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No news for Kerr-Schild fields
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Algebraically special fields with no gravitational radiation are described. Kerr-Schild fields, which
include as a concrete case the Kinnersley photon rocket, form an important subclass of them.
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I. INTRODUCTION

In 1951 Vaidya [1] generalized the Schwarzschild vac-
uum solution to a spherically symmetric ’’shining star’’
solution, emitting pure radiation. In 1969 Kinnersley [2]
further generalized this solution to a photon rocket—a
particle of arbitrary acceleration emitting an anisotropic
jet of radiation. He noted that it belonged to the Kerr-
Schild (KS) class of metrics, studied till then in vacuum
[3] and in the presence of electromagnetic fields [4]. Later
it was shown that the photon rocket is also a type D pure
radiation solution from the Robinson-Trautman (RT) class
[algebraically special expanding solutions without a twist
(rotation)] [5]. In 1994 Bonnor [6] found that axially
symmetric photon rockets do not emit gravitational radia-
tion, which is strange for an accelerating particle. A sug-
gestion was made, based on the linearized theory, that axial
symmetry was responsible for this phenomenon [7].
However, an axially symmetric RT solution of type II
was studied as an anisotropic perturbation of the photon
rocket, still with no sign of gravitational radiation [8].
Another explanation was given [9], based on the well-
known vanishing of the Einstein pseudo-energy-
momentum tensor for KS fields [10]. It was extended to
the Einstein-Maxwell field of a charged particle, under-
going arbitrarily accelerated motion [11].

The fact that the photon rocket is a member of the RT
class was emphasized in [12,13]. In the latter reference the
Bondi-Sachs [14,15] formalism was used and applied to
axially symmetric RT pure radiation solutions. It was
shown that the Kinnersley solution is the only one which
does not radiate gravitationally. This put the study of
photon rockets on a firm basis, since different pseudoten-
sors for KS metrics lead to different results [16]. Later the
news function was calculated for any RT metric and it was
found once more that the Kinnersley solution is the only
one to emit just photon radiation [17,18]. Rotating pure
radiation KS fields (radiating Kerr metric) were given in
[19,20] and it was demonstrated [20] that only pure radia-
tion contributes to the mass loss.

Finally, the Bondi mass and the news function were
recently found for twisting algebraically special metrics
in a paper [21], based on previous research of Tafel and
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coauthors [22,23], where the RT class was discussed as a
special case.

Meanwhile, all pure radiation KS fields with axial sym-
metry have been found explicitly [24]. Stephani [5,25]
proposed a more compact description of KS fields and
rederived the results of Herlt, giving also an example of a
nonaxially symmetric solution. This approach has been
developed further by the present author [26–29].

In this paper we use the same approach to study fields
with vanishing news function and consequently, with no
gravitational radiation. The KS metrics form a large class
of such solutions but do not exhaust all of them. The
intersection between KS and RT fields is represented by
the Kinnersley photon rocket, which explains why more
general RT solutions always radiate gravitationally.

In Sec. II the notation for twisting algebraically special
metrics is fixed and the expressions for the Bondi mass and
the news function are given according to [21]. In Sec. III
the condition for no news is discussed and different classes
of metrics that satisfy it are given.

II. THE BONDI MASS AND NEWS FUNCTION

Pure radiation (aligned case) and vacuum algebraically
special fields satisfy the Einstein equations

R�� � �k�k�; (1)

where k� is the multiple null eigenvector of the Weyl
tensor and � � 0, vanishing for vacuum solutions. In
some coordinates u, r, 	, �	 the interval reads [5]

ds2 � 2!�dr�Wd	� �Wd �	�H!� � 2
r2 � �2

P2 d	d �	;

(2)

where

! � du� Ld	� �Ld �	; @ � @	 � L@u; (3)

W � ��r� i��L;u � i@�; � �
i
2
P2�@ �L� �@L�;

(4)

H � �r�lnP�;u �
mr�M�

r2 ��2 � P2Re�@� �@ lnP� �L;u��:

(5)
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The functions P,m,M are real and L is a complex function
of u, 	, �	. The Einstein equations read [5], Eqs. (30.40)–
(30.42)

@�m� iM� � 3�m� iM�L;u; (6)

M � P3Im@@ �@ �@V; (7)

P3�P�3�m� iM��;u � P4�@� 2@ lnP� 2L;u�@I �
�2

2
;

(8)

where P 	 V;u and

� � �2� ��; ��1 � ��r� i��; (9)

I � P�1� �@ �@V�;u � �@� �@ lnP� �L;u� � � �@ lnP� �L;u�2:

(10)

Equation (8) is, in fact, a definition of �2, the actual field
equations being (6) and (7), which are the same as in the
vacuum case. Equations (7) and (8) give also

P3�P�3m� Re@@ �@ �@V�;u � �P2�@@V�;u� �@ �@V�;u �
�2

2
;

(11)

where M is excluded and this condition may replace
Eq. (8).

