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Oscillating bounce solutions and vacuum tunneling in de Sitter spacetime
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We study a class of oscillating bounce solutions to the Euclidean field equations for gravity coupled to a
scalar field theory with two, possibly degenerate, vacua. In these solutions the scalar field crosses the top
of the potential barrier k > 1 times. Using analytic and numerical methods, we examine how the
maximum allowed value of k depends on the parameters of the theory. For a wide class of potentials
kmax is determined by the value of the second derivative of the scalar field potential at the top of the barrier.
However, in other cases, such as potentials with relatively flat barriers, the determining parameter appears
instead to be the value of this second derivative averaged over the width of the barrier. As a by-product, we
gain additional insight into the conditions under which a Coleman-De Luccia bounce exists. We discuss
the physical interpretation of these solutions and their implications for vacuum tunneling transitions in
de Sitter spacetime.
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I. INTRODUCTION

There has recently been renewed interest in the problem
of vacuum tunneling in de Sitter spacetime. Although this
interest has been sparked in large part by developments in
string theory, the tunneling problem itself can be addressed
within the context of quantum field theory. The essence of
the problem is captured by considering a theory with a
single scalar field described by the Lagrangian

L � 1
2�@���

2 � V��� (1.1)

where the scalar field potential has two unequal minima, as
illustrated in Fig. 1. The lower minimum corresponds to
the stable ‘‘true vacuum’’ state, while the higher minimum
corresponds to a metastable ‘‘false vacuum.’’

At zero temperature, and in the absence of gravitational
effects, the false vacuum decays via a quantum mechanical
tunneling process that leads to the nucleation of bubbles of
true vacuum. The semiclassical calculation of the bubble
nucleation rate per unit volume, �, is well understood [1,2].
It can be written in the form

� � Ae�B (1.2)

where B is obtained from the action of the ‘‘bounce’’
solution to the Euclideanized field equations. This bounce
solution has a region of approximate true vacuum (essen-
tially, a four-dimensional bubble) separated by a wall
region from a false vacuum exterior.

At finite temperature, bubble nucleation proceeds via
both quantum tunneling and thermal fluctuations. When
the temperature T is high enough that the latter process
dominates, � can still be written in the form of Eq. (1.2),
but with B � E=T, where E is the energy of a critical
bubble.
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In this paper we will be concerned with vacuum tunnel-
ing in situations where gravitational effects are important.
We will assume that V���> 0 everywhere, so that both the
false and true vacua correspond to de Sitter spacetimes.
This problem was first discussed by Coleman and
De Luccia [3], who argued that the proper generalization
of the flat spacetime calculation of B could be obtained by
looking for a bounce solution of the Euclidean version of
the coupled matter plus gravity field equations. When the
relevant mass scales are well below the Planck mass and
the bubble sizes are small compared to the curvature of the
de Sitter space, the Coleman-De Luccia prescription leads
to a description of bubble nucleation that is very similar to
that of the zero-temperature flat spacetime case, with
small gravitational corrections of the expected order of
magnitude.

However, when the mass scales are higher or the bubble
sizes larger, not only are the quantitative deviations from
the flat space case more significant, but there are also
qualitative differences that raise issues of interpretation.
φfv φtop φtv

FIG. 1. The potential for a typical theory with a false vacuum.
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These suggest that the de Sitter vacuum transition process
has aspects of both quantum tunneling and of thermal
fluctuation. Further, the nucleation of true vacuum bubbles
in false vacuum regions seems to imply the possibility of
nucleating false vacuum bubbles in true vacuum regions,
with the relative rates of the two processes having a natural
thermal interpretation [4].

One of the most striking consequences of the inclusion
of gravity is the existence of a homogeneous Euclidean
configuration, the Hawking-Moss solution [5], that is quite
different in form and physical interpretation from the
Coleman-De Luccia bounce, and that has no counterpart
in the flat spacetime problem.

In this article we will focus on yet another type of
Euclidean solution, which might be termed an oscillating
bounce. In contrast with the Coleman-De Luccia bounce,
where the scalar field varies monotonically from �fv to-
ward �tv, and the Hawking-Moss solution, where it is
everywhere equal to its value at the top of the barrier,
�top, the field in these solutions oscillates back and forth
between the two sides of the potential barrier. Like the
Hawking-Moss solution, these have no finite action coun-
terparts in flat spacetime. Solutions of this type have also
been discussed by Banks [6]. Here we consider these in
more detail, and examine the conditions under which they
can exist. We find (in disagreement with [6]) that, for fixed
values of the parameters of the theory, there are only a
finite number of oscillating bounce solutions.

In Sec. II, we review the formalism for calculating � in
flat spacetime, both at T � 0 and at finite temperature. We
emphasize, in particular, the aspects that elucidate the
physical meaning of the bounce solution, and discuss the
path integral derivation of the formula for the prefactor A
in Eq. (1.2). In Sec. III we review how the formalism is
generalized to include gravitational effects, and outline the
major features of the Coleman-De Luccia analysis. With
this preparatory material behind us, we begin our discus-
sion of new solutions in Sec. IV. We develop a framework
for the analysis, and then first apply it to ‘‘small ampli-
tude’’ oscillating bounces, for which a linearized approxi-
mation can be used. A critical role is played here by a
parameter  that measures the second derivative of the
potential at the top of the barrier relative to the curvature
scale of the de Sitter spacetime. For a broad class of
models, the number of such small amplitude solutions
increases with , with new bounces appearing as  in-
creases through certain critical values, and with no such
solution at all if  is too small. The bound obtained here is
physically plausible and consistent with previous discus-
sions; however, as we will see, it is not universally appli-
cable. In Sec. V we draw some intuition from the analysis
of the previous section and use it to discuss bounce solu-
tions, lying outside the small amplitude regime, for which
the effects of the nonlinear terms are dominant. We then
test this intuition by numerical solution of the bounce
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equations. In Sec. VI we turn to the case of potentials
that are unusually flat at the top, for which the relation
between  and the number of bounce solutions that was
found in Sec. IV does not apply. In the course of studying
these we will gain some insight into the conditions under
which a Coleman-De Luccia bounce can exist. We will
show by explicit example that bounce solutions can exist
even if the potential is absolutely flat at the top of the
barrier, despite some suggestions to the contrary in the
literature. Finally, in Sec. VII we discuss the physical
interpretation of the oscillation bounce solutions and in-
clude some concluding remarks.
II. REVIEW OF VACUUM DECAY IN FLAT
SPACETIME

A. Flat space tunneling at zero temperature

We first recall some results concerning quantum tunnel-
ing in a system with more than one degree of freedom.
Consider a system with coordinates qj (j � 1; . . . ; N)
whose dynamics is governed by the Lagrangian

L �
m
2

�
dqj

dt

�
2
�U�q� (2.1)

and let the point qfv be a local (but not global) minimum of
the potential energy. Given a system whose wave function
is initially localized about qfv, we want to know the rate at
which the system tunnels through the surrounding potential
barrier.

For each path q�s� through the potential barrier that
begins at q�s1� � qfv and emerges from the barrier at a
point q�s2� � q2, one can calculate a one-dimensional
WKB tunneling integral

B � 2
Z s2

s1
ds

����������������������������������������
2m�U�q�s�� �Ufv�

q
; (2.2)

where Ufv � U�qfv� � U�q2�. The leading WKB approxi-
mation to the tunneling rate is proportional to e�B, eval-
uated along the path that minimizes the tunneling integral
[7]. The end point q2 of this path is the most probable place
for the system to emerge from the barrier, and thus gives
the initial condition for the classical evolution of the sys-
tem after tunneling.

By manipulations analogous to ones familiar from clas-
sical mechanics, the problem of minimizing the integral in
Eq. (2.2) can be recast as the problem of finding a sta-
tionary point of the Euclidean action

SE �
Z �2

�1

d�
�
m
2

�
dqj

d�

�
2
�U�q�

�
: (2.3)

The solution qb��� of the Euclidean Euler-Lagrange equa-
tions gives the same path as before, although with a differ-
ent parametrization. Because qfv is a minimum of U, the
initial Euclidean time must be taken as �1 � �1; the final
time �2 is arbitrary.
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1In theories with internal symmetries there may be additional
zero modes; for an example of this, see Ref. [8].

