1��x;�0��

�
�O�"4�: (61)

The angular momentum Jij� of the post-Newtonian dy-
namics can be written explicitly as

J3pNi 	 0JNi �
1

c4
2JNi �

1

c6
3JNi; (62)
0JNi 	 6ijkx1j�01k� 6ijkx2j�02k;

2JNi 	
6ijk
7G
4m1
�n12�01��01j�02k� 6ijk

G
8m1m2r

�
�n12�02�

2m1
 7m1�02
2

�
x1j�01k


 6ijk
G

8m1m2r

�
�n12�01�

2m2
 7m2�01
2

�
x1j�02k� 1 !2;

3JNi 	 6ijk
G

24m1
2m2

2

�
9m2�n12�02��n12�01�

2
 3m2�01
2�n12�02�


3m2
2

m1
�01

2�n12�01�� 6m2�n12�01���01�02�
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3

�
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G
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�
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2
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2
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3
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2

m2
�n12�02�

4
 6m1�n12�02�
2��01�02�

�
14m1

2

m2
�02

4� 10m2�02
2�n12�01�

2�
3m1

2

m2
�02

2�n12�02�
2

�
x1j�01k

� 6ijk
G

16m1
2m2

2r

�
2m2�n12�02��n12�01�

3

3m2

2

m1
�01

2�n12�01�
2
 10m1�01

2�n12�02�
2


14m2
2

m1
�01

4

�m1�02
2�n12�01�

2
 8m2�01
2�n12�02��n12�01��

m2
2

m1
�n12�01�

4
 7m1�02
2�01

2

� 6m2�n12�01�
2��01�02�

�
x1j�02k� 6ijk

G2

24r

�
193�n12�01��

17m2

m1
�n12�01�

�
�01j�02k

� 6ijk
G2

48r2

�
21m2

m1
�n12�01�

2

408m2�01

2

m1


68m1�02

2

m2
� 48�n12�01��n12�02�
 109�02

2

�
100m1

m2
�n12�02�

2
 76�n12�02�
2� 816��01�02�

�
x1j�01k� 6ijk

G2

48r2

�


21m1

m2
�n12�02�

2

100m2

m1
�n12�01�

2

� 76�n12�01�
2
 816��01�02��

68m2�01
2

m1
�
408m1�02

2

m2
� 109�01

2
 48�n12�01��n12�02�

�
x1j�02k� 1 !2;

where a sum over the indices j and k 	 1; 2; 3 must be understood. It has been checked that the above momenta satisfy the
relations (35a)–(35e). In particular, H is invariant under spatial translations and rotations and the components of the
generalized total linear and angular momentum, Pi and Ji, are integrals of motion.
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The generator (62) takes a simple familiar form when
written in coordinates that are canonically conjugate with
respect to the Dirac bracket. We have obtained these
coordinates, expressed in terms of x;�0 by guess work.
They read

P 	�0 
"3
X
<

1

m<

1<�x;�0�

@
0<�x;�0�

@x 
�O�"4�;

(63a)

Q 	x 
"2
1

m 

1 �x;�0�

�"3
X
<

1

m<

1<�x;�0�

@
0<�x;�0�

@�0 
�O�"4�; (63b)

where the sum
P
< holds over all pairs of indices < 	 bj,

b 	 1; 2, j 	 1; 2; 3 and where 
s<�x;�0�, s 	 0; 1, is a
short notation for 
s<�x; x�1��x;�0��. This result can be
verified by using the explicit expressions (C12)–(C14) for
the elementary Dirac brackets.

It is important to stress that there does not exist any
harmonic-coordinate system in which Q and more gener-
ally any other canonical coordinates represent the particle
positions. If it were possible, we could go over to a frame
where the particle positions are canonical coordinates
while maintaining manifest Poincaré invariance. In terms
of these new coordinates, the Hamiltonian as well as the
Lagrangian would be ordinary although describing mani-
fest Poincaré invariant dynamics, in contradiction to the
no-interaction theorem [24]. A consequence is that we are
not able to obtain canonically conjugate particle coordi-
nates by means of Poincaré transformations. This can be
seen from Eqs. (C15) and (C16), which imply that fx ; x-g�

cannot vanish everywhere for the 3pN and 2pC dynamics.
The form of these two relations is maintained by Poincaré
transformations that are also generalized canonical trans-
formations. However, in the case of vanishing coupling
constant, we have Q! x; P! �0. In other words, for the
noninteracting systems, manifest Poincaré invariance be-
comes compatible with the choice of spatial coordinates as
canonical coordinates.

