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Initial value problem for second order scalar fluctuations in the Einstein static universe
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We consider fluctuations in a perfect irrotational fluid coupled to gravity in an Einstein static universe
background. We show that the homogeneous linear perturbations of the scalar and metric fluctuations in
the Einstein static universe must be present if the second order constraint equations are to be integrable.
I.e., the ‘‘linearization stability’’ constraint forces the presence of these homogeneous modes. Since these
linear homogeneous scalar modes are well known to be exponentially unstable, the tactic of neglecting
these modes to create a long-lived, almost Einstein universe does not work, even if all higher order �L> 1�
modes are dynamically stable.
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I. INTRODUCTION

Recently Barrow et al. [1] reexamined the stability of
the Einstein static spacetime against arbitrary linear fluc-
tuations in the metric and matter and found, surprisingly,
that some modes are stable. More precisely, they found that
given a sufficiently large speed of sound in the background,
all nongauge inhomogeneous scalar modes were neutrally
stable (i.e., the fluctuations are not damped), and further-
more vector and tensor modes were neutrally stable on all
scales irrespective of the equation of state in the back-
ground. The essence of this stability arises from the spatial
compactness of the Einstein static spacetime, i.e., there
exists a maximum physical wavelength in this closed space
and furthermore the Jeans length is a significant fraction of
this maximum scale. It turns out that for specific equations
of state in the background matter all physical wavelengths
fall below the Jeans wavelength and the modes are thus
stable for the usual reasons.

This surprising non-Newtonian stability for a large class
of fluctuations, which was pointed out earlier in different
and more restricted contexts in [2,3], is one of the key
elements of support for the Emergent Universe models
proposed recently by Ellis et al. in [4]. These models
explicitly construct spatially closed, positively curved,
cosmologies which do not bounce and in which inflation
(triggered by precisely the famous homogeneous instabil-
ity of Einstein static) is not preceded by an era of decel-
eration, by contrast to deSitter and most other models of
closed inflation. Such constructions have no initial singu-
larity, undergo the usual inflationary period ending in the
usual reheating era, and immediately solve the horizon
problem owing to the staticity of the initial state.
However another key feature of these models is that a finite
number of e-foldings of inflation occurs over an infinite
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time in the past. It is critical for this scenario that the
homogeneous mode, which is always exponentially un-
stable in linear order, be excluded with high accuracy.

In the present paper we investigate the initial-value
problem for second order inhomogeneous fluctuations
about the Einstein static solution, as made precise below.
For some time now it has been known (see, e.g., [5]) that
the initial-value equations of gravity have peculiar proper-
ties in a closed universe with symmetries. The crucial idea
is that there are certain flux integrals, associated with those
symmetries, which are constrained to be zero. Thus not all
solutions to the linear perturbations equations are actually
perturbations of some exact solution to the Einstein equa-
tions. Technically, the tangent space defined by the line-
arized initial-value constraints is actually larger than the
manifold of solutions. Only those solutions to the linear-
ized equations which obey an additional second order
constraint can be the linearization of an actual family of
solutions to the full Einstein equations. This feature of the
perturbations of the Einstein equations is called ‘‘lineari-
zation stabilty’’. It does not refer to the dynamic stability of
pertubative solutions, but to the above ‘‘stability’’ of the
linearized solutions as genuine approximations to exact
solutions of the Einstein equations.

The nature of these higher order restrictions on the linear
fluctuations about a certain background space, which are
necessary conditions to ensure the so-called ‘‘linearization
stability’’ of that background space ( see [6,7]), is such that
for every Killing vector in the background there is an
associated higher order constraint. In this paper we focus
on the higher order constraint associated with the timelike
Killing field of the Einstein static initial state.

We find, in the case of a general irrotational perfect fluid
with cosmological constant, that there are no nontrivial
solutions to both the linearized constraints and this global
nonlinear constraint when we exclude the linear homoge-
neous scalar metric and matter fluctuations. In other words,
the leading order linear metric and matter fluctuations must
-1  2005 The American Physical Society
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be trivial if their linear seeds do not include ‘‘zero mode’’
homogeneous fluctuations. It is well known that these
homogeneous modes are dynamically unstable for any
(causal) equation state of the matter, just as all perturba-
tions of an Einstein static dust model are unstable. This
would seem to suggest that if the universe is in a neighbor-
hood of the Einstein static solution then it does not stay
there, even if perturbed with the neutrally stable modes
found in Ref. [1]. This is one of the first instances where the
linearization stability issues make a physical difference in
the analysis of metric and matter stability (see also Brill,
[5]).