2The dilute gas approximation of considering only widely
separated bounces is valid for B� 1.
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Since dqb=d� vanishes at �2, this solution can be con-
tinued, in a ‘‘�-reversed’’ form, to give a bounce solution
that runs from qfv to q2 and then back to qfv. The exponent
in the tunneling factor is then

B �
Z 1

�1
d�

�
m
2

�
dqjb
d�

�
2
�U�qb� �U�qfv�

�
� SE�qb� � SE�qfv�; (2.4)

where the factor of 2 in Eq. (2.2) has been absorbed by the
doubling of the action that results from considering the full
bounce.

Adapting [1] this formalism to the scalar field theory of
Eq. (1.1), one is led to consider the Euclidean action

SE �
Z
dx4d

3x
�
1

2

�
@�
@x4

�
2
�

1

2
�r��2 � V���

�

�
Z
d4x

�
1

2
�@a��

2 � V���
�

(2.5)

and to seek a bounce solution of the Euclidean field equa-
tion

@a@a� �
dV
d�

: (2.6)

To match the initial state before tunneling, this solution
must tend to �fv as x4 ! �1, while the finiteness of the
tunneling exponent

B � SE��bounce� � SE��fv� (2.7)

requires that it also tend to �fv at spatial infinity. The
bounce contains an interior region, in which the field is
on the true vacuum side of the barrier, that is separated
from the false vacuum exterior by a wall of finite thickness.
A spatial slice through the center of this solution gives the
three-dimensional configuration that is both the optimal
end point of the quantum tunneling and the initial condi-
tion for the subsequent classical evolution. This configu-
ration contains a true vacuum bubble embedded in the false
vacuum, with the total potential energy (i.e., the sum of the
gradient energy and the scalar field potential) being equal
to the initial false vacuum energy.

This WKB calculation only gives the exponential factor
in the tunneling rate. The pre-exponential factor is most
easily obtained by path integral methods [2]. The basic
strategy is to use a Euclidean path integral to calculate the
energy of the false vacuum state. Since this is an unstable
state, its ‘‘energy’’ is complex, with its imaginary part
giving the decay rate.

Specifically, consider the path integral

I�T � �
Z
�d�� e�SE���; (2.8)

where the integration is restricted to paths obeying
��x;�T =2� � ��x;T =2� � �fv. As T ! 1 the path
integral is dominated by the lowest energy state with non-
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trivial overlap with these boundary conditions; i.e., by the
false vacuum. Hence

Efv � � lim
T!1

ln I�T �

T
(2.9)

and the bubble nucleation rate per unit volume is

� � 2 lim
T ;�!1

�
Im ln I�T �

�T

�
; (2.10)

where � is the volume of space, assumed to be taken to
infinity at the end of the calculation.

The path integral can be evaluated by summing the
contributions from its stationary points. The first of these
is simply a constant homogeneous false vacuum configu-
ration, ��x� � �fv. To leading order, the contribution of
this to the path integral is

I0�T � � e�SE��fv��det S00E��fv��
�1=2; (2.11)

with S00E��fv� denoting the second variation of the action
about the (constant) classical solution.

Next is the bounce solution, �b�x�. In calculating the
determinant factor here, one finds that S00E��b� has four1

zero modes and one negative mode. The former must be
replaced by collective coordinates specifying the location
in space and Euclidean time of the bounce, while the latter
gives a factor of i when the square root of the determinant
is taken. The contribution to the path integral is

I1�T � �
i
2
�T J jdet0S00E��b�j

�1=2e�SE��b�

�
i
2
�TKe�BI0�T �; (2.12)

where J is the Jacobean factor from replacing the zero
modes by collective coordinates, the factor of �T is from
the integration over the collective coordinates, the 1=2
comes from a careful treatment of the negative mode
integration, and the prime on the determinant indicates
that it does not include the zero modes.

Finally, there are the contributions from the approximate
stationary points corresponding to many widely separated
bounces.2 These are of the form

In�T � �
1

n!

�
i
2
�TK

�
n
e�nBI0�T �; (2.13)

where the factorial enters because interchanging bounces
does not give a new contribution. Summing over n gives

I�T � �
X1
n�0

In�T � � I0�T � exp
�
i
2
�TKe�B

�
: (2.14)
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The factor of I0�T � only contributes to the real part of the
energy, so Eq. (2.10) gives

� � Ke�B: (2.15)

The bounce equation is usually solved by assuming O(4)

symmetry, so that � is a function only of s �
����������������
x2 � x24

q
.

Equation (2.6) then reduces to

d2�

ds2
�

3

s
d�
ds

�
dV
d�

(2.16)

with the boundary conditions

d�
ds

								s�0
� 0; ��1� � �fv: (2.17)

The analysis of this equation is aided by considering an
analogous problem in which s is time and � represents the
position of a unit mass particle with potential energy U �
�V that is subject to a frictional force proportional to 3=s.
Finding a solution is tantamount to finding an initial ‘‘po-
sition’’ ��0� such that as s! 1 the particle comes to rest
at �fv, where U � �V has a local maximum. The exis-
tence of such a position can be established by Coleman’s
‘‘overshoot/undershoot’’ argument [1], which relies on the
fact that the friction decreases monotonically with time.

Several points should be noted:

(1) T
he fact that the fluctuations about the bounce in-

cluded only a single negative mode played an es-
sential role in the path integral derivation. The false
vacuum energy would have been real if there had
been an even number of negative modes, while for
an odd number of the form 4k� 3, the imaginary
part of the energy would have had the wrong sign.
(2) A
lthough the O(4) symmetry of the Euclidean
Lagrangian is technically quite useful, it does hide
a very real asymmetry in the physical interpretation
of the xa. While x1, x2, and x3 are ordinary spatial
variables, x4 is simply a convenient parametrization
of the configurations��x; x4� that define the optimal
tunneling path.
(3) A
lthough the one-bounce solution has a natural
interpretation in terms of the optimal tunneling
path, there seems to be no analogous simple inter-
pretation for the multibounce solutions.
3To be more precise, E is actually a temperature-dependent
quantity E�T�. In the path integral formalism this temperature
dependence comes about from a reordering of counterterms in
the Lagrangian, corresponding to the standard field theory cal-
culations [11,12] of the high temperature effective potential.
B. Flat space tunneling at finite temperature

This formalism can be readily extended [9,10] to the
case of finite temperature T. Instead of obtaining the
bubble nucleation rate in terms of the imaginary part of
the energy of the false vacuum, one instead calculates it in
terms of the imaginary part of the free energy of the false
vacuum. This can be obtained by recalling that the partition
function is given by a path integral over configurations that
are periodic in Euclidean time with period 1=T. Hence, the
bounce solutions satisfy the Euclidean field equations on
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R3 � S1 rather than on R4. The only boundary conditions
are at spatial infinity, where � is required to take on its
false vacuum value.

Two quite different types of periodic bounce solutions
immediately come to mind. At low temperatures (i.e.,
when 1=T is much greater than the characteristic bounce
radius), a periodic bounce can be obtained by a small
deformation of the zero-temperature bounce. The action
of this solution, which clearly corresponds to quantum
tunneling, differs only slightly from that when T � 0.

In the second type of bounce, corresponding to bubble
nucleation by thermal fluctuations, the fields are indepen-
dent of Euclidean time and so trivially satisfy the period-
icity conditions. Since the integral over the Euclidean time
is trivial, the action can be written as S � E=T, where E is
the free energy of the static solution of the three-
dimensional field equations.3 These thermal bounces are
subdominant at low temperature, but dominate at high
temperature.

It is instructive to contrast the spatial slices of the
vacuum tunneling bounce with those of the thermal
bounce. In the former case, the hypersurface at x4 � �1
gives the initial false vacuum configuration before tunnel-
ing, and a slice through the center of the bounce gives the
optimal exit point from the potential energy barrier, which
is a configuration containing a supercritical bubble that
will expand from rest. In the latter case, the spatial hyper-
surfaces give a static configuration containing a critical
bubble, whose radius is at the top of the potential energy
barrier, balanced between expansion and contraction. The
initial state is only evident from the asymptotic behavior at
spatial infinity.
III. VACUUM TUNNELING IN CURVED
SPACETIME

Coleman and De Luccia [3] extended the bounce for-
malism to include the gravitational effects on vacuum
decay. They argued that one should add an Einstein-
Hilbert term to the Euclidean action and then seek bounce
solutions of the resulting Euclidean field equations. The
tunneling exponent would then again be given by Eq. (2.7),
but with the actions now including the additional gravita-
tional terms. Their discussion did not, however, include the
calculation of the prefactor A, an issue that remains poorly
understood.