The interest of using Q and P rather than x and �0 for
explicit calculations is that in these coordinates the Dirac
bracket takes the simple standard form of a Poisson
bracket. For simplicity, we shall note any function
F�x;�0� on the constraint surface expressed by means of
the canonically conjugate variablesQ;P as ~F� F�Q;P� �
F�x�Q;P�;�0�Q;P��. The Dirac-bracket at a point
x�Q;P�;�0�Q;P� of the constraint surface then reduces to

fF;Gg�








x�Q;P�;�0�Q;P�

	 f ~F; ~GgQ;P

�
X
 

@ ~F
@Q 

@ ~G
@P 



@ ~G
@Q 

@ ~F
@P 

: (64)
044021
In canonically conjugate coordinates, Pi and Ji have
their usual expression on the constraint surface for both
dynamics under consideration, namely,

~P i 	
X2
a	1

Pai �O�"n�1�; (65)

~J i 	
X2
a	1

X3
j;k	1

6ijkQajPak �O�"n�1�; (66)

with n 	 3 at 3pN (n 	 2 at 2pC). Indeed, spatial trans-
lations and rotations leave the constraint surface invariant
so that the restrictions of Pi and Ji to � are the well-known
generators of infinitesimal spatial translations and rotations
on � (cf. Sec. V) taking above shape in terms of canoni-
cally conjugate coordinates. This explains incidentally the
absence of a first post-Newtonian contribution in the ex-
pressions (62) and (84) for Jij� as a function of x;�0. If the
term containing �1 does not contribute to the first order,
this is because the �1’s are second order quantities; for the
rest, the x’s and the �0’s are canonically conjugate modulo
1=c4 corrections.

To determine the generator of Lorentz boosts, it is useful
to work with the canonical coordinates Q;P on the
constraint surface. In addition, it is more convenient to
derive ~Ki � Ki�Q;P� 	 Gi�Q;P� � Pi�Q;P�t rather than
Gi�Q;P� itself. We compute ~Ki with the help of the method
of undetermined coefficients [17], thereafter fixing the
uniqueness of the solution.

As already mentioned, Ki fulfills the same Dirac-bracket
relations (35f)–(35h) and (35j) asGi, but it is not explicitly
time dependent and it is not an integral of motion. The
behavior of ~Ki under spatial rotations is governed by
Eq. (35h) with the angular momentum ~Ji given by (66).
We conclude that ~Ki has the general structure

~K i 	
X2
a	1

Ma�Q;P�Qai � Na�Q;P�Pai �O�"n�1�; (67)

where Ma�Q;P�, Na�Q;P� are two post-Newtonian scalar
functions. The form of the differential equations for ~Ki
resulting from the Poincaré algebra and the world line
condition suggests for Ma�Q;P� and Na�Q;P� the ansatz

cn0;:::;n5R
n0P2n1

1 P2n2
2 �P1P2�

n3�N12P1�
n4�N12P2�

n5

� d1;s1R
s1 ln�R=r1� � d2;s2R

s2 ln�R=r2�; (68)

with R 	 jQ1 
Q2j and N12 	
Q1
Q2

R ; the logarithm
terms are only expected to appear in the function Ma and
the powers n0; s1; s2 are presumed to be integers, while
n1; :::; n5 are natural numbers. The admissible eight-tuples
of s1; s2; n0; :::; n5 are restricted by demanding the correct
physical dimension for Ma and Na.

Insertion of the preceding ansatz into the partial differ-
ential Eqs. (35f)–(35h) and (35j) yields the linear system
of equations to be solved. The coefficients seem to be
overdetermined, but the equations are not all independent
so that there actually exists a solution. It is most easily
-13
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derived by means of a computer-algebra program.1 If we only impose that the Poincaré algebra should be satisfied, some
coefficients remain undetermined even at the 1pN order. They are set by requiring the world line condition onKi, reflecting
the manifest Lorentz invariance of the system. As a result, the expression for ~Ki obtained through this procedure is
automatically consistent with both the Poincaré-algebra and the world line condition.

