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SDSS galaxy bias from halo mass-bias relation and its cosmological implications
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We combine the measurements of luminosity dependence of bias with the luminosity dependent weak
lensing analysis of dark matter around galaxies to derive the galaxy bias and constrain amplitude of mass
fluctuations. We take advantage of theoretical and simulation predictions that predict that, while halo bias
is rapidly increasing with mass for high masses, it is nearly constant in low mass halos. We use a new
weak lensing analysis around the same Sloan Digital Sky Survey (SDSS) galaxies to determine their halo
mass probability distribution. We use these halo mass probability distributions to predict the bias for each
luminosity subsample. Galaxies below L� are antibiased with b < 1 and for these galaxies bias is only
weakly dependent on luminosity. In contrast, for galaxies above L� bias is rapidly increasing with
luminosity. These observations are in an excellent agreement with theoretical predictions based on weak
lensing halo mass determination combined with halo bias-mass relations. We find that for standard
cosmological parameters theoretical predictions are able to explain the observed luminosity dependence
of bias over six magnitudes in absolute luminosity. We combine the bias constraints with those from the
Wilkinson Microwave Anisotropy Probe (WMAP) and the SDSS power spectrum analysis to derive new
constraints on bias and �8. For the most general parameter space that includes running and neutrino mass,
we find �8 � 0:88 � 0:06 and b� � 0:99 � 0:07. In the context of spatially flat models we improve the
limit on the neutrino mass for the case of three degenerate families from m� < 0:6 eV without bias to
m� < 0:18 eV with bias (95% C.L.), which is weakened to m� < 0:24 eV if running is allowed. The
corresponding limit for 3 massless � 1 massive neutrino is 1.37 eV.
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I. INTRODUCTION

Galaxy clustering has long been recognized as a power-
ful tool to constrain cosmology. Galaxies are assumed to
trace dark matter on large scales and so the galaxy power
spectrum can be related to that of the dark matter. The latter
depends on several cosmological parameters, such as the
epoch of matter-radiation equality, baryon to dark matter
ratio, and the primordial power spectrum shape and am-
plitude. The key assumption underlying this approach is
that galaxies trace dark matter up to an overall factor,
called the linear bias b, so that the galaxy and matter power
spectra are related as P	g�k� � b2P	dm

�k�, where 	g and
	dm are the galaxy and dark matter density fluctuations,
respectively, and P�k� is their power spectrum.

The linear bias assumption is thought to be accurate on
large scales but becomes less and less accurate on small
scales, where details of galaxy formation play an important
role. The exact transition scale between the linear and
nonlinear regimes does not have to equal that of dark
matter and may depend on the type of galaxy one is
observing, the treatment of redshift space distortions, and
the cosmological model. For normal galaxies it is believed
to be somewhere around k � 0:1–0:2h=Mpc [1–3].
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While the shape of the galaxy power spectrum for k <
0:2h=Mpc has been used to constrain the cosmological
parameters [4,5], the overall amplitude is often ignored.
The reason for this is that the galaxies can be biased
relative to the dark matter and the bias parameter b de-
pends on the galaxy properties, such as luminosity or type.
This has long been observed as a function of morphologi-
cal type [6]. More recent surveys emphasized the luminos-
ity dependence of bias, finding that brighter galaxies
cluster more strongly both in 2 degree field (2dF) [7] and
in SDSS [8]. These early studies focused on the nonlinear
or quasilinear scales below 10h�1Mpc, so it was not clear
that their conclusions applied to the linear regime. In
particular, on small scales the clustering strength can in-
crease as a function of luminosity if the brighter galaxies
preferentially populate larger halos with many galaxies
inside, such as groups and clusters. In this case, the in-
crease in clustering amplitude on small scales is a reflec-
tion of the enhanced correlations inside the halo and is not
necessarily a reflection of these halos being more corre-
lated among themselves. In contrast with these previous
studies, a recent analysis of SDSS galaxy survey data has
focused the analysis on k < 0:2h=Mpc (scales above
10h�1Mpc) and thus measured the linear bias directly
-1  2005 The American Physical Society
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[9]. This analysis also found that bias increases as a func-
tion of luminosity, in a similar way as in the previous
studies [7,8]. The relative amplitudes of fluctuation power
spectra for different luminosity subsamples were found to
differ by almost a factor of 2.5 from the bright to the faint
end. It appears, therefore, that the evidence for linear bias
increasing with luminosity has finally been established. In
this situation it is not clear which of the galaxies are
unbiased (b � 1). In the absence of additional information,
the overall amplitude of galaxy fluctuations thus cannot be
directly related to that of dark matter.

There are at least three ways that have been proposed so
far to break the degeneracy. One is to use redshift space
distortions, which on large scales depend on the parameter
� � �0:6

m =b, where �m is the matter density of the
Universe. Unfortunately, even with modern surveys such
as 2dF and SDSS, this parameter has considerable statisti-
cal uncertainty, so in itself this method cannot give a
sufficiently precise bias determination. For example, the
SDSS analysis gives � � 0:5 � 0:2 on scales where non-
linear redshift space distortion modeling is reliable [9].

A second approach is to determine the bias from the
bispectrum, as was done for 2dF galaxies [10]. It is difficult
to measure the bispectrum on very large scales, where
deviations from non-Gaussianity are small. In Ref. [10]
most of the weight comes from scales with 0:2h=Mpc<
k< 0:3h=Mpc, in which case, however, it is not obvious
that the bias measured there also applies to the larger scales
where the power spectrum is measured, given how rapidly
the nonlinear effects become important. In principle, one
could verify this with simulations, but pure N-body simu-
lations (used so far) are not sufficient to verify this hy-
pothesis, since galaxies do not trace dark matter on small
scales and the details of how galaxies populate halos
change the two and three point functions and depend on
the specifics of the particular galaxy formation model.

A third approach is to compare a weak lensing power
spectrum determination, tracing dark matter, to the galaxy
power spectrum or the weak lensing-galaxy cross correla-
tion. This approach can also give the bias directly but is
limited by the statistical power of weak lensing measure-
ments. These are currently significantly more noisy than
those of galaxies, since on large scales the weak lensing
signal is weak and the survey areas probed so far are small.
Current data sets have not yet reached the scales where
linear theory is valid [11,12]. In addition, shear calibration
and background galaxy redshift distribution errors remain
and may lead to errors as large as 20% on the linear
amplitude [13]. Finally, so far these studies have averaged
over galaxies covering a broad range of luminosity over
which the bias changes significantly, in which case com-
paring galaxy autocorrelation with galaxy-dark matter
cross correlation overestimates the bias even on linear
scales, since hb2i=hbi> hbi (where h i denotes averaging
over luminosity).
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Given the difficulties of the methods described above,
most workers adopt the conservative approach and ignore
the overall amplitude of fluctuations (i.e., marginalize over
a completely unconstrained bias factor when deriving con-
straints on other parameters). Alternatively, one can use
other methods to determine the amplitude, such as the
cluster abundance or weak lensing. These methods have
systematics of their own, and at present various estimates
of �8 vary by up to 30%–40% (see [5] for a recent over-
view of current results). It would be useful to improve upon
this situation, as the overall amplitude of fluctuations at
zero redshift is an important source of information. It is
especially useful to constrain the dark energy equation of
state and neutrino mass.