If one assumes O(4) spherical symmetry, the metric can
be written in the form

ds2 � d$2 � %�$�2d�2
3; (3.1)
-4



FIG. 2. A Coleman-De Luccia bounce solution for the case
where the flat space bounce radius is much less than H�1

f . The
picture should be visualized as a four-sphere viewed head-on,
with $ � 0 being the point at the center of the cross-hatched
region where the field is on the true vacuum side of the potential
barrier; $ � $max is the antipodal point on the opposite side of
the sphere. The dashed line passing through $ � 0 (and also
through $ � $max) denotes a three-sphere corresponding to the
spatial hypersurface on which the bubble materializes. The
three-sphere denoted by the lower dashed line is roughly analo-
gous to the false vacuum initial-state hypersurface in the flat
space problem.
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where d�2
3 is the metric on the unit three-sphere, and all

scalar fields depend only on $. The action reduces to

SE � 2&2
Z
d$

�
%3

�
1

2
_�2 �V

�
�

3M2
Pl

8&
�%2 �%�% _%2 �%�

�
(3.2)

with overdots denoting differentiation with respect to $.
The Euler-Lagrange equations are summarized by

���
3 _%
%

_� �
dV
d�

(3.3)

and

_% 2 � 1�
8&

3M2
Pl

%2

�
1

2
_�2 � V

�
: (3.4)

Because of the second term in Eq. (3.3), _� must vanish at
the zeros of %. If V��� � 0, which we will assume, there
are always two such zeros, so that the Euclidean manifold
is topologically a four-sphere [13]; the only exception
occurs if V��� vanishes at one of its minima, in which
case the homogeneous solution with � at this minimum
has the flat metric of R4. One of the zeros of % can be taken
to be $ � 0. If the second zero is denoted $max, then the
boundary conditions on � are that

_��0� � _��$max� � 0: (3.5)

The symmetry of these boundary conditions is in contrast
with the flat space boundary conditions of Eq. (2.17).

One consequence of the four-sphere topology is that the
Euclidean actions of the bounce and the false vacuum are
separately finite. In flat space, SE��fv� is formally infinite,
and Eq. (2.7) only makes sense in terms of a point-by-point
subtraction of V��fv� inside the spatial integral. In con-
trast, the Euclidean false vacuum solution of Eqs. (3.3) and
(3.4) is a four-sphere of radius H�1

f , with

%�$� � H�1
f sin�Hf$� (3.6)

and

Hf �

���������������������
8&V��fv�

3M2
Pl

s
: (3.7)

Its action is

SE��fv� � �
3

8

M4
Pl

V��fv�
; (3.8)

with the factor of �3=8 being the sum of �3=8 from the
matter term in Eq. (3.2) and �3=4 from the second, gravity,
term.

One would expect gravitational effects on tunneling to
be small if the characteristic scales of V are much less than
the Planck mass, and the flat space bounce radius !r�
H�1

f . In this regime, the Coleman-De Luccia bounce solu-
tion has a central true vacuum region, 0 � $ & !r, where
044014
the scalar field profile closely approximates that of the flat
space bounce. Outside this region � rapidly approaches its
false vacuum value although, because $max is finite,
�b�$� ��fv never quite vanishes. The tunneling exponent
B differs from the flat space value by a fractional amount of
order !r2H2

f .
In this regime, the physical interpretation of the bounce

solution carries over with only slight modifications from
the flat space case. As before, a three-dimensional slice
through the center of the bounce (see Fig. 2) can be viewed
as giving initial data for the classical evolution; the fact
that this slice has finite volume reflects the finite volume of
(most) spacelike slices through de Sitter spacetime. In flat
space, the hypersurface at x4 � �1, with ��x� identically
equal to its false vacuum value, represented the initial state
before tunneling. Although this has no precise counterpart
here, one can view a slice such as that shown by the lower
dashed line in Fig. 2 as being analogous to a slice at large
negative x4 in the flat case. There are also multibounce
configurations that are approximate stationary points of the
action, just as in the flat space case. Summing the contri-
butions of these to the Euclidean path integral, one would
-5
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obtain an exponential of the one-bounce contribution
(modulo the difficulties of properly defining the fluctuation
determinant), just as in the previous case.

There is, however, one difference, related to the point
$ � $max, that should be pointed out here. One might have
expected this to be analogous to s � 1 in the flat space
bounce. In the latter, s � 1 defines a three-sphere and
corresponds both to spatial infinity on the hypersurface
where the bubble materializes and to the initial-state hyper-
surface. By contrast, $ � $max is a single point that lies on
the spacelike hypersurface that gives initial data for the
Lorentzian problem. However, as can be seen from Fig. 2,
it does not lie on the initial-state hypersurface.

The deviations from the flat space case become quite
significant when the flat space bounce radius is comparable
to or greater than H�1

f . In some such cases, there is no
Coleman-De Luccia bounce at all. When there is a bounce,
its true vacuum region (whose size may be very different
than in the flat space case) occupies a significant fraction of
the Euclidean four-sphere, and one can no longer identify
even an approximate initial-state hypersurface. Indeed, the
asymmetry between the true vacuum interior and the false
vacuum exterior is lost to a large degree. This suggests that
the two regions can be viewed as being on equal footings,
and that the bounce can describe either the production of a
true vacuum bubble in a false vacuum background or that
of a false vacuum bubble in a true vacuum background,
with the initial state determined not by the properties of the
bounce solution, but by whether SE��fv� or SE��tv� is
subtracted when calculating B. (A detailed examination
of this possibility shows that the rates for nucleation of
false vacuum bubbles in true vacuum and true vacuum
bubbles in false vacuum are related by a factor that has a
natural thermal interpretation, and that takes a simple
Boltzmann form in some limits [4].)

Finally, note that any multibounce solutions are clearly
limited and quite constrained in this large-bounce regime,
so there is no exponentiation of the bounce factor; this fact
by itself gives a hint of the difficulties of generalizing the
path integral calculation of �.

Whether or not there is a Coleman-De Luccia bounce
solution, there is always a second type of solution, first
pointed out by Hawking and Moss [5], that has no analogue
in flat spacetime. Like the pure false vacuum solution, this
is homogeneous, but with the scalar field everywhere equal
to �top, its value at the top of the barrier. Calculations
exactly analogous to those leading to Eqs. (3.6)–(3.8) give

%�$� � H�1
top sin�Htop$� (3.9)

and

BHM � SE��top� � SE��fv� �
3

8

�
�

M4
Pl

V��top�
�

M4
Pl

V��fv�

�
(3.10)

with Htop defined by a formula analogous to Eq. (3.7).
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IV. NEW SOLUTIONS

Our focus in this paper is on a third class of Euclidean
solutions that are neither simple bounces nor Hawking-
Moss. We continue to assume O(4) symmetry, so
Eqs. (3.1)–(3.5) still apply. However, we now allow � to
cross the barrier an arbitrary number of times between $ �
0 and $max; we will denote this number by k, so that k � 1
corresponds to the Coleman-De Luccia bounce. The pos-
sibility of multiple barrier crossings is in contrast with the
flat space case, where only k � 1 solutions can exist.

To simplify matters, we will restrict ourselves to the case
of a potential with only two local minima. Without any loss
of generality we can assume that �fv <�top <�tv.

Our problem can be viewed as that of finding values of
�0 for which the initial conditions ��0� � �0, _��0� �
%�0� � 0 imply that _��$max� � 0. By scanning the range
�fv <�<�tv for such critical values, all bounce solu-
tions can be found. In fact, because the problem is invariant
under the transformation $! $max � $, every solution
with odd k will be encountered twice in such a scan,
once as a ‘‘false-to-true’’ bounce and once as a ‘‘true-to-
false’’ one. There may also be false-to-false and true-to-
true solutions for which the initial and final values of� are
on the same side of the barrier. These appear either once or
twice during the scan, depending on whether or not the two
end points are identical; we have found examples of both
types of behavior.