The paper is organized as follows. In Sec. II we briefly
outline the details of the Einstein static background model.
In Sec. III we define the constraint equations in the stan-
dard ADM decomposition of the Einstein equations and
also define an orthogonal decomposition (following [5]) of
perturbations into transverse and longitudinal parts. In
Sec. IV we formulate and compute the nonlinear con-
straints, leaving conclusions for Sec. V. The entire analysis
is quite similar to that in Brill and Deser’s original paper
[5].
II. EINSTEIN STATIC SPACETIME

Consider a FRW universe in comoving coordinates �t; ~x�
with scale factor a�t�, with signature ��1; 1; 1; 1�, and with
a perfect fluid with energy density � and pressure p. The
equations of motion for the scale factor a�t� are, according
to the Einstein equations,

�a
a
� �



3
���1� 3w� ���; (1)

H2 �


3
����� �

K

a2 ; (2)

where K � 	1; 0 is the constant curvature of the t � const
slices, H � @tln�a� is the Hubble parameter, � is a cos-
mological constant, w � p

� , and 
 � 8�G in units where
c � 1. One can combine these equations to form _H �

� 

2 ���1� w�� � K

a2 .
As Einstein found some time ago, demanding that the

universe be static ( _a � �a � 0 ) obviously sets K to be
positive (take it to be 1) and leads to constraints relating
the initial energy density and pressure of the fluid to �. The
equilibrium radius of such a static universe is set by these
constraints to be

a2
0 �

1� 3w
��1� w�

; (3)

where �1� w�� > 0. In the case of dust it is seen that a2
0 �

1=�.
Consider the general perfect fluid equations. The equa-

tions of motion of the perfect fluid are given by the con-
servation equations of T�� � ��� p�u�u� � pg��, or
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��� p�;�u
�u� � ��� p�u�

;�u��

��� p�u�u�;� � p;� � 0: (4)

Dotting this with u� we get the primary conservation law

�;�u� � ��� p�u�
;� � 0: (5)

Multiplying this by u� and subtracting from the above
equation we get

0 � ��� p�u�u�;� � p;� � p;�u
�u�

�

�
�� p����

N
p

�
�

����
N

p
u���;��u

�; (6)

where

N��� � exp
�
2
Z dp

�� p

�
(7)

is a function of � where we assume that there exists some
constitutive equation p � p���. These equations are trivi-
ally satisfied if we assume that the term N1=2���u� satisfies

N1=2���u� � �;�; (8)

where � is a scalar potential for the flow. This is an
appropriate generalization of the irrotational conditions
of nonrelativistic flow. Finally, multiplying this equation
by itself we have that

N��� � ��;��
;�; (9)

which is the equivalent of Bernouli’s equation for non-
relativistic irrotational flow. We will concern ourselves
with constitutive equations where p is linearly proportional
to �.

We wish to treat the case of an arbitrary irrotational
perfect fluid in terms of this scalar field � that acts as the
velocity potential of the fluid (as in [8] ). We choose the
scalar field to have the action

S �
1

2�

Z
���;��;��

�
����������
�jgj

q
d4x; � 2 <: (10)

Comparing the stress energy that results from varying the
above action with respect to the metric with that of a
perfect fluid, we can easily identify the corresponding
energy density and pressure in terms of �:

� �

�
��

1

2

�
N�; (11)

p �
N�

2
: (12)

For � � 1 we obtain the stiff (w � 1) perfect fluid, i.e., a
minimally coupled scalar field. However, note that the
speed of sound is given by c2s � p=� � �2�� 1��1 and
thus causality restricts � � 1. It turns out that stable (in-
homogeneous) scalar fluctuation modes only exist when
-2
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the background speed of sound satisfies the bound v2
s �

1
5

([1,3]) for no Jeans instability, which translates into � � 3.
I.e., there is no Jeans instability for any physical inhomo-
geneous modes given these conditions. Thus we take 1 �
� � 3 in what follows. We also note in passing that in
order for the four velocity to be timelike the gradients of
the velocity potential � are restricted to ones such that
their temporal gradient dominates their spatial counterpart.
In this model we take the background � � � �0

��1=2�
1=�t to

satisfy equation (7) in the background, so the timelike
condition will always be satisfied for the perturbations.