The purpose of this paper is to propose a new approach
to determine the bias parameter and to apply it to SDSS
data. The main element of the method is to relate the
observed luminosity bias to ab initio predictions of the
halo-to-mass-bias relation. The relation between bias and
halo mass is one of the fundamental predictions of large
scale structure models [14–17]. The bias predictions de-
pend on the cosmological model, particularly on the non-
linear halo mass (defined below) where the bias is unity.
Above this mass the bias is rapidly increasing with halo
mass. Below this mass the bias is slowly decreasing to a
value b
 0:7, independent of the other cosmological pa-
rameters [17–19]. If one determines observationally the
bias as a function of halo mass, one can compare it to
theoretical predictions to establish the viability of this
model. This is particularly simple if one observes directly
the low mass plateau, since one can then determine the
absolute bias even without accurate halo mass
determinations.

If we determine the correlations of dark matter halos as a
function of their mass, we also determine the overall
amplitude of fluctuations. However, we observe galaxies,
not dark matter halos, so we need to relate the two. While it
is generally accepted that all galaxies form in halos, we
also know that the relation between the two is not one to
one and galaxies of the same luminosity can be found in
halos of different masses. For example, a typical galaxy
like our Milky Way may be found at the center of a low
mass halo with a typical size of 200 kpc, may be part of a
small group with typical size of 500 kpc, or may be a
satellite in a cluster with a typical size of 1–2 Mpc. If we
want to predict bias for a given luminosity subsample, we
must therefore determine the probability �P for a galaxy
in this sample to be in a halo of mass M� �M=2. To
describe this, we will use the conditional halo mass proba-
bility distribution dP=dM � p�M;L� ([20], hereafter
GS02). It is important that the full distribution p�M;L� is
determined and not just the mean halo mass at a given
luminosity. This is because bias is a strong function of halo
mass and some fraction of galaxies are known to be in very
massive halos, which have a significantly larger bias than
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field galaxies. Even if only a small fraction of galaxies at a
given luminosity are in clusters, they can have a significant
effect on the mean bias.

In this work we determine the halo mass probability
distribution for a given subsample using the weak lensing
signal around these galaxies, the so-called galaxy-galaxy
(g-g) lensing. Gravitational lensing leads to tangential
shear distortions of background galaxies around fore-
ground galaxies [21–25]. The individual distortions are
small, but by averaging over all galaxies within a given
subsample we obtain high signal to noise in the shear as a
function of angular separation from the galaxy. Since we
know the galaxy redshift (the foreground galaxies are taken
from the same spectroscopic sample also used to determine
the galaxy power spectrum), the shear signal can be related
to the projected mass distribution as a function of proper
distance from the galaxy [26]. This allows us to determine
statistically the dark matter distribution around any given
galaxy sample. With g-g lensing one can determine the full
halo mass function, since small halos contribute only at
small scales, while large halos such as clusters give rise to a
signal also at larger 500–2000 kpc scales typical of groups
and clusters [20]. Because g-g lensing measures the signal
over a wide range of scales, this allows one to determine
the full halo mass function for a given subsample. In this
paper we will take advantage of the latest SDSS data
compilation based on 5000 square degrees of imaging, a
tenfold increase over the previous analysis of g-g lensing in
SDSS [26].

One of the key advantages of this method is that bias is a
weak function of the halo mass, which in turn is deter-
mined with high accuracy from the g-g lensing analysis.
For example, current reduction methods allow a 10% weak
lensing calibration error [27], which leads roughly to a
15% error in the halo mass determination. This in turn
changes the bias only by 1% around b � 1. The effect is
even smaller for masses well below the nonlinear mass,
where the bias approaches a constant independent of the
halo mass. This is very different from the other methods of
bias determination discussed above, where the bias is (at
best) a linear function of the signal. For example, the same
10% weak lensing calibration error leads to a 10% error in
bias if the large scale weak lensing-galaxy cross spectrum
is used as a method to determine the bias. The bias nor-
malization can be predicted at any luminosity where the
halo mass function can be determined. Since we can de-
termine the halo mass function at several luminosity bins,
this provides many consistency checks on the method and
different bins can be averaged to reduce the statistical error
on the bias.

This method has other advantages as well. One is that we
can use the same galaxies in the lensing analysis as in the
galaxy clustering analysis. Using the SDSS data, we can
perform the g-g lensing analysis on the same luminosity
subsamples as the ones used to obtain the large scale bias
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as a function of luminosity. There is no ambiguity regard-
ing the selection of the catalog, which often causes gal-
axies selected in different surveys to have different
properties. Here we work exclusively with SDSS data.
Another advantage is that the expression for large scale
bias weights the galaxies linearly, just as does g-g lensing.
This is important if the number of galaxies in a halo is
stochastic, in which case, for example, a pair weighted
statistic (such as galaxy clustering on small scales) differs
from a linearly weighted statistic.

G-g lensing is one of the most direct and model inde-
pendent methods to determine the halo probability distri-
bution, short of observing the dark matter halos directly. In
particular, this method avoids the problems with optical [or
x-ray, Sunyaev-Zeldovich (SZ), etc.] identification of
halos, which is reliable only for large halos such as clus-
ters. Most of the galaxies are in low mass halos
(1011M�–1013M�), so it is important that the mass proba-
bility distribution is reliable in that range. Another ap-
proach to parametrize the halo occupation distribution is
with a conditional luminosity function [28]. This was used
to determine the bias in 2dF galaxies [29], but in the
absence of lensing information a more model dependent
analysis had to be used. Initial results seemed to give
higher bias than the bispectrum analysis of bias in 2dF
[10], but this may be a consequence of using theoretical
predictions from Ref. [16], which overestimate bias by up
to 20% compared to simulations [19].

The remainder of the paper is organized as follows. In
Sec. II we present an overview of the theory, first discus-
sing the theoretical predictions for halo bias and then the
relation between halos and galaxies within the context of
halo models. The analysis of the galaxy clustering data,
weak lensing, and bias is presented in Sec. III. The cos-
mological implications of the results are presented in
Sec. IV, followed by conclusions in Sec. V.

II. OVERVIEW OF THE THEORY

In this section, we first review the concept of halo bias
and then the formalism which relates galaxies to dark
matter halos. We also discuss weak lensing as a method
to connect the two.

A. Halo bias

In current cosmological models, structure grows hier-
archically from small, initially Gaussian fluctuations. Once
the fluctuations go nonlinear, they collapse into virialized
halos. The spatial density of halos as a function of their
mass M is specified by the halo mass function dn=dM,
which in general is a function of redshift z. It can be written
as

dn
dM

dM �
��
M
f���d�; (1)

where �� is the mean matter density of the Universe. We
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introduced the function f���, which can be expressed in
units in which it has a theoretically universal form inde-
pendent of the power spectrum or redshift if written as a
function of peak height

� � 	c�z�=��M��2: (2)

Here 	c is the linear overdensity at which a spherical
perturbation collapses at z (	c � 1:68 for the spherical
collapse model) and ��M� is the rms fluctuation in spheres
that contain on average mass M at an initial time, extrapo-
lated using linear theory to z.

