PHYSICAL REVIEW D 71, 044019 (2005)

Threshold of singularity formation in the semilinear wave equation
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Solutions of the semilinear wave equation are found numerically in three spatial dimensions with no
assumed symmetry using distributed adaptive mesh refinement. The threshold of singularity formation is
studied for the two cases in which the exponent of the nonlinear term is either p = 5 or p = 7. Near the
threshold of singularity formation, numerical solutions suggest an approach to self-similarity for the p =
7 case and an approach to a scale evolving static solution for p = 5.
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I. INTRODUCTION

One area of interest within the context of a nonlinear
wave equation is the emergence of a singularity from
smooth initial data. Among the issues raised by the for-
mation of a singularity, the nature of the threshold for such
formation is of particular interest. A number of past studies
have addressed this threshold numerically in the nonlinear
sigma model in both two [1,2] and three [3-7] spatial
dimensions. Here, I study the semilinear wave equation
following the work of [8] which considers the formation of
singularities in the model restricted to spherical symmetry.

A scalar field, ¢, obeys the wave equation

Uo = ¢” (1)
for p odd (preserving the symmetry ¢ — —¢). In three

dimensions with Cartesian coordinates, this equation be-
comes

b=¢ .+ b, +d. + P 2)

where commas indicate partial derivatives with respect to
subscripted coordinates and an overdot indicates partial
differentiation with respect to time. Solutions are found
numerically by rewriting the equation of motion (2) in first
differential order form and replacing derivatives with sec-
ond order accurate finite difference approximations. These
finite difference equations are solved with an iterative
Crank-Nicholson scheme. In order to achieve the dynamic
range and resolution needed to resolve the features occur-
ring on such small scales in this model, adaptive mesh
refinement is used. In fact, the code necessary for this is
achieved with minimal modification to the code used in
[6,7], and the reader is referred to these earlier papers for
computational details. These changes consist of: (i) mak-
ing the association ¢p = Y, (ii) replacing the nonlinear term
in the evolution update of that model with the last term of
Eq. (2), and (iii) removing the regularity condition on the
scalar field at the origin. As is common, an outgoing Robin
boundary condition is applied at the outer boundaries
assuming a spherical outgoing front. While not perfect,
the outer boundary is generally far enough away from the
central dynamics so that the boundary condition has no
effect.
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Tests of the code include examining the convergence of
various properties to the continuum properties as the reso-
lution is increased. To that end, the energy density asso-
ciated with the scalar field is given by
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FIG. 1 (color online). Demonstration of convergence of the
code for p = 7. The bottom frame displays the energy loss
(relative to the initial time) AE(r) = E(t) — E(0) for four reso-
lutions: (32 + 1)? (solid line, black crosses), (64 + 1) (dotted
line, blue circles), (128 + 1)3 (short dashed line, green tri-
angles), and (256 + 1) (long dashed line, red squares). As the
resolution increases, energy loss decreases. In a similar fashion
the middle frame shows the loss of the z-component of the
angular momentum as a function of time which also converges
to conservation. The top frame shows the convergence factor
Q(1) as in Eq. (5) which approaches the expected value of 4 with
increasing resolution. This run is a bit below the threshold for
singularity formation and, as such, represents a strong field
example away from the linear regime. The initial data is from
family (c) (see Table I) with parameters A = 0.14, 6 = 2.5,
€, =24, €, =04, Q, =3, and R = 3.8. The dimensionless
ratio of the angular momentum to the energy squared is J/E* =
0.013.
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p=3L@P (6.2 + (&, + (4] - 3
so that the energy contained in the grid can be computed by
an integral. Similarly, the z-component of the angular
momentum is [9]

J, = ] d*xM™ = ] Explyd, —xd,). @)

One example of the conservation of these quantities is
presented in Fig. 1. Also in this figure is plotted the con-
vergence factor

| Xan — Xanla
|Xon = Xl
which compares the differences in solutions as the resolu-
tion is increased. For a second order accurate scheme such
as this one, the convergence factor is expected to converge
to the value four. As shown in Fig. 1, the code demonstrates
second order convergence as well as conservation of the
total energy and angular momentum.

A number of families of initial data have been explored,
and these are described in Table I. Initial data is created by
specifying ¢ and ¢ at the initial time, and is done so here
with a variety of real constants. A generalized Gaussian
pulse is defined as

o) = &)

G(x,y,z) = Ae PR/ (6)

where 7 is a generalized radial coordinate

F= \/Ex(x - xc)2 + Ey(y - yc)2 + (Z - Zc)2- (7)

Such a pulse depends on parameters: amplitude A, shell
radius R, pulse width 8, pulse center (x,, y,, z.), and skew-
ing factors €, and €,. For €, # 1 # €, such a pulse has an
elliptic cross section. Family (a) represents a single pulse
for which the parameter » takes the values {—1, 0, +1} for
an approximately outgoing, time-symmetric, or approxi-
mately ingoing pulse, respectively. The angular momen-

TABLE I.
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tum of the pulse about the z-axis is proportional to the
parameter (), as well as to (€, — €,)*. The other families
are similarly defined.

