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In this work, we study the effects of breaking Lorentz symmetry in scalar-tensor theories of gravity
taking torsion into account. We show that a space-time with torsion interacting with a Maxwell field by
means of a Chern-Simons-like term is able to explain the optical activity in synchrotron radiation emitted
by cosmological distant radio sources. Without specifying the source of the dilaton-gravity, we study the
dilaton-solution. We analyze the physical implications of this result in the Jordan-Fierz frame. We also
analyze the effects of the Lorentz-breaking in the cosmic string formation process. We obtain the solution
corresponding to a cosmic string in the presence of torsion by keeping track of the effects of the Chern-
Simons coupling and calculate the charge induced on this cosmic string in this framework. We also show
that the resulting charged cosmic string yields important effects concerning the background radiation. The
optical activity in this case is also worked out and discussed.
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I. INTRODUCTION

The idea of the possible existence of extra dimensions of
space-time as proposed in the Kaluza-Klein theory [1] has
inspired the formulation of scalar-tensor theories of grav-
ity. In these theories, the gravitational interaction is medi-
ated by one or several long-range fields, in addition to the
usual tensor field of the theory of general relativity and
represents the simplest and most natural generalization of
general relativity [2– 4]. The relevance of these scalar-
tensor theories resides in the fact that in the very early
Universe, or in the presence of strong gravitational fields,
both the scalar and tensor aspects of gravity have to be
taken into account. Nowadays, these effects are small but,
to some extent, they can be observed.

In addition to the scalar and tensor fields, we shall
consider another one which may have an important role:
the torsion field [5]. This could influence such physical
phenomena as, for example, neutrino oscillations [6], and
may have been an important element in the early Universe,
when quantum effects of gravity were drastically
important.

In this paper, we study the cosmic string configuration in
the context of scalar-tensor theories of gravity [7] with
torsion [8–10] when a Maxwell-Chern-Simons term is
present and analyze their role in the geometric and topo-
logical features of the cosmic string solution. It is worthy
mentioning that cosmic strings with torsion and Brans-
Dicke type models have also been discussed in
Refs. [11–13], respectively. A cosmic string is called a
topological defect and corresponds to a regular, classical
solution to a gauge field theory which arises when a
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symmetry of the theory is spontaneously broken. In par-
ticular, in the framework of cosmology, it may be
generatedBezerra during phase transitions in the early
Universe [14,15]. The grand unified theory (GUT) defects
carry a large energy density and, hence, are of interest in
cosmology, as potential sources to explain the most ener-
getic events in the Universe, like the cosmological gamma-
ray bursts (GRBs) [16,17], ultra high energy cosmic rays
(UHECRs) and very high energy neutrinos [18]. More
recently, stimulated by a suggestion of Ref. [17], it has
been shown in Refs. [19–21] that cusps in cosmic string
loops can emit gravitational wave (GW) bursts whose
amplitude, depending on the parameters of the model (in
particular, the string tension and the number of cusps per
loops) can be interesting for GW detection.

Over the past years, there has been a considerable inter-
est in theories with the Lorentz and CPT violations[22–
25]. These theories may be implemented by a Chern-
Simons type model in four dimensions. More recently,
Jackiw [26] and Jackiw and Pi [27] have opened up a
very interesting stream of investigation with Lorentz vio-
lation being extended to the realm of general relativity. In
these works, a Chern-Simons action is proposed for gravity
in terms of the Cotton tensor and an external background
vector, and Lorentz violation takes place at the level of the
gravitational degrees of freedom.

In three dimensions, the Chern-Simons models have
attracted considerable attention due to the fact that the
Maxwell-Chern-Simons-Higgs (MCSH) theory in a
three-dimensional Minkowski space-time [28] has some
similarities with the theory of high-TC superconductivity.
At large distances, the Chern-Simons term dominates over
the Maxwell term and so it is reasonable to consider the
simplest Abelian Chern-Simons-Higgs model, from which
it was shown [29] that there exists a vortex solution to the
three-dimensional Abelian Chern-Simons-Higgs model,
-1  2005 The American Physical Society
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and an electrically charged vortex solution with a Chern-
Simons term [30]. Motivated by these reasons, in our work
we study the possibility of building a cosmic string solu-
tion in the presence of a four-dimensional Chern-Simons
type term [31]; in this dimension it presents a vector
coupling, which can be identified with the dilaton gradient
in a scalar-tensor theory of gravity.