It should be stressed that our use here of phrases such as
false-to-true refers only to the variation of � as $ ranges
from 0 to $max. As was pointed out in the previous section,
the value of the field at $max [in contrast to ��1� in the flat
space bounce] is not necessarily related to the initial state.

In the flat space problem, the possible values of �0 can
be divided into undershoot and overshoot regions, with the
critical bounce value lying at the boundary between the
regions. In the curved space case, where trajectories can
cross �top more than once, this overshoot/undershoot clas-
sification becomes somewhat ambiguous. Instead, we find
it more useful to define a function h��0� whose zeros
correspond to the critical trajectories.

An obvious candidate for this function would be the
value of _��$max� on the trajectory specified by �0.
However, this diverges whenever it is nonzero, and so
does not give a satisfactory h��0�. The quantity %3 _� is
better behaved, but it too can diverge if the trajectory goes
into a region where dV=d� is unbounded. However, we
can avoid any such divergence by modifying the growth of
V at large j�j. This will have no effect on the critical
trajectories, since these remain within the finite interval
�fv <�<�tv.

Let us therefore define h��0� to be the value of %3 _� at
$max, evaluated on the trajectories of the modified poten-
tial. The zeros of h are the values of �0 that give bounce
solutions satisfying the boundary conditions. Although h
-6
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depends in detail upon precisely how the potential was
modified, the locations and nature of its zeros do not, and it
is really only these with which we are concerned. There
will always be zeros at�fv,�tv, and�top, corresponding to
the pure false vacuum, pure true vacuum, and Hawking-
Moss solutions, respectively. Depending on the potential
these may be the only zeros of h, or there may be others.

The plot of h��0� evolves as the parameters of the theory
are varied. During the course of this evolution the locations
of the zeros will vary continuously. The function may also
gain or lose zeros, but always in pairs. This can happen
either at �top or at a point where h��0� momentarily
develops a double zero. Following the motion, appearance,
and disappearance of these zeros provides a framework for
the study of the new bounce solutions.

We will start our investigation by considering ‘‘small
amplitude’’ solutions in which � is confined to the region
near �top, where a linear approximation to Eq. (3.3) can be
applied. We will then follow the evolution of these solu-
tions as a change of parameters takes them outside the
linear regime. For some potentials, all bounce solutions
arise in this manner. Other potentials admit a second type
of solution, that are never confined to the linear region.
These can coexist with the former type of solution, or they
may be the only type of bounce present.

We begin by introducing an approximation that consid-
erably simplifies the analysis of the bounce equations.

A. The fixed background approximation

For the most part, we will focus on the case where the
fractional variation of V��� is small as � varies over the
range from �fv to �tv. This allows us to write

V��� � V0 � ~V��� (4.1)

with j ~V���j � V0 for all relevant values of �. To leading
approximation, the curvature of the Euclidean space is then
independent of the value of �, and we can write

%�$� � H�1 sin�H$� � %0�$� (4.2)

with

H2 �
8&V0

3M2
Pl

: (4.3)

If we define y � H$, the equation for � becomes, to
leading approximation,

d2�

dy2
� 3 cot y

d�
dy

�
1

H2

d ~V
d�

(4.4)

with the boundary conditions that d�=dy vanish at both
y � 0 and y � &.

Once a solution to Eq. (4.4) has been found, the first
correction to the metric can be obtained by substituting this
solution into a linearized version of Eq. (3.4) and solving
for -% � %� %0. Because %0 is a solution of the zeroth
044014
order problem, the terms linear in -% do not contribute to
the action. The terms quadratic in -% are suppressed
relative to the matter terms in the action by a factor of
order ~V=V0, allowing us to write

SE � �
3

8

M4
Pl

V0
� 2&2

Z
d$%3

0

�
1

2
_�2 � ~V

�
� � � � : (4.5)

When the false vacuum action is subtracted from that of the
bounce, the first terms on the right-hand sides cancel,
leading to

B �
9

32

M4
Pl

V2
0

Z
dy sin3y

�
H2

2

�
d�
dy

�
2
� V��� � V��fv�

�
:

(4.6)

In particular, for the Hawking-Moss solution

BHM �
3

8

M4
Pl

V2
0

�V��top� � V��fv��: (4.7)
B. Linearized equations

We begin our analysis by seeking small amplitude solu-
tions where �0 is near �top and � remains everywhere
close to the top of the barrier. These are essentially small
perturbations about the Hawking-Moss solution.

We expand the scalar field potential as

~V��� � V��top� �H2

�
�

2
����top�

2 �
b
3
����top�

3

�
.
4
����top�

4 � � � �

�
: (4.8)

Because �top is a maximum of the potential,  is neces-
sarily positive, and

 �
jV 00��top�j

H2 : (4.9)

The sign of b can be reversed by a simple redefinition of�,
and hence is not physically significant. Finally, . can take
either sign, although it must be positive if there are no
higher order terms in the potential.

If the field remains sufficiently close to �top, the cubic
and higher terms in the potential can be dropped in a first
approximation, so that Eq. (4.4) takes the form

0 �
d2�

dy2
� 3 coty

d�
dy

� ����top�: (4.10)

If we write ��y� ��top � f�y�sin�3=2y, this becomes

0 �
d2f

dy2
�

�
�

3

2
�

3

4
cot2y

�
f: (4.11)

Except near the outer edges of the interval 0 � y � &, the
last term in the brackets can be ignored, and we find that
-7
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��y� ��top � A
sin�

������������������
� 3=2

p
y� -�

sin3=2y
; (4.12)

with A and - constants.
More precisely, we can note that an exact solution of

Eq. (4.10) is given by a Gegenbauer, or ultraspherical,
function

��y� ��top � AC3=2
1 �cos y� (4.13)

with 1 the positive root of

1�1� 3� � : (4.14)

The fact that C3=2
1 �1� is finite for all real positive 1 guar-

antees the vanishing of d�=dy at y � 0; it is this condition
that eliminates the Gegenbauer function of the second
kind, D3=2

1 �cos y�. The second boundary condition, that
d�=dy also vanish at y � &, is only satisfied if 1 is an
integer. Hence, the linearized approximation, Eq. (4.10),
has an acceptable solution only if V 00��top� � N�N � 3�H2

for N � 1; 2; . . . . Because C3=2
N �cos y� has N zeros in the

range 0 � y � &, these solutions are bounces with k � N
crossings of the barrier.

We recall, for later use, that the Gegenbauer functions
for integer N are polynomials. If defined with the standard
normalization

C3=2
N �1� �

�N � 1��N � 2�

2
; (4.15)

they obey the orthogonality relationZ 1

�1
dx�1 � x2�C3=2

M �x�C3=2
N �x� � -M;N

2�N � 1��N � 2�

�2N � 3�

� -M;NkN: (4.16)
C. Incorporating nonlinearities

The linearized equations only have solutions obeying
the boundary conditions when  is equal to one of a
discrete set of critical values. This condition is relaxed
once the nonlinear terms are included. This is quite similar
to the way in which adding anharmonic terms to a simple
harmonic oscillator allows small amplitude oscillations
with a continuous range of periods. Just as the amplitude
is related to the period in the oscillator problem, the
amplitude of the bounce solutions is determined by the
distance & � � N�N � 3� from the critical value.

Because the Gegenbauer polynomials form a complete
set, an arbitrary function ��y� obeying the boundary con-
ditions of Eq. (3.5) can be expanded as

��y� � �top �
1������
j.j

p X1
M�0

AMC
3=2
M �y�; (4.17)

where the coefficients AM are dimensionless. Substituting
this into Eq. (4.4) and retaining the contributions from the
044014
cubic and quartic terms in the expansion of the potential
yields

0 �
X1
M�0

C3=2
M �y�

(
��M�M� 3��AM

�
b������
j.j

p X
I;J

AIAJpIJ;M � sgn�.�
X
I;J;K

AIAJAKqIJK;M

)

(4.18)

where the terms involving

pIJ;M � k�1=2
M

Z 1

�1
dyC3=2

I �y�C3=2
J �y�C3=2

M �y� (4.19)

and

qIJK;M � k�1=2
M

Z 1

�1
dyC3=2

I �y�C3=2
J �y�C3=2

K �y�C3=2
M �y�

(4.20)

arise from the expansion of the �2 and �3 terms, and the
normalization factor kM is defined by Eq. (4.16). Note that
pIJ;M vanishes if the sum of any two indices is greater than
the third, and that qNNN;N > 0 for all N.