II. THRESHOLD BEHAVIOR

Solutions of Eq. (2) approach one of two end states,
either dispersal or singularity formation. This situation is
quite similar to the evolution of a scalar wave pulse
coupled to gravity which tends toward either dispersal or
black hole formation. Choptuik’s study of this problem
[10] found fascinating behavior at the threshold for black
hole formation (for reviews of black hole critical phe-
nomena see [11,12]). It was largely in the spirit of
Choptuik’s work that the previously mentioned studies
considered what happens at the threshold of singularity
formation in the nonlinear sigma model [1-7].

Self-similar solutions are often found at the threshold,
and indeed such is the case here. As mentioned in [8], the
scaling symmetry of Eq. (1) allows for self-similar solu-
tions of the form

d(r,t) = (T — 1)~ “U(p) ®)
where

a= i )
p—1
Here, T is the collapse time associated with the formation
of a singularity. In [8], they find discrete families of solu-
tions, U,(p), for p = 3 and for p = 7, but find no non-
trivial self-similar solutions for p = 5. Plugging Eq. (8)
into Eq. (1), one arrives at an ordinary differential equation
(ODE) that can be solved with a standard shooting method
and which duplicates the results of [8].
I now consider the different cases for p in turn.

,
=" and
Pmr— ™

A. The case p = 3

In the spherically symmetric evolutions of [8] for p = 3,
the threshold could not be studied because evolutions that

List of various initial data families. For families (a)—(f) both the field ¢(x, y, z, 0)

and its time derivative ¢(x, y, z, 0) are shown at the initial time ¢ =0 in terms of various
parameters. The terms G, G|, and G, represent unique Gaussian pulses as defined in Eq. (6). In
family (b), the parameters v, and v, are the respective velocities of the two pulses, generally
chosen to have a grazing collision. Family (f) represents perturbations of the static solution for

the particular case of p = 5.

Description d(x,y,2,0) é(x,y,2,0)
a Ellipsoid vi+Q.(G, —xG,)
b Two pulses G+ G,y vy aa_(jvl + UZaa_();cz
. _ _ Erxz €. 2_p\2 2

c Toroid Ae™?/P X (e eyt =RY/o Q.. —xp,)

d Antisymmetric 0

e Flat Pulse A(} tanh=E + 1) X (L tanh=58 + 1) 0

f  Static (for p = 5) G+(1+r/37! 0
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looked to be dispersing would eventually demonstrate
growth near the origin, and hence the threshold of singu-
larity formation could not be studied. Similar problems are
encountered here even without the assumption of spherical
symmetry.

B. The case p = §

In spherical symmetry [8], no nontrivial self-similar
solution exists for p = 5, and evolutions near the threshold
approach the known static solution

1
N

Retaining the notation of [8], we have a family of static
solutions, uk, generated by rescalings of (10)

ug(r) = (10)

uk(r) = L™ 2ug(r/L). (11)

Max(¢)

FIG. 2 (color online). Demonstration of threshold behavior of
p = 5 static solution. The maximum value of the field is plotted
for three evolutions; in the solid line the results for the static
solution [family (f) in Table I] are shown. In the dashed line are
the maximums obtained with a perturbation with negative am-
plitude A = —0.05,R =6, 6 =2, ¢, = 2, and €, = 0.6. In the
dotted line the results with the same perturbation except with a
positive amplitude A = +0.05 are shown. As the figure indi-
cates, the perturbations send the solution towards either singu-
larity formation or dispersal. Here, one can also see that at late
times the unstable static solution is also driven to singularity
formation because of the variety of numerical perturbations
inherent in the numerical scheme such as the boundary treat-
ment.
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In three dimensions without the assumption of spherical
symmetry, the static solution remains at the threshold of
singularity formation. In Fig. 2, the maximum value of the
scalar field within the computed domain is plotted versus
time. For the static solution, this value remains essentially
constant until late times when inherent numerical pertur-
bations drive it to form a singularity. Also plotted are the
results of initial data consisting of the static solution along
with a small Gaussian pulse added explicitly to perturb the
solution. For positive amplitude of the Gaussian pulse, the
solution is driven to singularity formation whereas for
negative amplitude the solution disperses. These results
suggest that the static solution remains on threshold even
without the assumption of spherical symmetry.

However, for other families of initial data near the
threshold, the evolution does not appear static. Instead,
the collapsing region appears roughly self-similar in its
collapse about some central point. Consider, for example, a
family of initial data which is antisymmetric across the y-z
plane, family (d) from Table I. One such example is shown
in Fig. 3. The first frame in the figure shows the initial
configuration for ¢ and the second frame shows the solu-
tion near the collapse time. Two regions of collapse form
with both regions spherically symmetric about their re-
spective centers.

That the collapse appears self-similar when no such
solution is admitted also occurs in the case of blowup
with a Yang-Mills field [13,14]. There, the dynamics
were identified with a scale evolving static solution, and
such an identification appears to be the case here.