In a previous paper [32], only the effect of the interac-
tion between the cosmic string–dilaton-solution in the
background was considered; now, we analyze another as-
pect associated with the charge induced in the core of the
string. An interesting application of a cosmic string with
Chern-Simons torsion coupling is to analyze the possible
existence of a preferred direction in the sky. This subject
has already been discussed in the context of theories of
gravity [22–24,33–38] and observational cosmology [39].
The idea is that the electromagnetic radiation traveling
through the intergalactic medium interacts with its compo-
nents and, if this radiation is initially plane-polarized, the
plane of polarization will rotate. Thus, if the Faraday
rotation is taken into account, there is a residual rotation
that does not vanish. Such a phenomenon, if it exists,
would imply the violation of the Lorentz invariance [33],
with remarkable consequences for fundamental physics
[40].

For the sake of our discussions, we consider that a plane-
polarized electromagnetic radiation has the polarization
plane rotated when it is traveling in the presence of the
gravitational field generated by a screwed cosmic string in
scalar-tensor theories of gravity. The motivation to con-
sider such a background with torsion was already discussed
in [41,42]. On the other hand, the assumption that gravity
may be intermediated by a scalar field (or, more generally,
by many scalar fields), in addition to the usual tensor field,
has been considerably reassessed over the recent years. It
has been argued that gravity may be described by a scalar-
tensorial gravitational field, at least at sufficiently high
energy scales.

This paper is organized as follows: In Sec. II, we present
some aspects of scalar-tensor theories. In Sec. III, we
introduce the Chern-Simons coupling to the free field
theory and study the cosmic string solution with Chern-
Simons effects. In Sec. IV, we discuss the possibility that
this approach can be in accordance with the experiments
where an optical activity appears. Finally, in Sec. V, we
present our concluding remarks. An appendix follows
where we collect some technical aspects that may be help-
ful for the understanding of Sec. III.
II. SCALAR-TENSOR THEORIES OF GRAVITY
WITH TORSION

In this section, we set forth some results concerning the
scalar-tensor theories of gravity with torsion. Let us con-
sider that, in this case, gravity is represented by an action in
the Jordan-Fierz frame [43,44], which is given by
044018
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where the matter action Im in Eq. (2.1) is related to the
dilaton-matter coupling. The function ! in a general
scalar-tensor theory has a ~
 dependence, but in the specific
case of the Brans-Dicke theory it is a constant. The scalar
curvature ~R, appearing in Eq. (2.1) can be written as

~R � ~R�fg� � �
@� ~
@� ~


~
2
; (2.2)

where ~R�fg� is the Riemann scalar curvature in the Jordan-
Fierz frame and � is the torsion coupling constant [44]. It is
worthy to stress that in the scalar curvature ~R, the scalar
function ~
 (the dilaton field) can act as a source of the
torsion field. Therefore, in the absence of string spin, the
torsion field may be generated by the gradient of this scalar
field [43]. In this case, the torsion can be propagated with
the scalar field, and it can be written as

S��� � ����@� ~
� ���@� ~
�=2 ~
: (2.3)

The most general affine connection ���� in this theory has a
contribution arising from the contortion tensor K�

��, as
given below:

���
� � f���g � K��

�; (2.4)

where the quantity f���g is the Christoffel symbol computed
from the metric tensor g��, and the contortion tensor, K�

��,
can be written in terms of the torsion field as

K��
� � �

1

2
�S�� � S�� � S��

��: (2.5)

Now, let us introduce a Maxwell-Chern-Simons coupling
and analyze its consequences. Thus, we will consider the
action for the matter in (2.1), which we will indicate by
IMCS, as given by

IMCS �
Z
d4x
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�~g
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3!
�"���� ~F��A� ~S�
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; (2.6)

where we couple the electromagnetic dual field ~F�� and
the vector potential A� to the torsion vector ~S� � � �

3 S�,
which is responsible for the appearance of the preferred
cosmic direction, as suggested by observations [38]. The
Chern-Simons term in the action above yields a Lorentz
symmetry breaking if S� ( or, equivalently, ~S�) is taken as a
fixed background vector. Lorentz breaking takes place in
the active point of view, as discussed in Ref. [45] and as we
shall discuss in the next paragraph. Moreover, as pointed
out in [45], if ~S� is a constant vector or a gradient of a
scalar, U(1) gauge invariance is not violated, up to a
-2
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surface term. However, the situation here is not the same as
the gauge symmetry breaking realized by the torsion as
proposed in Ref. [46]. The parameter � is the coupling
constant of the theory, whose expected value will be esti-
mated later on using current astronomical data sets. In what
follows, we shall investigate the role played by the Chern-
Simons term in the scalar-tensor screwed cosmic string
background.

Let us explain in more detail in which sense Lorentz
symmetry is violated. Conventional Lorentz transforma-
tions, as we adopt them in the theory of special relativity,
are implemented as coordinate changes and we usually
refer to them as observer Lorentz transformations.
However, we can also consider the so-called particle
Lorentz transformations, which consist in applying boosts
or rotations on particles and localized fields, but never on
the background fields, contrary to the observer Lorentz
transformations, which act also on background fields.

Distinguishing between observer and particle Lorentz
transformations is crucial for the kind of model we are
considering here, where the Chern-Simons term described
in the action of Eq. (2.6) is to be regarded as arising from a
constant background field S�, which is seen as a global
feature of the model and is not related to localized experi-
mental conditions, as it is the case of the electromagnetic
field A�, which is a perturbation that propagates in a space-
time dominated by S�. So, in applying particle Lorentz
transformations, the Chern-Simons term of Eq. (2.6) does
not display Lorentz invariance, since S� is not acted upon
by any �-matrix belonging to a Lorentz group, so that the
�’s acting on ~F�� and A� do not combine to produce the
det� � 1-factor that would appear if S� were boosted, as
it happens for the class of observer Lorentz transforma-
tions. This confirms that Lorentz covariance breaks down.

Now, using Eq. (2.3) the torsion vector (in the Jordan-
Fierz frame) is defined as

~S � �
3

2
@� ln ~
: (2.7)

We should reinforce here that we are actually associating

to the torsion vector, and not to the Weyl covector, because
our connection is metric (nonmetricity is not considered in
the space-time we adopt). We refer the reader to
Refs. [12,47] where the degeneracy between the torsion
vector and the Weyl covector is discussed in connection
with metric-affine models of gravity.

Although the action proposed in Eq. (2.1) shows explic-
itly this scalar-tensor gravity feature, for technical reasons,
we will adopt the Einstein (conformal) frame in which the
kinematic terms of the scalar and tensor fields do not mix.
In this frame, the action can be written as

I �
1

16�G

Z
d4x

�������
�g

p
	R� 2g���@�
@�

 � IMCS;

(2.8)
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where IMCS is the action of Maxwell-Chern-Simons given
by (2.6) with ~S�, interchanged by S� which is given by

S� �
1

2
��
�@�
; (2.9)

where g�� is written in the Einstein frame, R�fg� is the
curvature scalar without torsion and � is the parameter that
includes the torsion contribution, �, so defined that

� � 1 � 2��2: (2.10)

This more convenient formulation of the theory in terms of
the gravitational field variables, g�� and 
, is obtained by
means of the conformal transformation

~g �� � �2�
�g��; (2.11)

and by a redefinition of the quantity

G�2�
� � ~
�1:

This transformation puts into evidence that any gravita-
tional phenomena will be affected by the variation of the
gravitational constant, G, in the scalar-tensor gravity, a
feature that is exhibited through the definition of a new
parameter,

�2�
� �
�
@ ln��
�
@


�
2
� 	2!� ~
� � 3
�1;

which can be interpreted as the field-dependent coupling
strength between matter and the scalar field. In order to
make our calculations as general as possible, we will not
fix the factors ��
� and ��
�, leaving them as arbitrary
functions of the scalar field.