Each term of the sum in Eq. (4.18) must vanish sepa-
rately. For j&j sufficiently small, we expect to find a small
amplitude solution in which a single coefficient, AN , is
dominant. Explicitly,

0 � &AN �
b������
j.j

p pNN;NA
2
N �

2b������
j.j

p X
M�N

pMN;NAMAN

� sgn�.�qNNN;NA
3
N � � � � (4.21)

and

0 � ��M�M� 3��AM �
b������
j.j

p pNN;MA2
N � � � � ;

M � N; (4.22)

where in each equation the omitted terms are higher order
in AN . Using the second equation to eliminate AM from the
first leads to

0 � &�
b������
j.j

p pNN;NAN � cA2
N �O�A3

N�; (4.23)

where

c � sgn�.�qNNN;N

�
2b2

j.j

X2N
M�N

�
1

�M�M� 3�

�
pNN;MpNM;N: (4.24)

This gives

AN �
1

2c

�
�
bpNN;N������

j.j
p �

��������������������������������������
b2�pNN;N�

2

j.j
� 4c&

s �
: (4.25)
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If the cubic term in Eq. (4.8) vanishes, b � 0, there are
real solutions for AN only if c&> 0, with AN � �

���������
&=c

p
.

Thus, for . > 0 there are no small amplitude bounces if
<N�N � 3�. As  is increased past this critical value,
two solutions appear. For odd N these are a physically
equivalent true-to-false and false-to-true pair, while for
even N they are two distinct solutions, one true-to-true
and the other false-to-false. Things are similar if . < 0,
except that the solutions only exist for < N�N � 3�.

For nonzero b and odd N, the situation is almost the
same. Because pNN;N vanishes for odd N, the condition for
existence of a solution is again that c&> 0, although now
c and . may have different signs. As before, there are two
distinct but physically equivalent small amplitude solu-
tions, and these appear at the critical value  � N�N � 3�.

For nonzero b and even N, the situation is more com-
plicated. From Eq. (4.25), we see that the critical value of
where solutions first appear is not  � N�N � 3�, but
rather

 � N�N � 3� �
b2

4cj.j
�pNN;N�

2; (4.26)

which is a bit smaller (larger) if c is positive (negative). In
contrast with the previous cases, when the solutions first
appear they have a finite amplitude and both have the same
sign for AN . As  is increased (decreased) through N�N �
3�, one of the solutions passes through zero and then takes
on the opposite sign. After this point the two solutions
remain of opposite sign, with the magnitude of AN increas-
ing for both.

Some words of caution are in order here. Our analysis is
valid only for sufficiently small AN . If b=

������
j.j

p
is too large,

this condition may not be met when  is given by
Eq. (4.26), in which case it will never be satisfied by the
larger of the two solutions. However, as & ! 0, the other
solution for AN tends to zero, and so should be reliable. As
discussed at the beginning of this section, the zeros of
h��0� appear or disappear in pairs. Hence, the existence
of one small amplitude solution implies the existence of the
second. We therefore expect the qualitative features—the
emergence of two solutions, with finite amplitude, at a
value of  not corresponding to an integer—to be valid
even if the quantitative analysis is not completely reliable.

The results of this section can be compared with the
analysis of Jensen and Steinhardt [14]. They argued that if
jV 00j is monotonically decreasing as one moves from the
top of the potential toward the false vacuum there will be a
unique k � 1 Coleman-De Luccia bounce if (in our lan-
guage) > 4, and that this solution merges with the
Hawking-Moss solution as ! 4. When applied to
Eq. (4.8), their condition on V 00 translates into the state-
ment that . > 0. If b2=. is not too large, c will also be
positive, and our results will agree with theirs. However,
for b2=. sufficiently large, c can be negative even though .
is not. In this case,  � 4 is an upper bound for the
044014
existence of these solutions, and our results will disagree
with their analysis. We believe that this can be attributed to
the fact that their claims are based on the argument that the
potential gets ‘‘flatter’’ as one moves away from the top of
the barrier; for large b this is true, in the relevant range,
only on one side of the potential.

Perturbative methods similar to those used in this section
have recently been applied to the calculation of the bounce
action [15].

V. NUMERICAL RESULTS FOR � > 0

Once the amplitude become large, the analysis based on
a single dominant term in Eq. (4.17) fails, and we must
resort to numerical methods. Before describing our nu-
merical results, we outline some qualitative arguments
that may provide some useful insight. We focus here on
the case . > 0, where the quartic term in the potential is
positive. We will return to the . < 0 case in Sec. VI.

We have seen that h��0� has a zero at �top, correspond-
ing to the Hawking-Moss solution, for all values of. As
increases, pairs of new zeros, corresponding to bounce
solutions with ever increasing values of k, appear at �top

as  passes through successive critical values. When the
analysis of Sec. IV C can be applied, these zeros move
apart as  increases. We expect this behavior to continue
even after the zeros have moved beyond the small ampli-
tude regime. Thus, at any given  there should be a
sequence of bounce solutions. For b � 0 and N�N � 3�<
< �N � 1��N � 4�, there would be two solutions each
for k � 1; 2; . . . ; N, with the two solutions for each odd k
simply being ‘‘y-reversed’’ versions of each other. For
nonzero b the picture would be similar, except that the
new solutions for even N appear somewhat before  �
N�N � 3�. Figure 3 gives a schematic illustration of the
expected pattern of zeros.

We can also make some predictions about the form of
these solutions. It seems reasonable to expect that, even
after �0 has moved well beyond the small amplitude
regime, the average period of the oscillations will continue
to be determined to leading order by . Increasing  will
decrease this period, and so should cause a plot of the
oscillations of � to shrink horizontally at the same time
that it is expanding vertically. With the number of oscil-
lations in a given solution remaining fixed, this will open
up ‘‘gaps’’ at the ends of the interval. In order to satisfy the
boundary conditions that d�=dy � 0 at y � 0 and y � &,
the field must be relatively constant in these gaps. This, in
turn, implies that the field near the end points must be close
to one or the other of the minima of the potential. As  is
increased further, the fraction of the y interval occupied by
oscillations will continue to decrease, while the regions
occupied by these false and true vacuum regions will
expand.

We have tested these ideas numerically by considering a
theory governed by a quartic potential than can be written
-9
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FIG. 3. A schematic plot of the starting points of bounce
solutions to a . > 0 theory, such as that discussed in Sec. V,
with  slightly greater than 28. The numbers next to the points
represent the number of times the solution crosses the top of the
potential barrier.
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in the form

V � H2v2

�
�

1

2
 2 �

g
3
 3 �

1

4
 4

�
� V0; (5.1)

where  � �=v is a dimensionless field that has been
FIG. 4. Bounce solutions for the asymmetric (g � 1=2
���
2

p
) po
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rescaled so that for g � 0 the minima of the potential are
at  � �1; in the notation of Eq. (4.8), this corresponds to
b � �g=2v and . � =v2. We focus here on our results
for a single value of . However, we have explored solu-
tions for a much wider range of values, going as high as
104. In all cases, our results are consistent with the picture
we describe here.

In Fig. 4 we show the bounce solutions for g � 1=2
���
2

p

and  � 70:03, corresponding to N � 7. As expected, we
find solutions for every integral value of k up to k � 7, with
two distinct solutions for each even value of k. Although it
is barely apparent on the figures (except for k � 7), it
should be noted that, among solutions starting on a given
side of the barrier, the initial value �0 monotonically
approaches �top as k increases, in accord with our
expectations.