In any case the generalized Einstein static initial con-
ditions (in terms of �) become

N� �� 1

2
� � �

�� 1

�
a2
0

; (13)

i.e., a2
0 � ��� 1�=���� and N � �2�=�
��� 1���1=�.
III. INITIAL-VALUE CONSTRAINT EQUATIONS

The gravitational field may be characterized in terms of
the initial three-geometry gij and extrinsic curvature Kij of
some spacelike surface. These 12 quantities may be rewrit-
ten into a more convenient hamiltonian form by defining
the momentum density �ij �

������
jgj

p
�Kij � K‘

‘g
ij�, which is

conjugate to gij. The phase space for Einstein’s equations
is then some suitable function space of pairs (gab; �ab)
over a three-dimensional manifold M (which we take as
compact and without boundary), and the constraint subset
of phase space is defined by the four initial-value con-
straints. The constraints are nonlinear and we expand them
order by order in the strength of the metric and matter
perturbations. Quantities with overbars will indicate zeroth
order, background, quantities and a bar indicates covariant
differentiation with respect to the background metric (used
intechangably with the standard �ri notation).

The constraints with matter sources ��; Ja� are

�
1������
jgj

p ��ab�ab �
1

2
�2� �

������
jgj

q
R � 2


������
jgj

q
�; (14)

��ab�jb � 
Ja; (15)

where �3�R is the Ricci curvature scalar for the three
surface (in what follows we will drop the 3 superscript)
and � � gab�

ab.
At zeroth order, i.e., in the background Einstein static

spacetime, there is only one nontrivial constraint namely

�� �
3�

2

; (16)

where we have used the background conditions �Rab �
��gab, ��ab � 0. At linear order (using the background
equations) the constraint equations are
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)R � 2
)�; (17)

�r b)�
ab � 


������
j �gj

q
)Ja; (18)

and similarly the second order equations are, using the
linear and background equations,

)2R �
1

j �gj

�
)�ab)�ab �

1

2
)�2

�
� 2
)2� (19)

�r b)
2�ab � 2�)Ca

bm)�
mb � )Cb

bm)�
am�

������
j �gj

q

� 
)2�Ja
������
jgj

q
�; (20)

Here 2)Ca
bm � �gac� �rm)gbc �

�rb)gmc �
�rc)gbm� is the

perturbed connection. One can rewrite Eq. (19), the equa-
tion associated with time reparametrization invariance at
second order, using )2R � 2)gab)Rab � �gab)2Rab �
)2gab �Rab to obtain

��)2g� �rm �rb)2gbm ���gab)
2gab

� �r‘B
‘ � 2)Cc

b�a)C
‘
‘�c �g

ab � 2)gab)Rab �
1

j �gj

�

�
)�ab)�ab �

1

2
)�2

�
� 2
)2�; (21)

where by �r‘B
‘ we denote a combination of terms that

occur in the form of a total derivative. In obtaining (21) we
have expanded the second order Ricci scalar in terms of the
perturbed connection defined above and grouped second
order terms and products of linear order terms. One can
similarly simplify the momentum constraints (20) but in
this paper our main concern will be the second order
timelike, or ‘‘Hamiltonian’’, constraint.

Typically what one does is to solve the constraints for a
given set of fluctuation variables and in that way solve for
the constrained variables in terms of the free variables. A
convenient way to facilitate this process is through an
orthogonal decomposition of the fluctuations in gab and
�ab into longitudinal and transverse parts. As pointed out
in [5] this procedure differs crucially for tensors in closed
spaces from the usual one in flat space since one can now
have fluctuations in global parameters such as the total
volume of the space while still having no local excitations.