In this context, the field equation of the electromagnetic
field becomes

@�F�� � 2���
��F��@�
; (2.12)

where �F stands for the Hodge dual. For some purposes, it
is more interesting to write down these equations of motion
in terms of the electric and magnetic fields. Then, we
consider the electric field Ei and magnetic field Bi, defined
as usual by:

Ei � F0i; Bi � �!ijkFjk: (2.13)

In what follows, let us consider a spatially flat isotropic
Friedmann-Robertson-Walker (FRW) background,

ds2 � a2�&���d&2 � dx2 � dy2 � dz2�; (2.14)

where & is the conformal time coordinate, defined by
d& � dt=a�t�, a�t� being the cosmological scale factor.
Then, we have the following equations

~r � ~E � 2���
�� ~r
� � ~B;

@& ~E� ~r� ~B � 2���
�	@&
~B� ~r
� ~E
;
(2.15)

where ~E � a2E and ~B � a2B. The equation of the motion
-3
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for the dilaton field in this background is given by

�@2
& �r2�
�

2

a
@&a@&
 � 0; (2.16)

where 
 is taken to be an arbitrary function of the space
and time coordinates. Assuming that the solution for
 has
the form


�&; ~x� � 
0�&� cos� ~k � ~x� (2.17)

and substituting this into Eq. (2.16), we get the following
equation

@2
&
�

2

a
@&a@&
� k2
 � 0: (2.18)

We can notice that, as a consequence of this result, the
overall homogeneity of the Universe over long distance
scales is not disturbed by the inclusion of a spatial part in

. Now, we study the modification introduced by this
background in the Poynting vector. From the field
Eqs. (2.15), we derive the wave equations for the electric
and magnetic fields, which take the form that follows:

�@2
& �r2�~B � �2r�r
~E� � 2r� _
 ~B�; (2.19)

�@2
& �r2�~E � 2r� _
 ~E�2r
 _~E� � r�r � ~E� � 2 �
 ~B :

(2.20)

It is easy to see that these equations reduce to the usual
Maxwell equations whenever 
 � 0 or constant. From the
equations given in (2.15), we find that

r � S�
@U
@t

� ~E � ~J � 0; (2.21)

where S � �~E� ~B� is the Poynting vector and U � 1
2 �

�~E2 � ~B2� is the electromagnetic energy density. The pres-
ence of a term of the form ~E � ~J indicates a sort of dis-
sipation effect. It can be interpreted as the analogue of the
Ohm’s law, where the current is proportional to ~B and
given by ~J � 2���
� _
 ~B . This sort of current induced
by ~B is a feature of models with a Maxwell-Chern-Simons
term.
III. SCREWED COSMIC STRING MODEL WITH
CHERN-SIMONS COUPLING

In this section, let us investigate the solution that corre-
sponds to a cosmic string when the Chern-Simons coupling
is included. We analyze the vortex regime of the fields. The
action for screwed cosmic string Im�~g��;�� in an Abelian
Higgs model can be written as

Im � ISCS � IMCSH; (3.1)

where ISCS is the action associated with a screwed cosmic
string and IMCSH is the Maxwell-Chern-Simons-Higgs ac-
tion. First, let us consider ISCS, which can be written as
044018
ISCS�
R
d4x

���
~g

p
�
�1

2D���D����� 1
4H��H

���V�j�j�

�
;

(3.2)

where D�� � �@� � iX��� is the covariant derivative.
The field strength H�� is defined in the standard fashion,
namely, H�� � @�X� � @�X�, with X� being the gauge
field. The action given by Eq. (3.2) has a U(1) symmetry
associated with the �-field and it is broken by the vacuum,
giving rise to vortices of the Nielsen-Olesen type [48]:

� � ’�r�ei3; X3 �
1

q
	P�r� � 1
;

Xt � Xt�r� time-like.
(3.3)

The boundary conditions for the fields ’�r� and P�r� are
the same as those for ordinary cosmic strings, namely,

’�r� � &; r! 1; P�r� � 0; r! 1;

’�r� � 0; r � 0; P�r� � 1; r � 0:
(3.4)

The configuration for the other component compatible
with the cosmic string stability is given by the following
boundary conditions:

Xt�r� � 0; r! 1; Xt�r� � b; r � 0:

(3.5)

It is worthy to draw the attention to the fact that these
components are important to study the behavior of the
charges and currents.