The k � 1 solution is the Coleman-De Luccia bounce.
For k � 2, there are two solutions. One starts and ends near
the true vacuum, and might be viewed as a two-bounce
tential discussed in the text. For these solutions  � 70:03.
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solution analogous to the flat space multibounce solutions
that are encountered in the path integral treatment. Indeed,
its field profile is very close to that expected from two
independent bounces and its action is approximately twice
that of the single bounce. The other k � 2 solution
starts and ends near the false vacuum. It, too, might be
interpreted as a two-bounce solution, if one took the
Coleman-De Luccia bounce to represent decay from the
true vacuum to the false. From this viewpoint, the false
vacuum region corresponds to the bubble interior; since
this is large compared to the size of the four-sphere, there
must be significant distortion to be able to fit in two
bounces. Note that even in the region separating the two
FIG. 5. Bounce solutions for the symmetric (g � 0) potential with
70:03.

044014
‘‘interiors’’ � does not get very close to its true vacuum
value.

The solutions with k > 2 all have intermediate oscilla-
tions about �top. As expected, the frequency of these
oscillations seems to be determined primarily by , with
the separation between zeros of the field being roughly
independent of k. The existence of intermediate oscilla-
tions seems to have little effect on the true vacuum bubble
region, with the field profiles near y � & for the k < 7
false-to-true solutions and near y � 0 and y � & for all the
true-to-true solutions being very similar to that for the
corresponding region of the Coleman-De Luccia solution.
This is not so for the false vacuum regions.
two degenerate vacua that is discussed in the text. Again,  �
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FIG. 6. The tunneling exponent B � S��bounce� � S��fv� for
the asymmetric potential bounce solutions shown in Fig. 4. The
values are given as fractions of the Hawking-Moss value, and are
plotted as a function of the number of times the solution crosses
the top of the barrier. Boxes correspond to solutions which
interpolate between the true and false vacuum sides of the
barrier, diamonds correspond to ‘‘true-to-true’’ solutions, and
triangles to ‘‘false-to-false’’ ones.
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The plot for the k � 7 solution shows that the linear
approximation works quite well, as should be expected
with  so close to the critical value of 70. The numerical
solution is indistinguishable to the eye from the
Gegenbauer polynomial, and the amplitude agrees well
with the prediction of Eq. (4.25).
FIG. 7. The tunneling exponent B for the symmetric potential
bounce solutions shown in Fig. 5. The values are given as
fractions of the Hawking-Moss value, and are plotted as a
function of the number of times the solution crosses the top of
the barrier. Boxes correspond to solutions which interpolate
between the two vacua, and triangles correspond to solutions
which begin and end on the same side of the barrier.
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In Fig. 5, we show the analogous results for the case of
g � 0, where the two minima are degenerate. In flat space-
time, there would be no bounces for this case but, as we
see, this is no longer so when gravitational effects are
included.

Finally, in Figs. 6 and 7 we show the actions for these
solutions. (More precisely, what we actually plot in these
figures is B � Sbounce � Sfv, which is the quantity that
would appear in the exponent if these solutions were
interpreted as contributions to the process of tunneling
out of the false vacuum.) As k increases, B approaches
the Hawking-Moss value BHM. This can be understood by
noting that in the linearized approximation the contribution
from the gradient terms exactly cancels that from the
oscillatory part of the potential term, so that the total action
is exactly equal to that of the Hawking-Moss solution.
VI. BOUNCES WITH FLAT POTENTIAL
BARRIERS

Our analysis of small amplitude bounces in the previous
two sections showed that for a wide class of potentials—
those with a positive fourth derivative, and not too large a
third derivative, at �top —there is neither a small oscilla-
tion bounce nor a bounce smoothly related to a small
oscillation bounce if jV 00��top�j< 4H2. This result is in-
tuitively quite plausible. One might expect jV 00��top�j

�1=2

to set a natural scale for the size of the bounce, so that if
this were too large, relative to the radius H�1, the bounce
would not fit on the four-sphere.

However, our results for the case where the fourth
derivative (or more precisely, the related quantity c) is
negative show that this seemingly plausible argument can-
not be quite correct. For this case we saw that there was a
small amplitude k � 1 bounce only for a range of values
extending downward from  � 4. One logical possibility
is that these solutions continue (although not necessarily
with small amplitudes) all the way down to  � 0.
Alternatively, there might be some minimum value min

(which could depend on the other parameters of the theory)
for which the bounce exists. Since solutions can only
appear and disappear in pairs, this latter possibility would
require the existence of a second solution, which would
also appear at min but which would persist beyond  � 4.

In this section we will explore this direction in more
detail. Because the potentials that evade the > 4 bound
are characterized by being relatively flat at the top of the
barrier, we begin by studying a toy model, defined by the
potential

V �

8><>:
C��� a� � V0; � <�a;
V0; �a � � � a;
�C��� a� � V0; � > a;

(6.1)

that is absolutely flat at the top. This potential has the
-12
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FIG. 8. The functions F1�y1� and F2�y1� for the toy model
defined by Eq. (6.1).
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additional advantage that the field equation can be solved
analytically.4

Inserting this potential into Eq. (4.4), and defining

9�y� � sin3y
d�
dy

; (6.2)

leads to

d9
dy

�

( a:sin3y; � <�a;
0; �a � � � a;
�a:sin3y; � > a;

(6.3)

where

: �
C

aH2 : (6.4)

Because C=a gives a rough measure of the average value of
jV 00j for our toy potential, : is somewhat analogous to the
quantity  that appeared in the analysis of the two previous
sections.

We first seek a k � 1 (Coleman-De Luccia) bounce. The
symmetry of the potential implies that this solution (as well
as any other bounce with odd k) must have ��&=2� � 0.
Let ��0� � �0 <�a, and define y1 <&=2 by the condi-
tion ��y1� � �a. Integrating Eq. (6.3) over the interval
0 � y � y1 gives

9�y1� � a:
Z y1

0
du sin3u: (6.5)

The fact that 9 is constant over the flat part of the potential
implies that

a � ��&=2� ���y1� � 9�y1�
Z &=2

y1

dv

sin3v
: (6.6)

Combining these two equations gives the requirement that

1

:
�

Z y1

0
du sin3u

Z &=2

y1

dv

sin3v
� F1�y1�: (6.7)

Once a value of y1 satisfying this condition has been found,
it is a straightforward matter to find�0 by integrating back
from y1 to y � 0 and to then integrate forward to obtain
��y� for all y.

From the plot of F1�y� shown in Fig. 8, we see that
Eq. (6.7) has no solutions, and hence there is no Coleman-
De Luccia bounce, if : < 1=Max�F1�y�� � 7:70. For any
: greater than this critical value there are two acceptable
values for y1, and thus two distinct Coleman-De Luccia
bounces. As examples of this, in Fig. 9 we show the two
bounce solutions for : � 10.

In general, these values for y1 can only be found nu-
merically. However, approximate expressions can be ob-
4The fact that this potential has no minima is irrelevant for our
purposes, since the bounce solutions never quite reach either the
true or false vacuum in any case. One could, of course, modify
the potential to give minima at large values of j�j.
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tained for the limiting case :� 1. In one solution, with

y1 �

����
8

:

s
�0 � �a

�
1�

1

:

�
; (6.8)

the field is mostly on the flat part of the potential. In the
other solution, with

y1 �
&
2
�

3

2:
�0 � �

�
1� ln 4

6

�
a: � �0:398a:;

(6.9)

the field is mostly on the sloping parts of the potential. The
latter solution has the lower action.

For k � 2 (or any even value of k), d�=dy vanishes at
y � &=2. Let us define y1 < y2 <&=2 by ��y1� �
���y2� � �a. Integrating Eq. (6.3) then gives

9�y1� � a:
Z y1

0
du sin3u (6.10)

9�y2� � a:
Z &=2

y2
du sin3u: (6.11)

Because the field is in the flat part of the potential for
FIG. 9. The two k � 1 bounces for our linear toy model when
: � 10.
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FIG. 10. A schematic graph of the starting points of bounce
solutions to our linear toy model. Closed circles represent
solutions which move outward as H is decreased, and open
circles represent solutions which move inward. The numbers
next to the points represent the number of times the solution
crosses the top of the potential barrier.

5Another example whose k � 1 solutions display a similar
behavior was discussed by Jensen and Steinhardt [16].
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y1 < y< y2, these integrals must be equal; this implicitly
defines y2 as a function of y1.