The first analytic model for the mass function has been
proposed by Ref. [30]. While it correctly predicts the
abundance of massive halos, it overpredicts the abundance
of halos around the nonlinear mass scale Mnl (defined
below). An improved version has been proposed by
Ref. [16]. It has been shown that it can be derived analyti-
cally within the framework of the ellipsoidal collapse
model [17]. The halo mass is defined in terms of the linking
length parameter of the friends-of-friends (FOF) algo-
rithm, which is 0.2 for the simulations used in Ref. [16].
This roughly corresponds to spherical overdensity halos of
180 times the background density [31]. For the range of
masses of interest here, it is 30% larger than the mass
defined as the mass within the radius where the density is
200 times the critical density [32,33]. To be specific, we
will use �m � 0:3 when computing the virial masses, so
they are defined as the mass within the radius within which
the mean density is 54 times the critical density.

Just like the underlying dark matter, the halos are corre-
lated among themselves. The correlation amplitude de-
pends on the halo mass, with more massive halos being
more strongly clustered. This is called halo bias and can be
easily understood within the peak-background split of the
spherical collapse model [14,15]: an underlying long
wavelength density perturbation contributes to the thresh-
old collapse value 	c � 1:68, leading to a larger number of
halos collapsing in a local overdensity of the background
relative to an underdensity. The more massive halos are
more strongly clustered, with the strength related to the
derivative of the mass function.

What does the halo bias depend on? While the theoreti-
cal predictions of Ref. [16] depend on the amplitude and
shape of the power spectrum and the density parameter
�m, for the relevant models most of the dependence can be
expressed in terms of the nonlinear mass Mnl, defined as
the mass enclosed in a sphere of radius within which the
rms fluctuation amplitude is 1.68. In Ref. [19] it was shown
that a good fit to the bias relation from simulations is given
by

b�x�M=Mnl��0:53�0:39x0:42�
0:08

40x�1
�10�4x1:7

� log10�x�0:4��m�0:3�ns�1�

�0:3��8�0:9�h�0:7��0:8�s�: (3)
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Here �m is matter density, �8 is matter amplitude of
fluctuations in spheres of 8h�1Mpc, h is the Hubble pa-
rameter in units of 100 km=s=Mpc, ns is the scalar slope at
k � 0:05=Mpc, and �s � dns=d lnk is the running of the
slope, which we approximate as constant. This expression
should be accurate to about 0.03 over the range 0:01< x<
10. It improves upon previous fits to simulations [16,18],
particularly in the regime below the nonlinear mass, where
previous expressions overestimate the bias by as much as
20%. It is clear that the dominant parameter for bias
determination is halo mass in units of nonlinear mass,
while the variations of cosmological parameters produce
only small deviations from the universality of this
expression.

B. Halo-galaxy connection

In all of the current models of structure formation,
galaxies form inside dark matter halos. A galaxy of a given
luminosity L can form in halos of different massM. This is
described by the conditional halo mass probability distri-
bution at a given luminosity p�M;L�, normalized to unity
when integrated over mass. The linear bias on large scales
at a given luminosity is given by

b�L� �
Z
p�M;L�b�M�dM: (4)

A given cosmological model determines b�M�; to deter-
mine b�L�, we therefore need p�M;L�.

As mentioned in the introduction, the most direct route
to the conditional mass probability distribution p�M;L� is
via g-g lensing. This measures the tangential shear distor-
tions in the shapes of background galaxies induced by the
mass distribution around foreground galaxies. The shear
distortions �T are very small, in our case 10�3, while the
typical galaxy shape noise is 0.3. To extract the signal we
must average over many foreground-background pairs.
This results in a measurement of the shear-galaxy cross
correlation as a function of their relative separation on the
sky. If the redshift of the foreground galaxy is known, then
one can express the relative separation in terms of trans-
verse physical scale R. If, in addition, the redshift distri-
bution of the background galaxies, or their actual redshifts,
are known, then one can relate the shear distortion �T to
���R� � ���R� � ��R�, where ��R� is the surface mass
density at the transverse separation R and ���R� its mean
within R, via

�T �
���R�
�crit

: (5)

Here

�crit �
c2

4 G
rS

�1 � zL�rLrLS
; (6)

where rL and rS are the comoving distances to the lens and
source, respectively, and rLS is the comoving distance
-4
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between the two (we work with comoving units throughout
the paper). If only the probability distribution for source
redshifts is known, then this expression needs to be inte-
grated over it. In principle, the relation between angular
diameter distance and measured redshift depends on cos-
mology, but, since we are dealing with low redshift objects,
varying cosmology within the allowed range makes little
difference. We will assume a cosmology with �m � 0:3
and �! � 0:7.

We will now overview the formalism of GS02, begin-
ning the discussion with a simplified description. Let us
assume that a given halo of mass M produces an average
lensing profile ���R;M�. This can be obtained from a line
of sight integration over the dark matter profile, which in
this paper is modeled as an Navarro-Frenk-White profile
[34]

��r� �
�s

�r=rs��1 � r=rs�
2 : (7)

This model assumes that the profile shape is universal in
units of scale radius rs, while its characteristic density �s at
rs or concentration cdm � rv=rs may depend on the halo
mass, which here will be modeled as cdm �
10�M=Mnl�

�0:13 [35,36]. We will define the virial radius
as the radius within which the density is 180 times the
mean density of the Universe. Note that this definition
depends on �m: we will adopt �m � 0:3. Since most of
the signal is at R> 50–100h�1kpc, baryonic effects can be
neglected, dark matter profiles are well determined from
simulations, and concentration or the choice of the halo
profile does not play a major role. The average g-g lensing
signal for a galaxy with luminosity L is

h��i�R;L� �
Z
p�M;L����R;M�dM: (8)

From above we see that the same conditional mass proba-
bility distribution p�M;L� enters in both the lensing signal
and in the expression for bias. One measures the function
h��i�R;L�; since the profile for individual halos is known,
one can invert the relation in Eq. (8) to obtain p�M;L�.

Given the noisy measurements of the g-g lensing signal,
we cannot invert the conditional mass probability distribu-
tion with arbitrary precision, so we must assume some
functional form for it and then fit for its parameters. We
wish to model the probability distribution p�M;L� in as
model independent a way as possible. We will begin with
the simplest physically motivated model and then add more
parameters to see how the results change. By relaxing the
assumed functional form, we can test the robustness of the
final results on the model assumptions.

The simplified description so far ignores the fact that
there are two distinct galaxy types that need to be modeled
separately. The first type are the galaxies that formed at the
centers of dark matter halos, such as the so-called field
galaxies or CDs sitting at the cluster centers. The second
type are the noncentral galaxies, such as satellites of Milky
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Way type halos or group and cluster members. We know
that a galaxy of a given luminosity can be of either type, so
we split p�M;L� into two parts, pC and pNC, representing,
respectively, central and noncentral galaxies, with the
fraction of noncentral galaxies in each luminosity bin Li
given by a free parameter �i, i.e.,

p�M;Li� � �1 � �i�pC�M;Li� � �ipNC�M;Li�: (9)

For the central galaxy population, we assume that the
relation between the halo mass and galaxy luminosity is
tight and we model this component with a delta function,

pC�M;Li�dM � 	D�M�M0;i�dM; (10)

where M0;i are six more free parameters (we will be work-
ing with six luminosity bins). In reality, this component
should have some width both because of intrinsic scatter in
the M� L relation and because we work with luminosity
bins of finite width. We will ignore this, since explicit tests
have shown that the results are only weakly affected even if
the scatter is more than a factor of 2 in mass [20]. Instead,
we will use simulations to account for any such effects.