The potential V�’;6� triggering the spontaneous sym-
metry breaking can be built in the most general case as

V�’� �
�’
4
�’2 � &2�2; (3.6)

where �’ is a coupling constant. This potential possesses
also all the ingredients which yields the formation of a
cosmic string, in analogy with the ordinary cosmic string
case, where Xz � Xt � 0 and without an external field.

The term IMCSH is given by

IMCSH �
Z
d4x

���
~g

p �
�
�1

4
F��F�� �

�2

2
"����H��X�S�

�
�3

2
"����H��Y�S�

�
: (3.7)

In this action, we introduced the external field F�� that
will be analyzed in connection with the Chern-Simons
coupling. The parameters �1, �2, and �3 will be analyzed
with respect to the charge effects.

Let us consider the dilaton-torsion solution in the weak-
field approximation [49,50]. This approximation is reason-
able because the present dilaton-torsion effects are small if
compared with the g��-effects; in this case, the calcula-
tions become relatively simple. For more details on the
relations involving the parameters of the metric, the reader
-4
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should consult the appendix and the references quoted
therein.

In this case, the equation for the dilaton can be written as

�
 � �"T�r�; (3.8)

where " � 4�G��0 and T is the trace of T�
�0��. Let us

assume that the dilaton field, 
�1� can be written as


�1��t; r; z� � 8�r� � f�r� �z; t�; (3.9)

where we are considering that the components which
interact with the string are t and z, and therefore, the scalar
field
�1� depends on the radial coordinate as well as on the
coordinates t and z. The function f�r� is required to vanish
outside the string core.

Using solution (3.9) in Eq. (3.8), we obtain, up to the first
order in ", the following set of equations

800 �
1

r
80 � �T�r�: (3.10)

@2f

@r2
�

1

r
@f
@r

� !̂f (3.11)

and

@2 

@t2
�
@2 

@z2
� !̂ : (3.12)

with !̂ � k2 �!2 being a constant. In the ansatz (3.9), 8
corresponds to a field which depends only on the radial
coordinate. Note that as T is the source of the pure radial
component of the dilaton, it enters only in the Eq. (3.10).

In order to have compatibility with the external solution,
f�r� must have the following behavior limr!1f�r� � 0.
Now, let us consider the spacelike dilaton !̂ � k2. The
timelike dilaton also can be considered but the dilaton in
this case must be massive [49] and it has different effects.
In the spacelike dilaton case, we have that the solutions of
Eqs. (3.11) and (3.12) are given, respectively, by the fol-
lowing expressions

f�r� � fII0�kr� � fkK0�kr�; (3.13)

 �  0 sin�kz�: (3.14)

and in this situation, by using the procedure of the appen-
dix, we get that

8 � 2G0���1	�� ;� �  !Q�2
 ln
r
r0
: (3.15)

Notice that the solutions (3.13) and (3.14) depend only on
the coordinates r and z. For these the solutions, we have the
same interpretation already presented in the literature [49].

Now, let us study the cosmic string configuration in the
weak-field approximation considering the field equations.
In this case, we have analyzed the Chern-Simons effects in
the core of the string with �1 � �3 � 0 in (3.7). Thus, the
044018
equation of motion for the gauge field X��r� is given by

@�H�� � �2!��k�H�kS� � j�: (3.16)

If we use the screwed cosmic string ansatz, we find the
following equations

~r� ~B� �2
~S� ~E � ~J (3.17)

and

~r � ~E� �2��
0�f�r� ~S � ~B � >: (3.18)

These equations are compatible with the asymptotic
conditions for the string, i.e., outside it Sz vanishes and
Sr does not vanish. Based on discussions concerning the
dilaton-solution, the timelike gradient of the dilaton (2.7) is
given, in the linearized approximation, by

S� � ���
0�@z
�1��z� � ���
0�f�r�Sz�kz��z�; (3.19)

where Sz�kz� � k 0 cos�kz�. If we use the Gauss law, we
find

Q �
Z
d3xj0 � ��2��
0�Sz

Z r0

0
f�r�B�r�rdr: (3.20)

Another interesting equation is related with the internal
electric field, in analogy with the London equation, and is
given by

J �
Z
d3xj3 � ��2��
0�Sz

Z r0

0
f�r�Erdr; (3.21)

where E � Hrt is the electric field inside the string.
Therefore, from the previous results, we can get the inter-
esting conclusion that the screwed cosmic string in pres-
ence of the Chern-Simons-Higgs coupling is charged.