Following the notation of Brill et al. one may decom-
pose the metric perturbation into its various transverse,
transverse traceless, and longitudinal parts via
-3
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)gab � )g�TT�
ab �

1

2
�� �ra

�rb �
�� �gab�)g�Tr�

� ~A)g �gab � 2)g�V�
�ajb�; (22)

where �� � �rc
�rc. The transverse traceless and longitudi-

nal parts are defined as usual:

�g ab)g�TT�
ab � 0 � �ra)g�TT�

ab ; (23)

�r a)g�V�a � 0; (24)

and here ~A)g � A)g �
�
2 )g

�Tr�. The homogeneous fluc-
tuations ~A)g are essentially the global fluctuations (re-
lated to the volume fluctuation) unique to perturbations of
closed spaces. An analogous decomposition holds for the
momentum fluctuation (the homogeneous modes ~A)�
describe the ‘‘time rate of change’’ of the volume
fluctuation).

Using the above decomposition we note that an identity
due to the symmetry of the background is that the pertur-
bations are all ‘‘doubly transverse’’. Indeed, we see

�r b)gab � ��)g�V�
a � �gbm�� �R‘

bma)g
�V�
‘ ��

�
� �����)g�V�

a

(25)

�r a �rb)gab � �gan� �rn; ���)g
�V�
a �

�
0: (26)

We also note that we can write

)2R � ��gab)
2gab � 2)gab)Rab � 2 �gab)Cc

b�a)C
‘
‘�c

� 2 �r�a)
2 ~Cc

c�b �g
ab � �r‘B

‘; (27)

where

2)2 ~Ca
bc � �gam� �rb)

2gcm � �rc)
2gbm � �rm)

2gbc�: (28)

We may use the decompositions above to eliminate the
‘‘doubly transverse‘ term and obtain

��)2g���gab)
2gab � 2)gab)Rab �

�r‘B
‘

� 2)Cc
b�a)C

‘
‘�c �g

ab �
1

j �gj

�

�
)�ab)�ab �

1

2
)�2

�

� 2
)2�; (29)

where )2� are the second order energy density fluctua-
tions. We explicitly insert the above decompositions into
Eq. (28) in the next section.

In the case of the generalized scalar field � introduced in
Sec. II, the Hamiltonian formulation is more involved since
the canonical momentum conjugate to � is generally
044011
�� �
@L

@ _�
�

������
j �gj

p
N

� _��N i�;i�

�

� _�2

N 2 �
2N i _��;i

N 2 ��;i�;i

�
��1

;

where N and N i are the purely kinematical lapse and
shift variables of the ADM formalism. For general 3 �
� � 1 this expression cannot be inverted in closed form to
find _� � _�����, however for a spatially homogeneous
scalar field it is possible and the resulting Hamiltonian
(energy density) is

H0 �
2�� 1

2�

�
����

2�������
jgj

p
�
1=2��1

�
�



�

������
jgj

q
�; (30)

where ��� �
������
j �gj

p _��2��1. We define the fluctuations )��

and )2�� using the formal definition of �� given above.
For example the first order fluctuation in �� is formally
defined by

)���
���������
j �gj

p
�
)�

������
jgj

p
N

��
������
j �gj

q �
) _�

2��1
_��

��2���1�)N
��

; (31)

and similarly for the second order fluctuation (though new
cross-terms like )N i)�;iand)�;i)�;i start to appear).
Formally perturbing Eqs. (11) and (12) with the above
definitions of )��, )2�� yields

2
)� � ��
)N
�N

�
2��

2�� 1

�)��

���
�

)g
2

�
; (32)

2
)2� � ��
�
��� 1�

�
)N
�N

�
2
�

)2N
�N

�
; (33)

where the second order term is given explicitly by

)2N � 2�) _��2
� _��)2 _�� � 4 _��) _�) ~N � 2 _��2)2 ~N

� 6 _��2
�) ~N�2 � 2 _��) ~Ni)�;i � )�;i)�;i;

so that, in Hamiltonian form, we finally obtain

2
)2� �
2��

2�� 1

	)2��

���
�

)2
������
jgj

p
������
j �gj

p �
)�;i)�;i

2

�

�
���������
j �gj

p
�
2=1�2�

�
1

�2�� 1�2

�
�2�2 � 8�� 7�

�

�
) ln

������
jgj

q �
2
� �2�2 � 4�� 5��) ln���

2

� 4��2 � 3�� 3�
�
) ln

������
jgj

q �
�) ln���

�

(34)