The noncentral galaxies are different in that they have
presumably formed in smaller halos which then merged
into larger ones. It is thus reasonable to assume that their
luminosity is not related to the final halo mass. Instead, we
assume a relation between the number of these noncentral
galaxies and the halo mass: the larger the halo, the more
satellites of a given luminosity one expects to find in it. We
assume this relation is a power law, hNi�M;L� / M',
above some minimal halo mass Mmin, which should be
larger than the halo mass of the central galaxy component
above, since we are assuming that there is already another
galaxy at the halo center. Below this cutoff, the number of
galaxies quickly goes to zero. These assumptions imply

pNC�M;Li�dM / F�M�M'i
dn
dM

dM: (11)

In GS02 we have chosen F�M� � $H�M�Mmin;i�, where
Mmin;i � 3M0;i, while here we will use a slightly more
realistic functional form where ' � 2 below Mmin;i. We
have verified that the two expressions do not differ signifi-
cantly in final results. Semianalytic models of galaxy for-
mation [20,37], subhalos in N-body simulations [38], as
well as explicit comparisons with simulations [39] agree
with this model and predict that for most galaxies ' � 1
and �
 0:2.

For the noncentral component, the weak lensing profile
���R;M� is a convolution of the halo profile with the
radial distribution of the galaxies, which we assume to be
proportional to the dark matter profile, cg � acdm.
Observationally, there is not much evidence for any depar-
tures from a � 1 and we can test it using lensing data
itself. Since we are explicitly excluding the central gal-
axies, the noncentral galaxy component of the g-g lensing
signal does not peak at the center. Instead, for a given halo
-5
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mass, it is small at small radii, peaks at a fraction of virial
radius, and then drops off at large radii. A given halo mass
peaks at a given scale, so by measuring the signal over a
broad range of scales one can extract the relative contri-
butions of different halo masses (note that the signal of
lensing from neighboring halos can be neglected for R<
2 Mpc). See GS02 for a more detailed discussion of the
predictions of our model for lensing.

The remaining uncertainty is how much of the dark
matter around noncentral galaxies remains attached to
them. Since their fraction � is typically low (�< 0:2),
the correction due to this is small and is limited to the inner
region with R< 200h�1kpc. We assume the dark matter
was tidally stripped in the outer parts of the halo but
remains unmodified in the inner parts of the satellite
halo. Effectively this means that each noncentral galaxy
also has a central contribution, which we model in the same
way as for the central galaxies (i.e., as a halo with mass
M0;i before stripping) out to 0:4rvir and totally stripped
beyond that, in which case �� / R�2. This cutoff is
equivalent to having 50% of mass stripped and agrees
with simulation results in the next section.

With this parametrization, the mean bias in a given
luminosity bin is

b�Li� � �1 � �i�b�M0;i� � �i

R
1
Mmin;i

M'ib�M� dndM dMR
1
Mmin;i

M'i dn
dM dM

:

(12)

In the simplest form, the parametrization for the condi-
tional halo distribution function only has two parameters at
each luminosity, M0;i and �i, with the other parameters
fixed to their expected values. Since we will be working
with six luminosity bins this implies a 12-parameter pa-
rametrization, which is already significantly more than in
previous analysis of this type [26]. Even with the order of
magnitude increase in the data size, not all of them can be
determined with high statistical significance. We will begin
with these 12-parameter fits and then allow 'i and cg to
vary to see its effect on the final result. Our goal is to make
the model description as nonparametric as possible and to
show that our conclusions are robust against different
parametrizations.

The halo model of GS02 is phenomenological and needs
to be verified and possibly calibrated on simulations. A
detailed comparison will be presented elsewhere [39]; here
we simply highlight the results that are of most relevance
for the present study. Overall, the halo model is able to
extract the relevant information from the simulations re-
markably well. We find that the satellite fraction is deter-
mined to better than 10%. The simulations reproduce well
the N�M� parametrization and indicate ' � 1. We also find
that, if simulations have little or no scatter in the mass
luminosity relation, then the halo model is able to extract
the halo mass to within 10%. However, if there is a sig-
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nificant scatter then our assumption that the central mass
distribution is a delta function breaks down and there is no
unique definition of halo mass. In the case of a severe
scatter, there may be a significant difference between
median and mean mass, and weak lensing analysis deter-
mines something in between the two [40]. For the purpose
of bias, we wish to determine the mean mass or, even
better, the full halo mass distribution. Thus, the halo
mass determined by the lensing analysis has to be in-
creased. Here we apply corrections as derived in
Ref. [39] by direct comparison to numerical simulations.
At the faint end these corrections are small, while for the
brightest bin we apply up to a 50% increase. These cor-
rections are somewhat uncertain since we do not know the
exact amount of scatter, so we also add a Gaussian scatter
with rms 0.5 of the correction factor to the masses from the
bootstrap resamplings to account for the additional uncer-
tainty due to the scatter in mass luminosity relation. We
emphasize again that even a 50% correction in mass has
only a small effect on halo bias below the nonlinear mass.

III. DATA ANALYSIS

We wish to determine the lensing-constrained prediction
for bias as a function of luminosity and compare it to the
observations. In this section we present the required pro-
cedure to achieve this goal. This involves four steps:
(1) D
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etermine the galaxy bias for each luminosity bin
from the galaxy clustering analysis. This step was
already done in Ref. [9].
(2) D
etermine the conditional halo mass probability
distribution from the weak lensing analysis for the
same luminosity bins (i.e., determine the allowed
values for �i, M0;i, and possibly 'i).
(3) C
ompute the predicted biases and their associated
errors separately for each luminosity bin by varying
over all possible configurations of the conditional
halo mass probability distribution consistent with
the data.
(4) C
ompare the observed bias and the predictions to
place constraints on the cosmological model.
A. Galaxy clustering analysis

The Sloan Digital Sky Survey [41] uses a drift-scanning
imaging camera [42] and a 640 fiber double spectrograph
on a dedicated 2.5 m telescope. It is an ongoing survey to
image 10 000 square degrees of the sky in the SDSS ugriz
AB magnitude system [43,44] and to obtain spectra for

106 galaxies and 
105 quasars. The astrometric calibra-
tion is good to better than 0:001 rms per coordinate [45], and
the photometric calibration is accurate to 3% or better
[46,47]. The data sample used for the clustering analysis
was compiled in Summer 2002 and is all part of data
releases two [48]. This sample consists of 205 443 galaxies.
For our purposes, the data are divided into six luminosity
bins specified in Table I.



TABLE I. The table summarizes the luminosity subsamples used in our analysis, listing evolution and k corrected absolute
magnitude M0:1r (for h � 1), mean redshift z in the lensing sample, number of foreground galaxies used in lensing analysis, observed
bias relative toM0:1r � �20:8 and its error, theoretically predicted bias for 2-parameter models b2p and its error �b2p

, and theoretically
predicted bias for 3-parameter models b3p and its error �b3p

. Both fits are for a model with M0 � 5:6 � 1012h�1M�, which
corresponds to a �8 � 0:9, �m � 0:27 model. For other values, see Fig. 2. M0:1r was computed from magnitude r and redshift z
assuming a flat cosmological model with �! � 0:7. Apparent magnitude cuts are 14:5< r < 17:77.