Now, as discussed before, the canonically conjugate coordinates simplifying our explicit calculation are not harmonic.
Reexpressing ~Ki by the coordinates x and �0 of the constraint surface we finally arrive at Ki in a harmonic-coordinate
frame. The result is displayed up to third post-Newtonian order as

K3pNi 	
0KNi �

1

c2
1KNi �

1

c4
2KNi �

1

c6
3KNi; (69)

0KNi	m1x1i�m2x2i; 1KNi	
�01

2

2m1
x1i�

�02
2

2m2
x2i


Gm1m2

2r
�x1i�x2i�;

2KNi	

�01

4

8m1
3x1i�

G
8m1m2

�7m2
2�01

2n12i
m2
2�n12�01�

2n12i
14m1m2�n12�02��01i
14m2
2�n12�01��01i�

�
G
4r

�


6m2

m1
�01

2x1i��n12�01��n12�02�x1i�7��01�02�x1i

�
�
G2m1m2

4r2
�
5m1x1i�7m2x1i��1 !2;
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6

16m5
1

x1i�
G

48m1
2m2

2

�


42m2

3

m1
�01

4n12i

6m2

3

m1
�n12�01��01

2�01i
6m2
2�n12�02��01

2�01i


30m1m2�n12�02�
2�01

2n12i
24m2
2�n12�02��n12�01��01

2n12i

9m2

3

m1
�n12�01�

2�01
2n12i

�18m1m2�n12�02�
2�n12�01��01i
48m1m2�02

2�n12�01��01i�12m1m2�n12�02���01�02��01i

�20m1
2�n12�02�

3�01i�
20m2

3

m1
�n12�01�

3�01i�18m2
2�n12�02��n12�01�

2�01i
48m1
2�02

2�n12�02��01i

�12m2
2�n12�01���01�02��01i�

3m2
3

m1
�n12�01�

4n12i�6m2
2�n12�02��n12�01�

3n12i

�18m2
2n12i�n12�01�

2��01�02�
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�
G
16r

�
21m2
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3 �01
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14

m1m2
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3 �02
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299m2�
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01n12i�

68m2
2

m1
�01

2n12i�
34m2

2

m1
�n12�01��01i�428m2�n12�01��01i�386m2�n12�02��01i

�76m1�n12�02��01i�48m1�n12�02��n12�01�n12i

100m2

2
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�

1

3360

G2

r2

�
21140m2��01�02�x1i
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10640m1�n12�01��n12�02�x1i
1470m1�02
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1680m2
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2x1i

�
9240m2

2

m1
�01

2x1i�17360m2�n12�01��n12�02�x1i�210m1�n12�02�
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�
�

1
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�
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2m2
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28702m1m2
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1We have used the software Maple 8 Waterloo Maple Inc.
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The 3pN accurate generators H3pN; P3pNi; J3pNi; G3pNi 	
K3pNi 
 P3pNit we have derived in harmonic coordinates,
constitute an approximate representation of the Poincaré
Algebra given by the generators of infinitesimal canonical
transformations with respect to the Dirac bracket, and thus,
they generate the Poincaré transformation group on the
phase-space coordinates. The quantities are integrals of
motion that may be interpreted physically as the 3pN
conserved total energy, the generalized total linear momen-
tum, the generalized total angular momentum and the
center of mass constant. Their expressions have been
checked up to first order by comparing them with
Ref. [43]. If we adapt the ‘‘Lagrangian-like’’ coordinates
x; x�1� on the constraint surface, the above generators of
infinitesimal canonical transformations representing con-
served quantities reproduce the Noetherian constants of
motion associated with the Poincaré symmetry of the
dynamics that are derived in [21] by means of the
Lagrangian formalism. Note that the definitions of Ki
and Gi in this article are reverse.

It remains to show the uniqueness of the generators
Pi; Ji; Gi of the Poincaré group up to generalized canonical
transformations provided that H is a post-Newtonian
Hamiltonian. Let us indicate that the following proof also
is valid for the post-Coulombian dynamics.

We start with the case of the momenta Pi and Ji. Their
uniqueness as a function of the phase-space coordinates
has been established on the whole phase space in Sec. IV. It
entails the uniqueness of their restriction to the constraint
surface.