Here )g � �gab)gab and �N� � �=�
�2�� 1�� by the ze-
roth order constraint (13). Inserting the above matter per-
turbations into Eq. (25) and using the second-order identity
-4
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�gab)2gab � �gab)
2gab � �2)gab)gab, we arrive at
�
����

�� 1

2�� 1

�
)2g � �

�
2� 3�
2�� 1

�
)gab)gab � 2)gab)Rab � 2)Cc

b�a)C
‘
‘�c �g

ab �
1

j �gj

�
)�ab)�ab �

1

2
)�2

�

�
2��

2�� 1

	)2��

���
�

)�;i)�;i

2

�
���������
j �gj

p
�
2=1�2�

�
1

�2�� 1�2

�
��2�2 � 10�� 8�

�

�
) ln

������
jgj

q �
2
� �2�2 � 4�� 5��) ln���

2 � 4��2 � 3�� 3�
�
) ln

������
jgj

q �
�) ln���

�

(35)
The various terms in �)��� can be reexpressed in terms of
the metric fluctuations, using the linearized Hamiltonian
constraint, via

) ln����
�2��1�

2��

��
����

��1

2��1

�
)g� �rc �rb)gcb

�

�M)g; (36)

so that the only explicit matter dependence in the second
order hamiltonian constraint appears through the )2�� and
�gij)�;i)�;j terms.

IV. NONLINEAR RESTRICTIONS ON THE LINEAR
FLUCTUATIONS

A. Fixing the linear gauge

As is usual in relativistic perturbation theory one must
fix the coordinate freedom inherent in the metric and
matter fluctuations. In our particular case we want to
remove the homogeneous second order matter dependence,
which enters through the )2�� term, in order that Eq. (35)
is of the form L)2F � S��)F�2� (where L is an elliptic
operator (with only constants in its kernel) acting on the
fluctuations in some quantity F in a closed space). In this
form (since the timelike Killing vector component is triv-
ial) the nonlinear constraints simply become

R
S � 0

where the integral is over the closed space [5].
Fortunately the Einstein static background crucially

simplifies the relevant gauge transformation laws of the
fluctuations not only at linear order, but also at second
order. Indeed the term )2�� only depends on the linear
gauge-fixing essentially because _��� � 0. We are only
interested in the homogeneous part of this )2�� term so
we pick a linear gauge-fixing to eliminate it and leave only
the inhomogeneous part )2 ~��.

We consider the linear spacetime coordinate transforma-
tion x̂0 � x0 � �T; @iM � ~Mi�, where �T;M; ~Mi� satisfy
044011
����2�� 1� ��� ��� 1���T � ��2�� 1�)��Tr� (37)

Z
S3
f2M ��)�� � )2��g

������
j �gj

q
d3x � 0 (38)

~M i � �)gi
�V�;

�ri
~Mi � 0; (39)

and where the spatial dependence of the modes is under-
stood in terms of the eigenfunctions of the spatial lap-
lacian: ��F � �

P
L

L�L�2�
a20

F � �
P

L
��
��1L�L� 2�F; L 2

Z�. In this new coordinate system )gi
�V� � 0, the homo-

geneous part of )2�� is zero, and )��Tr� � 0. Thus

�
1

j �gj

�
)�ab)�ab�

1

2
)�2

�
�

2��
����2��1�

)2��

��
1

j �gj

�
)�ab

TT)�
TT
ab �

3

2
� ~A)��

2

�
�

2��
����2��1�

)2 ~��:

(40)

This remarkable transformation completely fixes the vector
degrees of freedom at linear order, however we still have
the freedom M ! M � f�t� in the scalar-sector which we
use to eliminate the homogeneous modes ~A)g by picking
a special f�t� (whose form is not particular illuminating at
this stage). Furthermore, the linearized Hamiltonian con-
straint (36) in this coordinate system implies that ��)��

cannot be zero everywhere, which means we can always
pick a function M such that Eq. (38) is satisfied.