Sample name Abs. mag Mean redshift No. of galaxies b=b� �b=b� b2p �b2p
b3p �b3p

L1 �18<M0:1r <�17 0:023 4912 0.723 0.073 0.67 0.04 0.67 0.04
L2 �19<M0:1r <�18 0:035 15 920 0.764 0.123 0.77 0.05 0.77 0.05
L3 �20<M0:1r <�19 0:072 49 505 0.873 0.077 0.82 0.03 0.83 0.03
L4 �21<M0:1r <�20 0:107 88 405 0.969 0.054 0.85 0.03 0.85 0.03
L5 �22<M0:1r <�21 0:151 55 440 1.106 0.063 1.04 0.05 1.05 0.05
L6 �23<M0:1r <�22 0:205 6000 1.631 0.119 1.94 0.20 1.92 0.25
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Galaxies are selected for spectroscopic observations
using the algorithm described in Ref. [49]. To a good
approximation, the main galaxy sample consists of all
galaxies with r-band apparent Petrosian magnitude r <
17:77. These targets are assigned to spectroscopic plates
by an adaptive tiling algorithm [50]. The spectroscopic
data reduction and redshift determination are performed
by automated pipelines.

The power spectrum analysis is described in detail in
Ref. [9]. It involves several steps. In the first step, the group
finding algorithm identifies all groups and clusters, which
are then isotropized to remove finger of god effects. In the
next step, linear decomposition into 4000 Karhunen-Loeve
modes is performed, which maximize the signal on large
scales. These are then used in the quadratic estimation of
the power spectra. The redshift space distortions (modeled
using linear theory) are analyzed in terms of their velocity
power spectrum, which is estimated together with the
galaxy power spectrum and the cross correlation between
the two. This analysis is performed for each of the six
luminosity bins.

The results are six power spectra with similar shapes but
offset amplitudes. To quantify this similarity of shapes, one
fits each of the measured power spectra to the reference
!CDM curve with the amplitude freely adjustable. All six
cases produce acceptable fits with reduced ,2 of order
unity, and the corresponding best-fit normalizations and
associated errors are given in Table I and shown in Fig. 3.
They are normalized relative to L� galaxies with M0:1r �
�20:8 and are expressed in terms of linear amplitude of
fluctuations �8 in Fig. 3.

B. Weak lensing analysis

In this section, we briefly review the weak lensing
analysis. More details will be given in a separate publica-
tion. The basic model has already been outlined above. For
each luminosity bin, we parametrize the conditional halo
mass probability distribution p�M;L� with a few free
parameters that we determine from the observed galaxy-
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lensing correlation function. We compute this correlation
function in several radial bins and use random sample
catalogs and bootstrap resampling of real galaxies to de-
termine the covariance matrix of these bins. We use the
same six luminosity bins as in the clustering analysis. We
use the SDSS sample compiled in Summer 2003 for this
analysis, which consists of 279 616 galaxies, somewhat
larger than what was used in the clustering analysis but
with identical selection criteria.

For the background galaxies, we use two samples for
which the shape information has been extracted from the
SDSS PHOTO pipeline. We require this shape information
to be available in at least two colors. In the first sample are
those with assigned photometric redshifts, obtained by
using a code developed by Blanton, which are used for
brighter galaxies with r < 21. In the second sample are the
fainter galaxies with 21< r < 22, for which only the ex-
pected redshift distribution is known. This is discussed
further below. The typical redshift distribution of the back-
ground sample is 0:1< z< 0:6.

We use a minimization routine to determine the model
parameters. A detailed description of the method and
results will be presented elsewhere; here we show just
the results in Fig. 1 for the two parameter fits. Since we
estimate only two parameters at a time, the minimization
always converges to the global minimum. We see that the
model is an adequate description of the data, which is
confirmed by the ,2 values. Note that for all but the faintest
bin there is a clear detection of the signal and both the
central and noncentral components are determined. In
some of the brightest bins the signal to noise in these
detections is enormous compared to previous analyses of
this sort [26]. The virial mass of the central component
scales nearly linearly with luminosity in all but the bright-
est bin (there is no detection in the faintest bin), while the
noncentral fraction is roughly constant at � � 0:13, except
in the faintest bin where it is much lower and in the
brightest bin where it is much higher. These are the values
assuming Mnl � 8 � 1012M�. This value increases as the
nonlinear mass decreases, since the mass function is ex-
-7



FIG. 1 (color online). Weak lensing signal ���r� as a function
of transverse separation r as measured from SDSS data, together
with the best-fit 2-parameter model for each of six luminosity
bins. Also shown are the best-fit values for halo virial massM (in
units of 1011h�1M�) and �, the fraction of galaxies that are
noncentral, assuming Mnl � 8 � 1012h�1M�. The model fits the
data well in all bins. The mass fits are what comes from the
fitting procedure and are a typical halo mass somewhere between
mean and median. For bias calculations, they are increased by
varying amounts to account for the difference between fitted
mass and mean mass, as described in the text.
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ponentially cut off above nonlinear mass, so the abundance
of high mass halos is reduced and to fit the observed signal
the fraction � must increase. We do the fits on a grid of
values for Mnl that spans the range of interest. In the
faintest bin no detection of the noncentral component is
obtained and the central component is marginal. However,
the resulting upper limits are still useful, since they imply
that a majority of these galaxies cannot live in massive
halos; otherwise, we would have detected a stronger lens-
ing signal. For low mass halos the bias is only weakly
dependent on mass, so even an upper limit leads to a strong
constraint on the bias. In fact, if the low mass plateau
where b
 0:65–0:7 could be reached, then one could
determine the absolute bias directly just from this low
luminosity population without any additional modeling.
In practice, whether or not this low mass limit is reached
with the range of halo masses we can probe here depends
on the value of nonlinear mass, but the fact that the bias is
flattening at the faint end does place useful constraints
when compared to observations, where the same trend is
observed.

We repeat the analysis by adding more parameters to the
fit. The most relevant parameter for bias is ', which
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changes the relative proportion of less massive versus
more massive halos for the noncentral component. We
find that we cannot determine all three parameters sepa-
rately at each luminosity bin, so that ' is strongly anti-
correlated with �. For example, we find that even solutions
with ' � 2 are allowed, suggesting a large fraction of
massive halos. However, at the same time � is reduced,
so that the overall fraction of massive halos is more or less
unchanged. This is exactly what one would expect, since
the signal at R � 300–2000h�1kpc is measuring directly
the contribution from these massive halos (groups and
clusters). In other words, the 3-parameter fit is essentially
a nonparametric fit to the data with large degeneracies
between the parameters but little variation in the halo
mass probability distribution in the relevant range.

We also tried a different nonparametric fit, where we
divide the halo masses into several bins and fit for the
fraction in each separately. Not surprisingly, we find
huge degeneracies between individual components in this
case, especially at the low mass end. Even in this most
general case, the fraction of galaxies residing in large halos
(above 1014h�1M�) is constrained to be below 0.2 at the
bright end and below 0.01 at the faint end. It is particularly
important that the fraction of galaxies in these high mass
halos is strongly constrained, as these halos have the
largest bias and a poor constraint on them leads to a larger
error on the bias predictions. The variations of bias con-
sistent with these various halo mass probability distribu-
tions are, in fact, very small.

While for standard analysis we assumed that radial
distribution of galaxies is the same as that of dark matter,
we also explored other possibilities. Weak lensing data
have some sensitivity to determine the radial distribution
directly, since a shallow galaxy distribution also leads to a
shallow radial dependence of �� [39]. However, this
makes a difference only at large radii and the central
mass determination only weakly depends on it. We find
that the central halo mass changes by less than 10% if cg is
varied by a factor of 2 from its assumed value cdm.