By analogy with Eq. (6.6), we also have

2a � ��y2� ���y1� � 9�y1�
Z y2�y1�

y1

du

sin3u
� 2a:F2�y1�:

(6.12)

Referring again to Fig. 8, we see that there are no solutions
for : < 1=Max�F2�y�� � 21:7, but two solutions for all
larger values of :. In the cases where there are solutions,
these have values of y1 (and also of �0) that fall between
the corresponding k � 1 values. In the limit :� 1, the
k � 2 solutions have

y1 �

������
16

:

s
�0 � �a

�
1�

2

:

�
(6.13)

and

y1 � 1:22 �0 � �0:319a:: (6.14)

This procedure can be extended to all higher values of k.
For any given k, solutions only exist if : is larger than a
critical value :cr�k�; if : > :cr�k� there are two allowed
values for �0, both of which fall between the allowed
values for the k� 1 solutions with the same :. For k �
3, the critical value is 42.7. More generally, :cr�k� is an
increasing function of k and is O�k2� for large k; this
behavior is reminiscent of the critical values of  that
govern the appearance of small amplitude solutions in
potentials with a positive quartic term.

The situation is illustrated in Fig. 10, which gives a
schematic summary of the possible values for �0 for a
given value of :. As : is increased, the zeros marked by
closed circles move outward, while those marked by open
circles move inward. When : reaches a critical value, two
new pairs of coincident zeros (one pair on each side of the
potential) appear and then begin to separate. With increas-
ing :, accumulations of open circles develop near � �
�a, while the outwardly moving closed circles become
further and further apart.

The actions of these solutions may be either greater or
less than that of the Hawking-Moss solution. For example,
the k � 1 solution with the smaller j�0j always has a
higher action than both the other k � 1 solution and the
Hawking-Moss solution. The action of the other k � 1
solution is greater than SHM for small :, but not for large :.

This toy model has the advantages of allowing analytic
solution and of emphasizing that it is possible to have a
Coleman-De Luccia bounce with an arbitrarily small value
of jV 00��top�j. However, one consequence of its somewhat
artificial form is that the bounce solutions have some
special properties that we would not expect in a more
generic potential. For example, the values of �0 that
044014
move inward with increasing : (i.e., those indicated by
open circles in Fig. 10) accumulate near the ‘‘corners’’ of
the potential at �a, but never move further inward where
they might meet and ‘‘annihilate.’’

A less artificial example can be obtained by considering
a potential of the form V � �a�2 � b�4 � c�6, with a,
b, and c all positive. With three parameters to vary, it is
possible to make the potential relatively flat, as defined by
a scale-independent criterion, at the top of the barrier. For
example, if �v are the minima of the potential, we can
define an averaged second derivative V 00

avg by

V 00
avg �

V0�v=2� � V 0��v=2�
v

: (6.15)

By choosing b2 � ac we can make jV 00�0�j � jV 00
avgj.

We have followed the evolution of the bounce solutions
for such a potential (with b2=ac � 80) as H is varied with
the parameters in the potential held fixed. For very largeH,
there are no bounce solutions, in analogy with the low  or
low : behavior of our previous examples. As H is de-
creased, two pairs of zeros, corresponding to initial values
for k � 1 bounces, appear at nonzero points on opposite
sides of the barrier, just as in our toy model. (In the
example we studied, these first appeared at jV 00

avgj=H2 �

4:03.) As H is reduced further, each pair splits, with one
zero moving inward and one outward.5 With further de-
creases in H, additional zeros, corresponding to bounces
with k � 2, k � 3, etc., appear, just as in the toy model.

In contrast with the toy model, the inwardly moving
zeros proceed all the way in to � � 0, reaching that point
exactly when predicted by the analysis of Sec. IV C. Thus,
two k � 1 zeros meet and annihilate when H2 � a=2, two
k � 2 zeros annihilate when H2 � a=5, etc. We have also
encountered a more complex type of behavior for some
-14
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FIG. 11. A schematic graph of the starting points of bounce
solutions for the sixth-order potential discussed in the text.
Closed circles represent solutions which move towards one of
the vacua as H is decreased, and open circles represent solutions
which move towards the top. The numbers next to the points
represent the number of times the solution crosses the top of the
potential barrier.

OSCILLATING BOUNCE SOLUTIONS AND VACUUM . . . PHYSICAL REVIEW D 71, 044014 (2005)
values of the parameters. As described above, two pairs of
k � 2 zeros appear at a certain critical value of H. After
moving inward some distance, each of the inner zeros splits
into three zeros. These then separate for a time, and then
rejoin to form a single zero, which eventually moves to
� � 0. A schematic snapshot of this example for a fixed
value of H is shown in Fig. 11.

The examples considered in this section clearly demon-
strate that the existence of a Coleman-De Luccia bounce
need not impose a lower bound on jV00��top�j. However,
they suggest that a more generalized version of this bound,
involving an averaged value of jV 00j=H2, does hold. This is
consistent with the results of [17], where it is argued that a
necessary condition for the existence of a Coleman-
De Luccia bounce is that jV 00���j=H2 > 4 for some value
of �.
VII. CONCLUDING REMARKS

In this concluding section we will first summarize our
results and then discuss how they might be affected if
we were to relax some of the restrictions that we have
imposed to simplify the analysis. We will then briefly
discuss the physical implications and interpretation of
these solutions.

A. Summary

In this paper we have studied in some detail a class of
oscillating bounce solutions that arise when the effects of
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gravity on vacuum tunneling processes are taken into
account. These are qualitatively distinct from the
Coleman-De Luccia and Hawking-Moss solutions. In fact,
they can be viewed as, in a sense, interpolating between
these two limiting cases.

These oscillating bounces exist on a space that is topo-
logically a Euclidean four-sphere. They are O(4) symmet-
ric, so that the scalar field depends only on the variable $.
At k � 1 values of $ the scalar field takes on its value at the
top of the potential barrier. These values correspond to k
three-spheres that can be viewed as dividing the four-
sphere into two end caps and k� 1 bands. Typically, in
each of the end cap regions the field approaches close to,
but does not quite reach, one of the two possible vacuum
values. In the intermediate band regions the field is alter-
nately on the true or false vacuum side of the barrier,
although it does not generally wander very far from the
top of the barrier, with this deviation decreasing as k
increases.

For k � 1, the solution is simply the Coleman-
De Luccia bounce. The k � 2 solution for which the field
in both end caps is in the true vacuum region can be viewed
as a two-bounce solution. However, the solutions with
higher values of k are not in any sense multibounce solu-
tions. For any fixed value of the parameters of the theory,
there are only a finite number (possibly zero) of these
solutions. When solutions exist, they have values of k
taking on all integer values from 1 to some kmax, with
possibly several distinct solutions for the same value of
k. The determination of precisely how many solutions exist
is closely related to the older problem of determining when
a potential admits a Coleman-De Luccia bounce.

In a rough sense, the controlling quantity here is the ratio
of the second derivative of the potential to the value of H2.
This is physically plausible, since for ‘‘typical’’ potentials
V00 is related to the characteristic mass scale, which in turn
determines the characteristic size of a classical solution. If
this last quantity were too large, one might imagine that the
bounce would not ‘‘fit’’ on the four-sphere. Early discus-
sions focused on � jV 00��top�j=H2, and argued that there
was no Coleman-De Luccia bounce if < 4. We have
shown that for a broad class potentials  is indeed the
controlling parameter and that kmax � N, where N is the
largest integer such that N�N � 3�<. As  is increased
through one of these critical values, two (possibly equiva-
lent) k � N solutions appear. Precisely at the critical value,
the new solutions are identical to the Hawking-Moss solu-
tion, and so can be thought of as being ‘‘all wall.’’ (As
described in Sec. IV, matters can be slightly more compli-
cated if k is an even number.)