We next consider the center of mass constant Gi. Its
uniqueness is equivalent to that of ~Ki � Ki�Q;P� 	
Gi�Q;P� � Pi�Q;P�t, since the coordinate transformation
is a diffeomorphism and since Pi is unique. Again, Q;P
denotes the set of canonically conjugate coordinates on the
constraint surface while Pi represents the total linear mo-
mentum of the system. Let us assume that there exist two
solutions ~Ki and ~K0i 	 ~Ki � fi�Q;P� that both approxi-
mately fulfill the Poincaré algebra and the world line
condition within the common coordinate frame. The rela-
tions (46), (35g), and (35h), written in terms of the coor-
dinates Q;P as given by Eqs. (63a) and (63b) read [cf. also
(64)]:

f~xai; ~KjgQ;P 	

(
Qai � "

2 1

ma
~
1ai


 "3
X
<

1

m<

~
1<
@ ~
0<

@Pai
; 0 ~Kj � "

1 ~Kj

� "22 ~Kj � "
33 ~Kj

)
Q;P

�O�"4�

	 "~xajf~xai; ~HgQ;P �O�"4�; (70)

f ~Kj; ~HgQ;P 	 ~Pj �O�"4�; (71)
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f~Ji; ~KjgQ;P 	
X3
k	1

6ijk ~Kk �O�"4�: (72)

Note that, because x ;�0- and Q ; P- agree at zeroth
order, the Newtonian (or Coulombian) contribution to the
Hamiltonian in canonically conjugate coordinates has the
form

0 ~H 	
X2
a	1

P2
a

2ma
�U�Q�: (73)

The uniqueness of ~Ki is then proved order by order using
Eqs. (70)–(73). First, we may insert successively ~Kj and
~K0j into (70) since they are both assumed to fulfill the latter
relation. Taking the zeroth order of the difference, we find
that

@0fj�Q;P�

@Pai
	 0; (74)

hence 0fj�Q;P� 	
0fj�Q�. Next, we go over to Eq. (71),

where we insert again ~Kj and ~K0j successively before
subtracting the ensuant equalities. By virtue of Eq. (73)
we obtain at zeroth order:

X2
a	1

X3
k	1

Pak
ma

@0fj�Q�

@Qak
	 0: (75)

Because Q ; P- constitute a set of independent coordi-
nates, and Eq. (75) holds for all Pak, we are led to

@0fj�Q�

@Qak

	 0 ) 0fj�Q� 	 const: (76)

From Eq. (72) taken at zeroth order, we conclude by
applying the same procedure as explained above, that

0 	 f0 ~Ji;
0fjgQ;P 	 f

0 ~Ji;
0 ~K0j 


0 ~KjgQ;P

	
X3
k	1

6ijk�
0 ~K0k 


0 ~Kk� 	
X3
k	1

6ijk0fk

) 0fk 	 0 ) 0 ~K0i 	
0 ~Ki: (77)

The proof of uniqueness at the first order is similar. The
world line condition Eq. (70) truncated at this level of
approximation yields 1fj�Q;P� 	

1fj�Q�. Equation (71)
reduces to

f1 ~Kj;
0 ~HgQ;P � f

0 ~Kj;
1 ~HgQ;P 	 0; (78)

and we have the same equation for ~K0j. On the other hand,
we know from Eq. (77) that ~K0i and ~Ki differ at most from
the first order on. Therefore taking the difference between
the Eq. (78) for ~K0j and the same equation for ~Kj at first
order leads to
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f1fj�Q�;
0 ~HgQ;P 	 0;

X2
a	1

X3
k	1

Pak
ma

@1fj�Q�

@Qak
	 0

)
@1fj�Q�

@Qak
	 0; (79)

so that 1fj�Q� 	 const. Now, from the first order truncated
version of Eq. (72), it follows

0 	 f0 ~Ji;
1fjgQ;P 	 f

0 ~Ji;
1 ~K0j 


1 ~KjgQ;P

	
X3
k	1

6ijk�
1 ~K0k 


1 ~Kk� 	
X3
k	1

6ijk1fk

) 1fk 	 0 ) 1 ~K0i 	
1 ~Ki: (80)

The uniqueness of second, third or even higher orders
follows analogously.