One possible source of systematical error is the shear
calibration from measured ellipticities. For our SDSS
analysis, the shear calibration errors have been discussed
in detail in Ref. [13]. To summarize, we see no evidence of
any systematic error from shear calibration, but the upper
limit we can place does not rule out a 17% calibration error.
This is meant to be a very conservative upper limit (of
‘‘2�’’ type) and we are in the process of reducing it further
by reanalyzing the data using a regaussianization proce-
dure [27].

The redshifts of background galaxies are another pos-
sible source of systematic error. For those galaxies that
have photometric redshifts, the main difficulty is knowing
the error distribution, since even a relatively minor fraction
of outliers can skew the distribution and lead to a bias in the
lensing signal. This is particularly problematic for the
-8
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brighter galaxies (r < 21) for which the typical redshift is
0.2–0.4. We use direct matching of SDSS objects with
deeper spectroscopic surveys to calibrate our photozs. An
independent analysis using luminous red galaxies (LRG),
for which we know the redshift error distribution, provides
an independent confirmation of our photoz calibration.
Since LRG galaxies are fewer in number, the overall
calibration can be achieved to only about 7% accuracy
(1�). Details of this analysis will be presented elsewhere.

The redshift distributions as a function of magnitude are
relatively well measured at these magnitudes, so one could
use those instead of photometric redshifts. However, the
existing redshift distributions that apply to the overall
population of galaxies cannot be directly used in the lens-
ing analysis, especially not at the faint end. This is because
a significant fraction of galaxies are rejected or down-
weighted in the lensing analysis because they are too small
to give reliable ellipticity measurements. These galaxies
tend to be smaller and thus at a higher redshift relative to
the overall population. So the effective redshift of the
‘‘lensing weighted’’ population tends to be lower than
that of the overall population at the same magnitude. The
same effect may also lead to an underestimate of �8 in
weak lensing measurements of the power spectrum, where
it can have much more damaging consequences. It is very
difficult to account for this effect if one does not have the
complete redshift information of a representative portion
of the data.

To summarize, we have a conservative (2�) estimate of
the calibration systematics at the level of 17% and a 7% 1�
calibration of redshift distribution errors. To be conserva-
tive, we place a 15% (1�) overall calibration error on the
lensing signal on top of the (comparable) statistical errors.

C. Bias predictions

In the next step, we take the results from the previous
section to compute the predicted bias as a function of
luminosity. Bias is a nonlinear function of the model
parameters and we wish to determine both the mean and
the variance. The fits for the halo mass probability distri-
bution can be strongly degenerate, so a Gaussian approxi-
mation for the fitted parameters is not necessarily valid. In
addition, one must impose physical constraints such as
�> 0 and M0 > 0. Our approach is to use bootstrap re-
sampling to determine the errors. We divide the observed
area into 200 chunks of roughly equal area. We then boot-
strap resample these, by randomly choosing 200 chunks
with replacement (so some of these are duplicated). For
each of these realizations we multiply the amplitude of the
signal by a random variable with a mean of 1 and 0.15 rms
to account for calibration systematics and another 0.1 (at
the faint end) to 0.3 (at the bright end) to account for
uncertainties in the halo mass determination from the
scatter effects. We perform the fitting procedure as de-
scribed above on each of the bootstrap realizations. We
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use the fitted parameters to compute the bias using
Eq. (12). Finally, we compute the mean and variance of
the bias parameter by averaging over 1000 of these boot-
strap resamplings.

Before discussing the results, we need to address the
redshift evolution. Redshift evolution can affect the weak
lensing analysis, the bias analysis, and the clustering analy-
sis. Most of the galaxies are at low redshift up to z
 0:2
(Table I), so any corrections due to the redshift evolution
are small. Moreover, there are various competing effects
that further suppress the redshift evolution effects.

We work in comoving coordinates, so redshift effects are
minor. One usually applies the evolution correction to the
galaxy luminosity to account for the fact that higher red-
shift galaxies are brighter because their stars are younger.
This correction is not important as long as we use the same
definition of luminosity in our weak lensing analysis as is
in the clustering analysis. The definition of the virial mass
as defined by FOF algorithm of simulations is in comoving
coordinates: FOF algorithm finds clusters with a density
contrast of order b�3 relative to the mean, where b is the
linking length of FOF. This definition does not vary with
redshift in comoving coordinates. The main effect of red-
shift evolution is that nonlinear mass at higher redshifts is
lower, which affects the mass function and bias predic-
tions. We perform the analysis on a grid of nonlinear
masses defined at z � 0 and for each use the nonlinear
mass value appropriate for the median redshift for a given
luminosity bin. Regarding the clustering evolution with
redshift, for L� galaxies a typical redshift is 0.1, so once
we find bias for these galaxies and multiply it with the
observed amplitude of galaxy clustering, we need to evolve
this amplitude of fluctuations to redshift 0, which increases
it by roughly 5% in a !CDM universe.

The results for 2-parameter models are shown in Fig. 2
for several values of the nonlinear mass Mnl, spanning the
range from 1:6 � 1011h�1M� (corresponding to a �8 �
0:6, �m � 0:2 model) at the top to 2:5 � 1013h�1M�

(corresponding to a �8 � 1:1, �m � 0:3 model) at the
bottom (we vary �8 from 1.1 to 0.6 from bottom up
assuming �m � 0:3, the top one has �8 � 0:6, and �m �
0:25). Note that the weak lensing determination of �
depends on Mnl, since the cluster contribution depends
on the cluster mass function: for a higher value of nonlinear
mass, the exponential cutoff in the mass function is at a
higher mass and so the fraction of galaxies in this compo-
nent can be lower to match the observational constraints.
We include this by performing the lensing analysis on all
the values ofMnl of interest and use that information when
computing bias predictions as a function of Mnl.

One can see that, as a consequence of the weak lensing
determination of the halo mass distribution, models with
low nonlinear masses (low �8 and/or �m) predict higher
bias than those with higher nonlinear masses. Notice how
the models with high nonlinear mass predict almost con-
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FIG. 2. This figure shows the lensing-constrained model pre-
dictions for bias as a function of nonlinear mass using the 2-
parameter models of the halo mass probability distribution. More
general models of the halo probability distribution give very
similar results and are not shown here. The nonlinear masses
from top to bottom are 3:4 � 1011h�1M�, 6:2 � 1011h�1M�,
1:7 � 1012h�1M�, 4:0 � 1012h�1M�, 8:0 � 1012h�1M�, 1:5 �
1013h�1M�, and 2:4 � 1013h�1M�. Errors have been suppressed
(see Table I).

FIG. 3 (color online). The halo bias predictions of galaxy
fluctuation amplitude �gal

8 as a function of luminosity varying
linear matter amplitude �8: 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, from top to
bottom on the right-hand side. The remaining parameters have
been fixed to �m � 0:3 and ns � 1. Squares are for model with
�8 � 0:88, ns � 1:0, and �m � 0:3. For this model we show
errors from theoretical modeling. Also shown as triangles are the
observed values of �gal

8 .
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stant bias with luminosity, a consequence of bias being
independent of mass below 0:1Mnl. On the other hand, if
nonlinear mass is close to the halo mass of L� galaxies,
then the bias is rapidly changing with luminosity.