In what follows, we consider the effects of the Maxwell-
Chern-Simons-Higgs coupling on the cosmic string gravi-
tational field. To study the effects presented in the last
section, let us consider the vector S� as spacelike as in
(3.19). The configuration of the external field that interacts
with the cosmic string is Yt�r�. In this situation, we have the
following equation for the gauge field X��r�,

@�H�� � !��k���2H�k � �3F�k�S� � j�: (3.22)

This equation is compatible with the asymptotic condi-
tions of the string, i.e., outside the string S� vanishes,
because of the f�r� dependence. The equation that is
equivalent to Eq. (3.21) and includes the external field is
given by

J �
Z
d3zj3 � ��
0��Sz

Z
f�r�Êrdr; (3.23)

where Ê � �2E� �3Eext, with Eext being the external
electric field.

In the electric case, where we use the spacelike torsion
vector, we have that the external electromagnetic field that
-5
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interacts with the string is Yt. The equation of motion for
X� gives us the same result as in (3.20).

Now we allow the external field Y� to interact with this
charge. The equation of motion for this, with �1 � 1, is
given by

@�F�� � �3!�>��S>H�� � 0: (3.24)

whose solution is

Eext � !�z�
Q���
2

p
�r
; (3.25)

where we have considered Q � 2
���
2

p
�2

Rr0
0 f�r�B�r�rdr

and !�z� � �2�3�Sz.
Up to now we have considered, in the weak-field ap-

proximation, the dilaton-solution and the field equations.
The Einstein equation solutions in this approximation can
be studied in more detail in the appendix. The solution we
get is the metric of a superconducting cosmic string as
given below:

ds2 � �1 � htt�	�dt2 � a�t�2�dx2 � dy2 � dz2�
; (3.26)

with the component htt in the Jordan-Fierz frame given by

htt � �4G0

	
�  !Q�2 ln�

>
r0
� ��� ;� �  !Q�2

�
�2��1

2
	�� ;� �  !Q�2




ln
�
>
r0

�
; (3.27)

where  ! � �@S��
0�.
The interesting aspect to stress here is the fact that, in the

presence of a fixed torsion vector responsible for the
Lorentz violation, we get the possibility of finding out a
superconducting cosmic string. If we consider that the
Lorentz-breaking effect (that may become important at
the Planck scale) influences the cosmic string phase tran-
sition, superconducting effects may appear at a very early
era.
IV. ANALYSIS OF THE CHERN-SIMONS-LIKE
COUPLING IN A SCALAR-TENSOR SCREWED

COSMIC STRING BACKGROUND

In this section, we study the cosmic string background in
the context of a scalar-tensor theory including torsion with
Lorentz breaking induced by the charge inside the string.
We examine, in particular, the effect on the polarization of
the synchroton radiation coming from cosmological distant
sources, and the relation between the electric and magnetic
components of the radiation. The radio emission from
distant galaxies and quasars present the polarization vec-
tors which are not randomly oriented, as naturally ex-
pected. This interesting phenomenon suggests that the
space-time between the source and observer may exhibit
some optical activity. In this case, we consider that torsion
in the action (2.6) is generated by the cosmic string, an
044018
important aspect analyzed here, associated to the fact that
the cosmic string is charged.

Replacing the linearized solution given by Eq. (3.15)
into Eq. (2.6), as we did in our previous paper [8], we have

S� � �3�@�8: (4.1)

Again, we stress that though S� is expressed in a cova-
riant form, Lorentz symmetry is understood to be broken in
the sense of active transformations, as already discussed in
Sec. II. In this context, the equation for the electromagnetic
field becomes

@�F
�� � 2���
0�

�F��@�8: (4.2)

For some purposes, it is more interesting to write down
these equations of motion in terms of the electric and
magnetic fields. Then, we consider the electric field Ei,
and magnetic field Bi defined as usual:

Ei � F0iBi � �!ijkFjk (4.3)

Thus, Eq. (4.2) can be written using the linearized
solution given by (3.26).