VI. APPLICATION TO 2PC DYNAMICS

The Lagrangian describing the binary dynamics of the
Feynman-Wheeler theory in Lorentz gauge up to second

RAOUL-MARTIN MEMMESHEIMER AND GERHARD SCHA
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post-Coulombian order takes the form

L�x; x�1�; x�2�� 	
1

2

X2
a	1

ma�x
�1�
a �2 � V0�x� �

1

c2
V1�x; x�1��

�
1

c4
V2�x; x�1�; x�2��; (81)

with V0�x� 	 

e1e2
r . We may thus adopt directly all gen-

eral results derived for the 3pN dynamics by neglecting the
third order contribution. The elementary Dirac brackets of
the 2pC dynamics, for instance, may be inferred from
Appendix C. The computation of the generators of the
Poincaré group corresponding to the conserved quantities
of the Feynman-Wheeler 2pC binary dynamics can be
performed in a way similar to the post-Newtonian case.
The results read as follows.

The reduced Hamiltonian is given by

H2pC 	
0HC �

1

c2
1HC �

1

c4
2HC; (82)
0HC 	
�01
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2m1
�

�02
2

2m2
�
e1e2
r
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4

8m1
3 


�02
4

8m2
3 


e1e2
2m1m2r

���01�02� � �n12�02��n12�01��;

2HC 	
�01

6

16m1
5
�

e1e2
16m1

2m2
2r

�
�02

2�01
2 
 2��02n12�

2�01
2 �

4m2

m1
��02n12���01n12��01

2 �
4m2

m1
��01�02��01

2


 2��01�02�
2 � 3��01n12�2��02n12�2

�
�

e1
2e2

2

8m1
2m2r2

��01
2 � 3��01n12�2� �

e1
3e2

3

8m1m2r3
� 1 !2:

This result confirms the one derived in Ref. [34] as corrected in Ref. [35].
The generators of spatial translations and rotations Pi and Ji can be derived from Eqs. (60) and (61). The explicit

expressions for the restrictions on the constraint surface in terms of x and �0 read

P2pCi 	 �01i ��02i; (83)

J2pCi 	 0JCi �
1

c4
2JCi; (84)

0JCi 	 6ijkx1j�01k � 6ijkx2j�02k;

2JCi 	 6ijk
e1e2

4m2m1
2 ��01n12��01j�02k � 6ijk

e1e2
8m1

2m2
2r
�m1�02

2 
m1��02n12�
2�x1j�01k

� 6ijk
e1e2

8m1
2m2

2r

�

m2�01

2 �m2��01n12�
2

�
x1j�02k 
 6ijk

e1
2e2

2

4m1m2r2
�x1j�01k 
 x1j�02k� � 1 !2;

where a sum over the indices j and k 	 1; 2; 3 must be understood.
The generator Gi is computed as in the post-Newtonian case. For Ki 	 Gi � Pit in terms of x and �0, we have
-16
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K2pCi 	
0KCi �

1

c2
1KCi �

1

c4
2KCi; (85)

0KCi 	 m1x1i �m2x2i;

1KCi 	
�1

2

2m1
x1i �

�2
2

2m2
x2i �

e1e2
2r
�x1i � x2i�;

2KCi 	 

x1i�01

4

8m1
3 �

e1e2
8m1m2

�
m2

m1
�n12�01�

2n12i 

m2

m1
�01

2n12i � 2�n12�02��01i �
2m2

m1
�n12�01��01i

�



e1e2

4m1m2r
���01�02�x1i � �n12�01��n12�02�x1i� 


e1
2e2

2

4m2r
n12i � 1 !2:
The above generators H;Pi; Ji and Gi of infinitesimal
generalized canonical transformations provide a represen-
tation of the Poincaré algebra on the constraint surface of
2pC Feynman-Wheeler binary dynamics with respect to
the Dirac bracket. The uniqueness of Pi; Ji, and Gi up to a
generalized canonical transformation has been established
in Sec. IV.