FIG. 3 (color online). Example of a slightly supercritical evo-
lution of antisymmetric initial data [family (d) from Table I] for
p =5. The first frame shows the initial field configuration
¢(x,y,0,0) in the x-y plane and the second frame shows the
two, well-resolved regions in which the field is blowing up.
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Evidence that the near-critical solution represents the
static solution with a scale factor dependent on time, L(z),
is presented for a particular case in Fig. 4. Shown in the
figure is the evolution at different times near the collapse
time rescaled according to Eq. (11) by choosing L(z) such
that the rescaled quantity ~/L¢(r = 0) is unity. The (un-
rescaled) static solution, ug, is also shown and the excellent
agreement among the profiles is strong evidence that in-
deed the evolution is proceeding along the scale evolving
static solution.

The inset of Fig. 4 shows three different spatial slices of
the data for a particular time. They agree quite well,
providing good evidence that the solution is spherically
symmetric.

One can observe similar behavior in spherical symmetry
by modifying the code from [3]. For many families of
initial data, near threshold solutions approach the static
solution in the conventional way. However, in Fig. 5 a near-
critical solution is shown obtained by tuning the initial data
family

R—r

b(r,0) = %‘[mh(ﬁ—l) + 1} (12)

with the initial time derivative set consistent with Eq. (8)

1 ‘
L —ug(ln r)
0.8 B T—t
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FIG. 5 (color online). Near-critical solution from the explicitly
spherically symmetric code for p = 5 with initial data family
(12) and (13) and R = 0.1, 6§ = 0.3, and A* = 5.539. Similar to
Fig. 4, the solution at times near the collapse time is shown
rescaled. Its agreement with the (unrescaled) static solution
(shown in solid line) suggests a scale evolving static solution.
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FIG. 4 (color online). Demonstration of the near-critical ap-
proach to the static solution for p = 5. Shown are certain x > 0,
y = 0, z = O slices of an evolution at five different times near the
collapse time, 7. Each slice ¢(Inx) is rescaled to L'/2¢(Inx —
InL) in accordance with the rescaling symmetry of the problem.
The rescaling factor L(f) is chosen for each time slice in order to
achieve unity at the origin. The (unrescaled) static solution
ug(Inr) is shown in the solid line. The excellent agreement
among these profiles suggests the solution represents a scale
evolving static solution. The inset shows three different slices
along the three positive axes all at the same time, and indicates
that the central area of the solution is spherically symmetric. The
initial data come from family (a) of Table I with R = 3, § = 2,
X =0=y.=2,€=2,€6=07,v=0,and Q. =0.1, and
the evolution entails 11 levels of 2:1 refinement with a 333 coarse
grid.

G(0) , dd(r,0)

$(n0) = =3 dr

(13)

For this family, near threshold solutions also appear to
approach a scale evolving static solution.

C.The case p =7

In [8] for the p = 7 case, they find in the critical limit an
approach to the U, (p) self-similar solution. Here, without
the assumption of spherical symmetry, similar threshold
behavior is observed (see Fig. 6). Such a near-critical
solution is shown in Fig. 7. The solution appears both
self-similar and spherically symmetric. The inset of
Fig. 7 compares the obtained solution to the ODE solution,
U,(p), and they appear quite similar suggesting that it
remains the critical solution even without the assumption
of spherical symmetry.
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FIG. 6 (color online). Results from two near-critical evolutions
for p = 7 with initial data family (e). The maximum of the field
configuration ¢ is plotted versus time for a slightly subcritical
evolution (solid line) and for a slightly supercritical evolution
(dotted line). The collapse time T is estimated by determining
the lifetime of the supercritical evolution closest to criticality, in
this case T = 3.67. The inset shows the same information with
the expected scaling of ¢.

III. CONCLUSIONS

The semilinear wave equation represents perhaps the
simplest nonlinear generalization of the linear wave equa-
tion, and yet it displays interesting threshold behavior. In
particular, this work has extended the results of [8] ob-
tained in spherical symmetry to the full 3D case.

For the p = 3 case, the threshold could not be studied
because of its late time growth which was also observed in
spherical symmetry.

For the p = 5 case, a critical solution is observed which
appears roughly self-similar despite the fact that no such
solution is admitted. Instead, the solutions suggest an
approach to the static solution with an evolving scale.
This same behavior is also observed in a code which
explicitly assumes spherical symmetry.
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FIG. 7 (color online). Demonstration of self-similarity of a
near-critical solution for p = 7. This is similar to Fig. 4 and
indeed has the same initial data family (with different critical
amplitude A*). That the solutions at different times ¢ coincide
indicates self-similarity. Also shown is the explicitly self-similar
solution U, (p) found by solving an ODE. The collapse time T is
determined by the average of the values required for each time
slice to achieve agreement with U, for p = 0.

For the p = 7 case, a critical solution is found which
resembles that found in the spherically symmetric case.
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