B. Gauge-fixed nonlinear constraints

The nonlinear constraint associated with (35) (an inte-
grability condition on )2g�Tr�), is effectively the integral of
the right hand side of Eq. (35) set to zero:
0 �
Z

S3
�
�
2� 3�
2�� 1

�
)gab)gab � 2)gab)Rab � 2)Cc

b�a)C
‘
‘�c �g

ab �
1

j �gj

�
)�ab)�ab �

1

2
)�2

�
�

2��
2�� 1

�

	)2��

���
�

)�;i)�;i

2

�
���������
j �gj

p
�
2=1�2�

�
1

�2�� 1�2

�
��2�2 � 10�� 8�

�
) ln

������
jgj

q �
2

� �2�2 � 4�� 5��) ln���
2 � 4��2 � 3�� 3�

�
) ln

������
jgj

q �
�) ln���

�
 ������
j �gj

q
d3x:
-5



B. LOSIC AND W. G. UNRUH PHYSICAL REVIEW D 71, 044011 (2005)
Using by-parts integration and compactness one can show that

2
Z

S3

������
j �gj

q
�)gab)Rab�)Cc

b�a)C
‘
‘�c �g

ab��
Z

S3
)gab)Rab

������
j �gj

q
;

which implies, using the linear equations of motion and making the above gauge choice,

Z
S3

1

j �gj
)�ab

TT)�
TT
ab �)gab

��)gab

2
�

�

2�2��1�
)gab)gab�

�
2��

�2��1�3

�
M2�2�2�4��5��

2M��2�3��3��
�2�2�10��8

4

�
�
�

2

�
�)g�2�3

� ~A2
)�

2

�
V�0;

where V represents the volume of the initial static space and M is defined in Eq. (31). We have eliminated the terms in )�;i
by using the scalar-sector momentum constraints (which are @i� �

2
 ���
)��Tr� � )�� � 0 ). The constraint is split into its

inhomogeneous (L � 2) and homogeneous (L � 0) pieces. 1.
Finally, inserting the decompositions into Eq. () and using Eq. (36) to remove the dependence in �)���

2, we arrive at

0 �
Z

S3
A

������
j �gj

q
d3x� 3

� ~A2
)�

2

�
V; (42)

where

A �
X
L�2

�
��3k2

	
�2�2�2 � 4�� 5�

2��� 1�4�2�� 1�
k6 �

��6�2 � 21�� 20�

4�2�� 1���� 1�3
k4 �

100�3 � 194�2 � 109�� 8�2 � 20

8��� 1�3�2�� 1�3

�
�� 1

2�2�� 1���� 1�



�)g�tr��2 �

	
1

j �gj

�
)��TT�

ab )��TT�
‘m

�
�

�

2�� 1

�
��k2 � 2� �

�� 1

2�� 1

�

� )g�TT�
‘m )g�TT�

ab



�g‘a �gmb

�
k2 (43)
and where k2 � L�L� 2�. We point out that Eq. (42) is not
the integral of the second order Hamiltonian H�2� for the
fluctuations since, given our gauge-fixing, the symplectic
terms )��Tr�) _gij

Tr do not contribute.
The main result of this paper is that first term in Eq. (43),

A, is positive definite given � � 1, L � 2. We observe that
the global constraint is an integral over S3, i.e., is of
positive measure. This means that in the absence of the
homogeneous mode, which provide a strictly negative
definite contribution to the integral through the second
term, there is no nontrivial solution to these global con-
straints even though there are certainly solutions to the
second order equations which only have inhomogeneous
linear seeds. In other words, if one wants to study the
evolution of the second order modes one must include, as
part of their source, the zero mode at linear order in order to
properly satisfy the initial-value constraints. Therefore, we
have shown that at linear order we must include the un-
stable, homogeneous mode. We emphasize that we are not
claiming gravitational stability or not at the second order
1The fluctuations corresponding to L � 1 can be shown to be
purely coordinate fluctuations.
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level, rather we are claiming gravitational instability at the
linear level. Whether or not second order perturbations
could stabilize the spacetime at a sufficiently high value
of the linearized solution remains unclear, but we do not
address that issue here though we strongly suspect not.

V. CONCLUSIONS

We have shown that the requirement that the second
order Einstein constraint equations be integrable demands
that any nonhomogenous linear mode perturbations of the
einstein static universe must be accompanied by the homo-
genous linear mode with comparable amplitude. Since this
homogeneous linear mode is exponentially unstable, this
implies that any linear approximation to a solution of
Einstein’s equations must be unstable. Our result is valid
for perfect fluid matter determined by a potential and with
a constant velocity of sound.
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