VII. SUMMARY AND DISCUSSION

In the present article, we applied an appropriate canoni-
cal formalism to describe the third post-Newtonian dynam-
ics of point mass binaries in harmonic coordinates. We
treated the second order post-Coulombian dynamics of
Feynman-Wheeler theory in Lorentz gauge analogously.
In contrast to earlier works, we did not leave the coordinate
conditions by performing a higher order contact transfor-
mation [30] but instead we generalized a method devel-
oped in Ref. [34] and constructed the dynamics directly in
harmonic coordinates and Lorentz gauge within the frame-
work of canonical formalism both singular and of higher
order in the time derivatives. The canonical formulation
opens the way to advanced investigations about the geo-
metrical and physical interpretation of the motion. It is
highly desirable for deriving the generators of infinitesimal
generalized canonical symmetry transformations that
provide the integrals of motion. We computed for the first
time the generators of the Poincaré transformation group
or, equivalently, the conserved quantities corresponding to
the manifest Poincaré invariance, for third post-Newtonian
conservative binary dynamics in harmonic coordinates as
well as for Feynman-Wheeler second post-Coulombian
binary dynamics in Lorentz gauge. An appropriate choice
of coordinates of the constraint surface reveals that the 3pN
conserved quantities we have obtained agree with those
derived via the generalized Noether theorem in [21]. After
being reduced to the center of mass frame [40], they can be
used for the derivation of an analytic parametric solution to
the third post-Newtonian equations of motion in harmonic
gauge for compact binaries in eccentric orbits [41], which
is in turn of high practical relevance for the construction of
gravitational wave search templates and comparison with
numerical simulations. A useful generalization of the
044021
present investigations is suggested to be the application
of our method to post-Newtonian binary dynamics in har-
monic coordinates including spin.
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APPENDIX A: LAGRANGIAN CONSTRAINTS [34]

In this appendix we display for completeness the iter-
ative method developed in Ref. [34] to derive a minimal set
of time-stable constraints for a dynamics described by a
Lagrangian with the structure shown in Eq. (6).
(i) T
-17
he first stage of the method consists in transform-
ing the primary constraints into a more restrictive
set implied by the primary constraints through time
stability, without making use of the time evolution
equations. In this new set, the higher order time
derivatives are found separately in the various
equations.
The primary constraints (10) imply

"nx�2� 	 "n
1

m 
A 0�x� �O�"n�1�: (A1)

Thus, Eqs. (10) multiplied by "n
1 are fulfilled by
the motion, as well as the relations following from
(A1) through repeated time differentiation

"nx�2�r� 	 "n
1

m 
B ;2�r;0�x; x�1�� �O�"n�1�;

(A2)

where r 	 0; :::; 2n
 3; the quantities
B ;2�r;0�x; x

�1�� are derived from the A 0’s by differ-
entiating r times and eliminating accelerations by
virtue of Eq. (A1) whenever they occur; the relation
(A2) reduces to (A1) when r 	 0. Beware that,
because of the occurrence of the time derivative
x�2n� , Eq. (A2) with r 	 2n
 2 is not a constraint,
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but rather the condition of time-stability for the
actual constraints given by the system (A2) for r 	
0; :::; 2n
 3. It becomes a consequence of the equa-
tions of motion as soon as the dynamics is restricted
to the constraint surface.
The next set of constraints implied by the primary
ones can be found by multiplying Eqs. (10) by "n
2:

"n
1x�2� 	 "n
1
1

m 
�A 0�x� � "A 1�x; x

�1�; x�2���

�O�"n�1�: (A3)

The acceleration dependence of A 1�x; x
�1�; x�2��

may be eliminated by means of Eqs. (A2)

"n
1x�2� 	 "n
1
1

m 
�A 0�x� � "B ;2;1�x; x

�1���

�O�"n�1�: (A4)

Differentiating r 	 0; :::; 2n
 3 times with respect
to time and replacing all occurring accelerations by
means of Eqs. (A4) results in

"n
1x�2�r� 	 "n
1
1

m 
�B ;2�r;0�x; x

�1��

� "B ;2�r;1�x; x
�1��� �O�"n�1�:

(A5)

Carrying on with this procedure we arrive at the set
of constraints

"x�2�r� 	 "
1

m 

"Xn
1
s	0

"sB ;2�r;s�x; x�1��

#

�O�"n�1�; (A6)

where r 	 0; :::; 2n
 3.