We can address the robustness of the bias predictions by
comparing the results between 2- and 3-parameter models.
These are shown in Table I for nonlinear massMnl � 5:6 �
1012h�1M�, corresponding to the �8 � 0:9, �m � 0:27
model. 3-parameter models are very degenerate and often
give unlikely values such as ' � 0 (corresponding to the
case where the number of galaxies within a halo is constant
regardless of halo mass). This is compensated by increas-
ing the value of � so that the data are still fit well.
Remarkably, the mean bias and its error hardly change
from 2-parameter models to 3-parameter models in all
bins. This demonstrates that the bias predictions are robust
against the parametrization of the halo probability
distribution.

Figure 3 shows the predicted values for galaxy clustering
amplitude �8 for models with �8 varying from 0.6 to 1.1,
with �8 � 0:88 in bold. This is obtained by taking pre-
dicted bias values and multiplying them with �8. Also
shown are the observed values of �8 which are obtained
by taking b=b� values in Table I and multiplying them with
the �8�M0:1r � �20:8� � 0:875 value as obtained from
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Ref. [9]. The latter is almost independent on cosmological
parameters and has a statistical error of 0.013. The first
thing to notice is the agreement between the theoretical
predictions and the observations, with theoretical predic-
tions being slightly lower than observations at L4.
Theoretical models predict both the gradual flattening of
bias for galaxies fainter than L4, as well as a rapid increase
in bias from L5 to L6, both of which are observed in SDSS
data. This rapid increase in bias from L5 to L6 is caused
both by the rapid increase in bias above the nonlinear mass
as well as by the rapid decrease in star formation efficiency
for the most massive halos: going from L5 to L6 we
increase the luminosity by a factor of 2.5, while the halo
mass has increased by a factor of 6.5 (Fig. 1), and the
fraction of noncentral galaxies has also increased. So the
scaling between halo mass and luminosity becomes much
steeper at the bright end and most of the galaxies in the
�22;�23� bin reside in group and cluster halos with
masses above 1013h�1M�.

This agreement between the theoretical bias predictions
and observations suggests that a fundamental prediction of
large scale structure models, that of the bias dependence on
halo mass, has been confirmed. Very low values of Mnl

predict that bias is rapidly changing with mass over the
observed range, which is not observed. On the other side of
the mass range, very high values of Mnl predict bias is
-10
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changing very slowly with mass, which would also be in
contradiction with the observations. These results con-
strain �8, but these constraints by themselves are not
very strong. In fact, one can find good agreement for �8 

0:7–1:0.

At first, this agreement between theoretical predictions
and observations is so good it is almost disappointing,
since the two agree over a broad range of Mnl. While this
result confirms the basic prediction of the structure for-
mation models, it would appear that it does not allow us to
place useful constraints on cosmological models. This
conclusion is too pessimistic, since nonlinear mass is
also changed by varying �m and slope ns. For example,
reducing �m to 0.27 from 0.3 and ns to 0.96 from 1 reduces
nonlinear mass by a factor of 2 and increases theoretical
bias predictions by 10% at L4. This brings the observations
into better agreement with theoretical predictions and im-
proves the fit to ,2 
 7 at �8 � 0:88. The data thus favor
slightly lower values of �m or ns than their canonical
values of 0.3 and 1, respectively. We note that this analysis
is strongly sensitive on the accuracy of the bias as a
function halo mass relation and we would find very differ-
ent conclusions using the expressions in Refs. [16,18] over
the more recent ones in Ref. [19].

These heuristic arguments are formalized in the next
section, where we incorporate the bias constraints into
the parameter estimation procedure. It is clear from this
discussion that the bias constraints depend on nonlinear
mass, which in turn depends on several cosmological
parameters such as �8, �m, and ns, so the best strategy
is to perform a full analysis over the parameter space of
interest.

However, it is worth highlighting where the strongest
constraints are coming from and explore whether the bias
determination of flux limited sample would improve the
cosmological constraints. One can see from Fig. 2 that for
L4 in the range �8 � 0:6–0:9 all models give essentially
the same value of �8�L4� 
 0:75, which is lower than the
observed value of 0.85. Similarly, we can take the predic-
tions for bias as a function of luminosity and weight it by
galaxy numbers (given in Table I) to obtain the bias pre-
diction for the flux limited sample. This has the advantage
that it can be related to the observed value which has
very small errors, �8�M0:1r � �20:8� � 0:88 � 0:02.
However, the predictions are almost independent of �8:
we find 0.77 at �8 � 0:7 and 0.73 at �8 � 1 for �m � 0:3
and ns � 1. The fact that the predictions are lower than the
observed value again argues that these two parameters (or
shape parameter ) which depends on Hubble parameter h
as well) must be lower. Therefore, using the flux limited
sample amplitude one cannot determine the bias and �8

despite a relatively small error on the observationally
determined amplitude of galaxy clustering. The reason
for that is the degeneracy in the way bias changes with
amplitude of fluctuations: reducing �8 by 10% reducesMnl
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by a factor of 2 and increases bias predictions aroundM �
Mnl by 10%, so the product b�8, which determines the
galaxy clustering amplitude, remains unchanged. We find
that using the full range of luminosity breaks this degen-
eracy, because the bias is very slowly changing with non-
linear mass on one end and very strongly changing with it
on the other end of luminosity range.

D. Bias error budget

We will include the following ,2 component in the
overall likelihood evaluation:

,2 �
X6

i�1

bmodel;i � b��b=b��i�2

�2
bmodel;i

� b2
��2

b=b�;i
� �2

sys

; (13)

where bmodel;i is the predicted bias for the ith luminosity
bin and �bmodel;i

the corresponding error, �b=b��i is the
observed bias at the same luminosity and �b=b�;i the cor-
responding error, and �sys � 0:03 accounts for systematic
uncertainties in the theoretical modeling of the bias and its
variations with the model [19]. For a given model we first
compute Mnl and then interpolate between the values
shown in Fig. 2 to obtain bmodel;i and �bmodel;i

. Note that
b� is one of the parameters we are varying and is con-
strained both by the ,2 above and by the overall amplitude
of the galaxy power spectrum. For bmodel;i we use the 2-
parameter fits as given in Table I, although using the 3-
parameter fits would give almost identical results.

Equation (13) contains three contributions to the bias
error. First is the error on the theoretical bias prediction,
�bmodel;i

. This error is dominated by the uncertainties in the
conditional halo mass probability distribution p�M;L�.
Despite significant uncertainties in the probability distri-
butions (especially for the 18-parameter fits), the resulting
values of �bmodel;i

are between 0.02–0.08 for Mnl 


1013h�1M�. This is typically smaller than the errors on
the observed bias �b=b�;i, which range from 0.054 to 0.12.
We assign a systematic uncertainty �sys � 0:03 to all of the
bins except the brightest one (L6), where we use �sys �

0:1 to account for larger variations in model predictions as
well as larger systematic uncertainties due to the rapid
variation of the bias with luminosity and redshift. The
systematic error is subdominant compared to the clustering
or lensing error. Current bias constraints are mostly domi-
nated by the observational uncertainties in the bias from
the clustering analysis and not by the modeling uncertain-
ties of either the bias or conditional halo mass probability
distribution as determined by weak lensing. Note that
systematic uncertainties in calibration and redshift distri-
bution have already been included in the lensing analysis
and correspond to about 0.03 in bias. The current statistical
error in the bias, averaging over all six bins in Table I, is
0.03, so the systematic error is at most equal to the statis-
tical error.
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Much of the error budget in�b=b�;i is due to the sampling
variance. We are treating the bias estimates as uncorrelated
between luminosity bins, assuming they come from inde-
pendent volumes. In reality, there is some overlap in vol-
ume between neighboring luminosity bins and some of the
same large scale structure contributes to two bins at the
same time (see, e.g., Fig. 3 in Ref. [9]). Because of this, our
error estimation is conservative, since for overlapping
regions sampling variance between luminosity subsamples
should be reduced. The reduction is, however, rather mod-
est even for very large scales [19]. Note that systematic
uncertainties lead to some correlations between the errors,
which we ignore in the present analysis since they are
small. It would be straightforward to generalize upon this
by computing the correlations between the bootstrap
samples.