In [21] it was shown that �I is the Bondi news function,
which enters the tensor nab and its derivative

nabdxadxb � �2P�1
s �@@Vd	2 � �@ �@Vd �	2�; (12)

�nab�;udx
adxb � �2 �Id	2 � 2Id �	2; (13)

while the Bondi mass is given by

MB � mP̂�3 �
1

2
P̂�1� 0 � 0�;u

� P4
sRe�P̂

�1I;u�@û�
2 � 2@I@û�; (14)

where

P̂ 	 PP�1
s ; Ps � 1�

1

2
	 �	; (15)

 0 � Ps@@V; � 0�;u � PsP �I; (16)

and û is an approximate Bondi coordinate. Then Eq. (11)
becomes the energy loss formula in the Bondi-Sachs
approach.

III. FIELDS WITH NO NEWS

The condition for vanishing news is obviously I � 0.
Equation (10) gives in this case

@@V � F�	; �	�; (17)

where F is an arbitrary complex function. All, but the first
term in the expression (14) for the Bondi mass, vanish
044012
MB �
mP3

s

P3 : (18)

Equation (8) simplifies and its real part gives for the mass
loss

�MB�;u � �
�2P3

s

2P3 � �
�2MB

2m
: (19)

There is no gravitational radiation; the Bondi mass de-
creases due to the emission of photons and when � � 0,
it stays constant.

A large class of fields, satisfying the no news condition
(17) are the Kerr-Schild fields, which can be defined by
[25]

@@V � 0: (20)

In this case the tensor nab vanishes identically. One can
choose a gauge with m � 1, M � 0, L � ih	, where h is
real. Equation (19) becomes

�lnV;u�;u �
�2

6
; (21)

which is, in fact, Eq. (32.79) from [5]. One can integrate it
twice to find V as a function of �. In the vacuum case V
must be linear in u and the reality condition then uniquely
fixes h. These solutions have been given already in [3] and
include the Kerr black hole. In the pure radiation case the
general solution is not known. Herlt [5,24] has found the
general axisymmetric solution. This includes the radiating
Kerr metric [20]. An example of a nonaxisymmetric solu-
tion was given in [25]. In all these metrics � � ��u�, so
presumably it is more natural to base the classification of
KS fields on the form of� and not on the symmetries of the
metric.

For RT solutions L � 0,M � 0 and the condition I � 0
becomes

P		 � 0; P �	 �	 � 0: (22)

Together they give the nonaxisymmetric solution

P � #�u�	 �	� $�u�	� �$�u� �	� %�u�; (23)

where #, % are real. In general, #, $, % may be interpreted
in terms of the acceleration of a particle moving along a
spacelike, timelike, or null world line [5], Sec. 28.3. When
K � 2�#%� $ �$� is positive we get the Kinnersley photon
rocket. The case with no u dependence represents the
Vaidya shining star [1]. Consequently, the only RT solution
with no gravitational radiation is the photon rocket, which
belongs also to the KS class. This confirms the previous
results [6,9,13,17,18].

Some general classes of twisting vacuum solutions have
been found [5,30] under the assumptions that L;u � @ lnP
andm� iM are independent of u. Among them is the case
with no news I � 0 [5], Sec. 29.2.4, which is solved
explicitly. Thirty years ago it was shown [31] that these
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are the only solutions which are nonradiative in the sense
that the Weyl tensor for large r behaves like 1=r3. If the
further condition L;u � 0 is imposed, the metric becomes
independent of u [5], Sec. 29.2.5. Then P is given by
Eq. (23) with constant #;$; % and the expressions for
044012
m;M;L are given by Eq. (29.61) from [5]. The subclass
m� iM � const contains well-known type D solutions,
such as Kerr and NUT, Kerr and Debney/Demianski four-
parameter solution [32,33]. When, in addition, M � 0 we
come again to the KS vacuum solutions [5].
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