(ii) I
n the second part of the method proposed by Jaen,

Llosa, and Molina, the above system is completed to
one that is stable under the time evolution ruled by
the Euler-Lagrange equations. The time-stability
condition for Eqs. (A6) which also covers the time
stability of all previous sets of constraints, equals
(A6) with r 	 2n
 2:

"x�2n� 	 "
1

m 

"Xn
1
s	0

"sB ;2n;s�x; x
�1��

#
�O�"n�1�:

(A7)

Demanding time stability of the constraints for the
motion on the constraint surface is equivalent to
removing higher order time derivatives in the
Euler-Lagrange equations with the help of
Eqs. (A6) and eliminating x�2n� by means of
Eq. (A7). We obtain the new set of constraints
044021-18
x�2�r� 	
1

m 

"Xn
s	0

"sB ;2�r;s�x; x
�1��

#
�O�"n�1�;

(A8)

with r 	 0; :::; 2n
 3. From the way this set of
constraints has been obtained, we see that it must
hold even if some of the x�2n� do not occur in certain
linear combinations of the Euler-Lagrange equa-
tions, which may be the case for noninvertible
�@2Vn�=�@x

�n�
ai @x

�n�
bj �.
For the set of constraints (A8), the time-stability condi-
tion reads

x�2n� 	
1

m 

"Xn
s	0

"sB ;2n;s�x; x�1��

#
�O�"n�1�: (A9)

This condition is satisfied in the sense that removing the
higher derivatives in the Euler-Lagrange equations with the
help of Eqs. (A8) and substituting x�2n� by Eq. (A9) yields a
constraint [Eq. (A8) with r 	 0] fulfilled on the constraint
surface. It is obvious, that the set (A8) is more restrictive
than the original primary constraints. Nonetheless, we see
from the derivation that it follows from them through the
time-stability condition. As a result, with (A8), we have
found a minimal set of constraints stable in time for the
dynamics under investigation.
APPENDIX B: 3PN CONSTRAINTS

In this appendix we derive the constraints for the two-
body system at the third post-Newtonian order by modify-
ing appropriately the method displayed in Appendix A.

Within our approximation scheme, any vector being a
multiple of "2 is a null vector of the Hessian of the 3pN
Lagrangian (50). Therefore, using Eq. (51) as initial pri-
mary constraints, we have

"2
"
m x

�2�
 


X1
s	0

"sA s�x; :::; x
�2s��

#
	 O�"4�: (B1)

Primary constraints due to the possible existence of further
null vectors are not precluded.
(i) W
e now transform the system (B1) into a more
restrictive set obtained by implying time stability,
without employing the explicit equations of motion
yet.
The acceleration dependences in orders higher than
"2 can be removed from Eq. (B1) by means of the
constraints obtained through multiplying the pri-
mary constraints with ". We are led to

"2
"
m x

�2�
 


X1
s	0

"sB ;2;s�x; x
�1��

#
	 O�"4�: (B2)

After differentiating and eliminating the occurring
accelerations by making use of Eqs. (B2), we find
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"2
"
m x

�3�
 


X1
s	0

"sB ;3;s�x; x�1��

#
	 O�"4�: (B3)

Requiring that the above constraints are satisfied for
all times yields the time-stability condition

"2
"
m x

�4�
 


X1
s	0

"sB ;4;s�x; x
�1��

#
	 O�"4�: (B4)
(ii) A
dditional constraints emerge from the latter time-
stability condition as well as from the equations of
motion. They are derived by multiplying the Euler-
Lagrange equations by " and thereafter eliminating
all second and higher order time derivatives and
found beyond the leading term with the help of
Eqs. (B2)–(B4). A last time differentiation and
elimination of the newly appeared accelerations
leads to the constraints

"

"
m x

�r�
 


X2
s	0

"sB ;r;s�x; x�1��

#
	 O�"4�;

r 	 2; 3;

(B5)

which are not yet time stable. The time-stability
condition

"

"
m x

�4�
 


X2
s	0

"sB ;4;s�x; x�1��

#
	 O�"4�; (B6)

inserted together with (B5) into the equations of
motion yields the more restrictive set of constraints

m x
�r�
 


X2
s	0

"sB ;r;s�x; x
�1�� 	 O�"4�;

r 	 2; 3:

(B7)