Not all potentials give this behavior, as is evident from
our results for the case where the fourth derivative of the
potential is negative at the top of the barrier. Here, the
critical values of  give upper, rather than lower, limits for
the existence of small amplitude bounce solutions. The
-15
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situation is somewhat clarified by considering potentials
where the barrier is atypically flat. For these, the parameter
whose value determines the first appearance of a bounce is
not the second derivative at the top of the barrier. Instead,
one can use an averaged value of jV 00j=H2 (whose precise
definition may vary from case to case) to define a quantity
:. As : is increased through a k-dependent critical value
:1, a pair of k-solutions appears. These coincide, and are
nontrivial, when they first appear. In the simplest case, one
of these will persist for all : > :1, while the other survives
only for a finite range :1 <:< :2, with the parameters
that give : � :2 also giving  � k�k� 3�. When this
critical point is reached, the latter solution and its
$-reversed image annihilate and merge into the
Hawking-Moss solution. More complicated patterns are
also possible, but must satisfy the constraint that solutions
only appear and disappear in pairs. To satisfy this require-
ment there must be at least one solution that survives for
arbitrarily large :, and a second solution that either merges
with the Hawking-Moss at a finite value of : or, as with our
toy model, also persists for arbitrarily large :.

B. Robustness of our results

To simplify our analysis, we have imposed two restric-
tions. First, we have only considered solutions with O(4)
symmetry. Second, we have assumed that the potential is
such that we can use the fixed background approximation.
We must now ask how robust our results are, and how they
might change were these restrictions relaxed.

The restriction to O(4)-symmetric configurations is the
common practice in flat space treatments of vacuum tun-
neling. For single-field potentials satisfying a rather plau-
sible set of conditions, it can even be shown that the lowest
action bounce has O(4) symmetry. Indeed, although there
are nonsymmetric approximate stationary points corre-
sponding to several widely separated bounces, it may
well be that most theories admit no bounce solutions
without O(4) symmetry.

This situation is no longer the case when gravitational
corrections are included, largely because the Euclidean
space is now a compact manifold. To see this, consider
the regime where the true vacuum bubble of the Coleman-
De Luccia bounce has a radius much less than H�1. Now
arrange several such bubbles in a maximally symmetric
fashion around the four-sphere (e.g., at the six vertices of a
five-dimensional hypertetrahedron). It is clear that some
mild local smoothing of the configuration will give a sta-
tionary point of the action, and hence a bounce solution
without O(4) symmetry. The solution will, however, be
invariant under a discrete subgroup of O(5). It is quite
possible that there might be additional solutions, with
oscillatory behavior, with the same discrete symmetry.
However, there is no reason to expect more than a finite
number of these. Further, we would expect that the actual
number of such solutions would have a dependence on the
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parameters of the theory that is similar to that found for the
O(4)-symmetric solutions.

A more significant limitation on our analysis is the use
of the fixed background approximation, which is clearly
inapplicable to many potentials of interest. Nevertheless,
we expect most if not all of the qualitative, and indeed
many of the quantitative, features of our results to persist.
Thus, for solutions that begin as small deviations from the
Hawking-Moss solution when  reaches a critical value
(either from above or below), the value of cr will be
exactly as in our analysis, provided that H is calculated
using V��top�.

A second case to consider is the toy model of Sec. VI.
Let us assume that the linear falloff of the potential is
terminated at some finite value of j�j in such a way that
V��� remains everywhere positive. Further, let : still be
defined using the value of the potential at the top of the
barrier. The fact that V��� is actually lower than this in
some regions would have the effect of decreasing the
effective value of H; from Eq. (3.4), we see that the non-
zero _� acts in the same direction. The Euclidean space will
therefore be larger, making it easier to fit in a bounce
solution. As a result, we expect a reduction in the values
of : at which solutions for a given k will first appear, and
thus an even larger range of parameters that allow a bounce
with an absolutely flat potential.

C. Physical interpretation

We now turn to the physical interpretation of these
solutions. As with the Coleman-De Luccia and Hawking-
Moss bounces, the hypersurface passing through $ � 0
and $ � $max gives the initial data for the classical evolu-
tion after the vacuum transition governed by the bounce.
This hypersurface is a three-sphere of radius �H�1, ap-
parently implying that the transition takes place at the
‘‘waist’’ of the de Sitter hyperboloid. This is generally
understood to be an artifact of the formalism, with the
physical results instead being adapted to a single horizon
volume.

Formally, the classical evolution can be obtained by an
analytic continuation of the bounce solution. In doing so,
particular care must be taken at the points $ � 0 and $ �
$max of the Euclidean solution. After rotation to a
Lorentzian signature these become the lightlike boundaries
of two antipodal regions on the de Sitter hyperboloid [13];
this generalizes the manner in which the origin of the flat
space Euclidean solution becomes a light cone after the
Wick rotation to Minkowski space.

In the case of the Coleman-De Luccia bounce, this
procedure yields a Lorentzian spacetime in which portions
of two de Sitter spaces, corresponding to the two vacua, are
separated by a well-defined bubble wall. When the initial
bubble size is small, the bounce can be viewed as having an
initial-state hypersurface corresponding to the false vac-
uum (see Fig. 2), and the vacuum transition is most natu-
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rally interpreted as quantum mechanical tunneling. When
the initial bubble size is comparable toH�1, the initial state
is not evident in the bounce, but is instead determined
only by which vacuum action is subtracted in the calcu-
lation of B. The transition thus has a more thermal char-
acter, reflecting the existence of a nonzero de Sitter
temperature TdS.

The Hawking-Moss solution is even more clearly ther-
mal in character. Here the initial data for the classical
evolution is a homogeneous region with the field balanced
at the top of the potential barrier. Although, strictly speak-
ing, the classical Lorentzian evolution would leave the
scalar field at the top of the barrier forever, this solution
is unstable against small fluctuations and so will break up,
in a stochastic fashion, into regions that evolve toward one
or the other of the two vacua.

The oscillating bounces yield a hybrid of these two
cases. The end cap regions near $ � 0 and $ � $max

evolve into two vacuum regions bounded by well-defined
walls; these vacua can be the same or different, and have no
definite relation with the state before the vacuum transi-
tion. In the intermediate region, the scalar field profile
oscillates about the top of the barrier.6 With initial con-
ditions given precisely by the bounce solution, these oscil-
lations would be preserved under the classical evolution,
giving a large and exponentially expanding region in which
the field is near the top of the barrier. However, just as with
the Hawking-Moss solution, there will be instabilities
against small fluctuations. We expect these to lead to a
breakup into a stochastic mixture of regions evolving
toward the true and false vacua, separated by relatively
narrow transition regions. (We differ here from the sce-
nario advocated in Ref. [6].)

The relative importance of these three types of solutions
depends on the parameters of the theory. For typical po-
tentials, such as that studied in Sec. V, the various regimes
6An exception is the k � 2 ‘‘true-to-true’’ solution, in which
the intermediate region is approximately false vacuum at
nucleation.
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can be characterized by the value of . (If the potential is
atypical, e.g., by being unusually flat at the top of the
barrier or by having two very different mass scales, the
regimes will be defined by a more complex combination of
parameters, but the discussion would be analogous.) When
� 1, there will be a Coleman-De Luccia bounce, a
Hawking-Moss solution, and many oscillating bounces.
However, the actions of the Hawking-Moss solutions and
the k > 2 oscillating bounces will be many times greater
that of the Coleman-De Luccia bounce, which will clearly
dominate. This is a regime of quantum tunneling transi-
tions followed by deterministic classical evolution. At the
other extreme is the case  & 1, where the Hawking-Moss
solution is the only bounce. This is a regime of thermal
transitions followed by stochastic evolution. Intermediate
between these is a regime of moderate  that admits the
Hawking-Moss, one (or more) Coleman-De Luccia, and
several oscillating bounces. It is in this transitional regime
that the oscillating bounces are most likely to play a role.

Finally, we should comment on the question of negative
eigenmodes. In the case of flat space quantum tunneling,
the existence of a single negative mode (or, possibly, a
number equal to one mod four) was an essential ingredient
to the path integral derivation of �. Indeed, it can be shown
[18] that for a wide class of theories in flat space the bounce
of lowest action has only one negative mode. The situation
in curved space, and, in particular, for the oscillating
bounces, needs further clarification, both as to how these
affect the contribution to the vacuum transition rate and to
their role in the stochastic breakup of the intermediate
regime after the transition. We plan to return to this subject
in a later publication.
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