Now, let us consider a FRW background given by (2.14).
Therefore, the equations of motion can be written as

~r � ~Eext � 2�� ~r8 � ~Bext;

@& ~Eext �
~r~Bext � �2�� ~r8~Eext

(4.4)

Using the usual procedure [32], we find that the disper-
sion relation in powers of S�, to first order, gives us

k� � !� 2���1G0	�� ;� �  !Q�2
ŝ cos�@�: (4.5)

In this case, the parameter Q is the charge in the vortex
induced by Lorentz breaking and ; is the tension of the
string.

The angle � between the polarization vector and the
galaxy’s major axis is defined as

h�i �
1

2

r
�s

cos� ~k; ~s�; (4.6)

where h�i represents the mean rotation angle after
Faraday’s rotation is removed, r is the distance to the
galaxy, ~k the wave vector of the radiation, and ~s a unit
vector.

The rotation of the polarization plane is a consequence
of the difference in the propagation speed of the two
modes, A�,A�, the main dynamical quantities computed
above. This difference, defined as the angular gradient with
respect to the radial (coordinate) distance, is expressed as

1

2
�A� � A�� �

d�
dr
; (4.7)

where � measures the specific entire rotation of the polar-
ization plane, per unit length r, and is given once again by
� � 1

2 ��1
s r cos@: In the case of the screwed cosmic string,
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the constant �s that encompasses the cosmic distance scale
for the optical activity to be observed can be written as a
function of the cosmic string energy density � as

��1
s � 2�G0�2��1	�� ;� �  !Q�2
: (4.8)

It is illustrative to consider a particular form for the
arbitrary function ��
� � 2 � 10�2, corresponding to
the Brans-Dicke theory. In this work we use the Nodland
and Ralston data to ��1

s � 10�32 eV to obtain the estima-
tive of the value of the torsion coupling constant to Chern-
Simons theory �. Using COBE data that
2G0��
0��

�1	�� ;� �  !Q�2
 � 10�6, we find that ��
10�26 eV.

Indeed, these results are in agreement with the recent
measurement of optical polarization of light from quasars
and galaxies [35,36,38,51]. An interesting set of potential
explanations for this effect has been put forward in
Refs. [41,42,52,53]. More recently, an interesting discus-
sion on new constraints on Lorentz symmetry violation has
been reported in the work of Ref. [54], where the authors
reassess the Lorentz violation parameters for electrons,
positrons, and photons from GRB021206 and synchrotron
electrons in the Crab nebula. In our work, we are only
concerned with photons in a Lorentz-violating back-
ground; the consideration of electrons, and positrons is
under investigation [21], where we focus on the matter
sector (electrons and positrons) of a Lorentz-violating
model with an underlying N � 1-supersymmetry [55].
V. CONCLUDING REMARKS

In this work, we show that is possible to build up a
cosmic string solution in the presence of a Chern-Simons
coupling in the case where the Lorentz-breaking vector is
the dilaton gradient. Actually, supersymmetry imposes
that, for the Chern-Simons-type Lorentz-breaking to be
realized, the background vector that condensates must in-
deed be the gradient of a scalar field [55]; this is why we
adopted the torsion as the dilaton gradient.