These constraints are stable, for inserting all con-
straints plus the time-stability condition into the
equations of motion yields a constraint [namely,
(B7) with r 	 2] that is actually satisfied on the
constraint surface. In contrast to Appendix A, the
time-stability condition, and thus the equations of
motion had to be employed twice to determine the
constraints of 3pN dynamics. Finally, we note that it
is now possible to argue as in Sec. II that further null
vectors of the Hessian do not lead to further
constraints.
APPENDIX C: 3PN ELEMENTARY DIRAC
BRACKETS

The issue of this appendix is to present the explicit
computation of the Dirac brackets for the dynamics of
044021
interest in this article. The Dirac bracket is bilinear and
acts as a derivation on each argument. To know its action
on any two functions of the phase space, it is therefore
sufficient to know all elementary Dirac brackets, i.e., the
Dirac brackets of the constraint surface coordinates. In
order to compute them, we have first to determine the
Poisson-bracket matrix D of the constraints up to the
needed third order in ", appropriately adapting the general
method given by [34] to the 3pN case. All expressions
reduced to second order in " can be directly used for the
post-Coulombian dynamics case.

We start by splitting D into 6� 6 submatrices as

D 	
S T

TT U

� �
; (C1)

S ;- 	 f,1 ; ,1-g 	 "2
@
1-

@x�1� 

 "2

@
1 

@x�1�-
�O�"4�;

(C2)

T ;- 	 f,1 ;!1-g

	 
� - 
 "
1

m-

@
0-

@x�1� 
� "2

1

m-

@
1 

@x-
�O�"4�;

(C3)

U ;- 	 f!1 ;!1-g 	 "
1

m m-

�@
0-

@x 


@
0 

@x-

�
�O�"4�:

(C4)

This matrix is clearly invertible. To obtain iteratively the
inverse matrix of D, we write the expansion in powers of "
as

D 	
Xn
s	0

"s sD�O�"n�1�: (C5)

It can be easily verified, that D
1 up to nth order is given
by

D
1 	

 
1�

Xn
s	1

"s sN

!
0D
1 �O�"n�1�; (C6)

where sN is computed iteratively from

sN 	 
0D
1 sD

Xs
1
r	1

0D
1 s
rD rN: (C7)

In our problem, we need D
1 up to the third order. Its
explicit expression reads
-19
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D
1 	

 
1�

X3
s	1

"s sN

!
0D
1 �O�"4�

	 0D
1 
 " 0D
1 1D 0D
1 � "2�
0D
1 2D 0D
1 � 0D
1 1D 0D
1 1D 0D
1� � "3�
0D
1 3D 0D
1

� 0D
1 2D 0D
1 1D 0D
1 � 0D
1 1D 0D
1 2D 0D
1 
 0D
1 1D 0D
1 1D 0D
1 1D 0D
1� �O�"4�: (C8)
At last, we split D
1 into submatrices,

D
1 	
X Y

YT Z

� �
; (C9)

and account for

fx ;!1-g 	 O�"0�; fx ; ,1-g 	 O�"4�;

f�0 ;!1-g 	 O�"�; f�0 ; ,1-g 	 O�"2�:

From the expression (33) for the Dirac bracket we con-
clude directly that, to determine the elementary Dirac
brackets up to the desired third order, we need Y up to
order 1, Z up to order 2, and that we do not need X at all.
The components of the relevant submatrices are

Y ;- 	 � - 
 "
1

m 

@
0 

@x�1�-
�O�"2�; (C10)

Z ;- 	 "2
�@
1-

@x�1� 


@
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@x�1�-
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 "3
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<
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1<
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@
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@x�1�<

�

�

�
1

m<

@
0<
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1<

@x�1�-


@
1-
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��
1

m<

@
0<
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�#

�O�"4�: (C11)
044021
Hence the elementary Dirac brackets read

fx ; x-g
� 	

1

m m-
Z ;- �O�"4�; (C12)
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� 	 � - � "

2 1
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@
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�
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Finally, we explicitly display the relation (C12) up to
second order for both 3pN and 2pC dynamics
2pN: fxai; xbjg� 	 "2
G
4

"
7
�
�0ai

ma
�

�0bi

mb

�
nabj 
 7

�
�0aj
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 X3
k	1
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�0bk
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(C15)
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[15] P. Jaranowski and G. Schäfer, Phys. Rev. D 63, 029902

(2001).
[16] P. Jaranowski and G. Schäfer, Phys. Rev. D 60, 124003
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