There are very important consequences of this fact in the
cosmic string solution, as, for example, the existence of a
charge induced by the Lorentz breaking in the core of the
string. Moreover, birefringence effects may also show up.
Both the external and internal solutions are consistent in
the case of a timelike cosmic string. In the spacelike string,
there are problems concerning the solution of the dilaton
equation, as already discussed [49]. In order to solve this
problem, it is necessary to introduce a massive scalar field.
This case was not analyzed in the present work, but it will
be the subject of a future investigation. According to our
present results, the background generated by this cosmic
string is birefringent and agrees with our previous analysis.
The difference between them is that, in the present case,
the current has a scalar-tensor parameter which gives a
damping in the produced effect; but, even in this situation,
044018
this effect could have had interesting consequences at the
time in which cosmic strings were probably formed.
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APPENDIX A: DETAILS ON THE WEAK-FIELD
APPROXIMATION

In this appendix, we follow the procedure presented in
the analysis concerning superconducting cosmic strings
[9,50]. Let us study with more detail the weak-field ap-
proximation. To do this, we assume that the metric g��,
and scalar field 
 can be written as

g�� � &�� � h��; ��
� � �0 � �0
0
�1�;

T�� � T�0��� � T�1���; 
 � 
0 �
�1�;
(A1)

where ��
0� � �0, 
0 is the constant dilaton value in the
absence of the string and T�� is the energy-momentum
tensor.

In order to find the metric, we use the Einstein-Cartan
equations in the form G���fg� � 8�G0T

��
�0� , where the

tensor T�0��� (being first order in G) does not contain the
torsion contribution due to the fact that we are working in
the weak-field approximation and ~G0 � ~
�1 � G�2

0.
Using the energy conservation in the weak-field approxi-
mation, we obtain after integration,

Z r0

0
rdr�T3

�0�3 � Tr
�0�r� � r20T

r
�0�r�r0� �

1

2
r20Y

02
t �r0�: (A2)

Now, let us analyze the Lorentz-breaking effects on the
energy-momentum tensor. To do this, we use Eq. (3.25),
which gives us

Y0
t �

!Q���
2

p
�r

; (A3)

where Q is the charge density in the core of the string. In
this case, the energy-momentum tensor of the string source
T�0��� (in Cartesian coordinates)

r2h�� � �16�Ghj�T�0��� �
1

2
&��T�0�ji: (A4)

Then, calculating the expectation value, we get
-7
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hjT�0�ttji � ���x���y� � �  !Q�2

4� r2

�
ln r

r0

�
2
;

hjT�0�zzji � �;��x���y� � � �  !Q�2

4� r2

�
ln r

r0

�
2
;

hjT�0�ijji � ��  !Q�2�ij��x���y� �
�  !Q�2

2� @i@jln�r=r0�;

(A5)

with hSzi given by

<S2
z> �  2

0

Z �

��
cos2udu � � 2

0 � S2 (A6)

 !2 � �2@2S2�2, where u � kz and the energy per unit
length �, and the tension per unit length ; are given,
respectively, by
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� � �2�
Z r0

0
Tt
�0�trdr; ; � �2�

Z r0

0
Tz
�0�zrdr; (A7)
T�
�0�� represents the trace of the energy-momentum tensor

without torsion. Actually, these quantities are not con-
served in the Einstein frame, but we know [49] that the
z-contribution of the dilaton to the metric vanishes, since
the relevant quantity is the vacuum value and then the only
contribution comes from the induced current. The solution
to Eq. (A4) can be found by using the procedure of the
current literature. After the junction with the external
solution, we find the metric (3.26) that also gives us the
dilaton-solution (3.15).
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[30] E. Moreno, C. Nuñez, and F. A. Schaposnik, Phys. Rev. D
58, 025015 (1998); R. Jackiw and Erick J. Weinberg,
Phys. Rev. Lett. 64, 2234 (1990); G. Lozano, M. V.
Manias, and F. A. Schaposnik, Phys. Rev. D 38, 601
(1988); Samir K. Paul and Avinash Khare, Phys. Lett. B
174, 420 (1986); 177, 453(E) (1986).

[31] A. P. Baeta Scarpelli, H. Belich, J. L. Boldo, and J. A.
Helayel-Neto, Phys. Rev. D 67, 085021 (2003).

[32] V. B. Bezerra, J. H. Mosquera-Cuesta, and C. N. Ferreira,
Phys. Rev. D 67, 084011 (2003).

[33] C. M. Will, Experimental tests of gravity theories, Revised
Ed. (Cambridge University Press, Cambridge, U.K. 1993).
-8



LORENTZ-BREAKING EFFECTS IN SCALAR-TENSOR . . . PHYSICAL REVIEW D 71, 044018 (2005)
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