IV. COSMOLOGICAL PARAMETER
DETERMINATION

In this section, we include the bias constraints in the
parameter determination procedure to see if we can con-
strain cosmological models better than without this infor-
mation. We combine the constraints from the SDSS power
spectrum with cosmic microwave background (CMB) ob-
servations from WMAP [51–53]. We implement the Monte
Carlo Markov chain (MCMC) method [54] using CMBFAST

version 4.51 [55], outputting both the CMB spectra and the
corresponding matter power spectra P�k�. We evolve all the
matter power spectra to a high k using CMBFAST and we do
not employ any analytical approximations. In addition, we
use linear to nonlinear mapping of the matter power spec-
trum using expressions given in Ref. [56].

Our implementation of the MCMC is the same as in
Ref. [57]. It is independent of that used in Ref. [5], but we
verified that the results for the case of WMAP � SDSS
without bias agree. A typical run is based on 48 indepen-
dent chains, contains 50 000–200 000 chain elements, and
requires 2– 4 days of running on a 48 processor cluster in a
serial mode of CMBFAST.2 The success rate was of order
30%–50%, correlation length (as defined in Ref. [5]) 10–
30, and the effective chain length of order 3000–20 000.
We use 23–39 chains and in terms of Gelman and Rubin R̂
statistics [58] we find the chains are sufficiently converged
1Available at cmbfast.org.
2While CMBFAST is parallelized with message passing instruc-

tions, we found that running it in parallel results in about a factor
of 2 penalty on eight processors (and more if more processors are
used), mostly due to the fact that the highest k modes take the
longest to run. The current implementation distributes k modes
to individual processors, so the master node must wait for the
slowest k mode to finish before the final assembly. For 48 pro-
cessors the additional premium due to the required burn-in of
each chain does not offset this penalty, so one is better off
running CMBFAST serially. If significantly more processors
were used, the cost of burn-in would increase and one would
be better off running CMBFAST in parallel in eight node batches.

043511
and mixed, with R̂ < 1:05; i.e., we are more conservative
than the recommended value R̂ < 1:2.

Our pivot point is at k � 0:05=Mpc and we use the
tensor normalization convention in which for the simplest
inflationary models the tensor to scalar ratio is r � T=S �
�8nT . Our most general parameter space is

p � �-;!b;!m;m�;�/;R; ns; �s; T=S; b��; (14)

where - is the optical depth, !b � �bh
2 is proportional to

the baryon to photon density ratio, !m � �mh
2 is propor-

tional to the matter to photon density ratio, m� is the
massive neutrino mass, �/ is the dark energy density today
and w its equation of state, R is the amplitude of curvature
perturbations at k � 0:05=Mpc, ns is the scalar slope at the
same pivot, and �s � dns=d lnk is the running of the slope,
which we approximate as constant. We fix the tensor slope
nT using T=S � �8nT . We do not allow for nonflat mod-
els, since curvature is already tightly constrained by CMB
and other constraints, which leads to �K � 0:02 � 0:02
for the simplest models [59]. For the more general models,
such as those with a dark energy equation of state, relaxing
this assumption can lead to a significant expansion of
errors. We are therefore testing a particular class of models
with K � 0 and not presenting model independent con-
straints on equation of state. We follow the WMAP team in
imposing a - < 0:3 constraint. Upcoming polarization data
from WMAP will allow a verification of this prior. From
this basic set of parameters, we can obtain constraints on
several other parameters, such as the baryon and matter
densities �b and �m, Hubble parameter h, and amplitude
of fluctuations �8. Since we do now allow for curvature,
one has �/ � 1 � �m and we use �m in Table II. In fact,
our primary parameter is $s, the angular scale of the
acoustic horizon, which is tightly constrained by the
CMB. Similarly, although we use R as the primary pa-
rameter in the MCMC, we present the amplitude in terms
of the more familiar �8.

The basic result for two different MCMC runs are given
in Table II for SDSS combined with WMAP. For most of
the parameters we quote the median value (50%), [15.84%,
84.16%] interval ( � 1�), and [2.3%, 97.7%] interval ( �
2�). These are calculated from the cumulative one-point
distributions of MCMC values for each parameter and do
not depend on the Gaussian assumption. For the parame-
ters without a detection, we quote only a 95% confidence
limit. All of the restricted parameter space fits are accept-
able based on ,2 values, starting from the 6-parameter
model with no tensors, running, or neutrino mass.
Introducing additional parameters does not improve the
fit significantly. However, we wish to determine the ampli-
tude of fluctuations in as model independent a way as
possible and for this reason we explore the most general
parameter space possible.

Below we discuss the results from Table II in more
detail. Our standard model has six cosmological parame-
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TABLE II. Median value, 1� and 2� constraints on cosmological parameters combining CMB, SDSS power spectrum shape, and
SDSS bias information. The columns compare different theoretical priors. The parameters for 7-parameter models are
-;!b;!m;�/ � 1 � �m;R; ns, plus nuisance parameter bias b�.

7p 7p� T=S 7p�m� 7p� �s 7p� T=S�m� � �s

103!b 23:4�1:2�2:5
�1:1�2:1 25:1�1:6�3:4

�1:5�2:8 23:7�1:3�2:5
�1:2�2:2 22:9�1:4�2:8

�1:4�2:7 24:8�1:6�3:3
�1:6�3:1

�m 0:253�0:027�0:053
�0:026�0:047 0:226�0:027�0:055

�0:026�0:053 0:259�0:031�0:074
�0:027�0:048 0:269�0:041�0:091

�0:033�0:062 0:262�0:051�0:138
�0:036�0:072

ns 0:987�0:037�0:071
�0:031�0:055 1:040�0:045�0:094

�0:042�0:078 0:995�0:037�0:065
�0:034�0:060 0:959�0:052�0:104

�0:053�0:106 1:00�0:054�0:118
�0:058�0:121

- 0:181�0:068�0:110
�0:066�0:116 0:187�0:063�0:103

�0:062�0:119 0:202�0:064�0:092
�0:072�0:130 0:195�0:065�0:097

�0:068�0:123 0:232�0:046�0:064
�0:064�0:127

b� 0:984�0:070�0:129
�0:065�0:119 0:965�0:068�0:131

�0:062�0:113 1:02�0:079�0:157
�0:074�0:137 0:970�0:069�0:133

�0:060�0:106 0:986�0:078�0:158
�0:065�0:115

�8 0:884�0:064�0:120
�0:057�0:098 0:904�0:062�0:121

�0:60�0:105 0:854�0:066�0:127
�0:060�0:112 0:896�0:058�0:108

�0:058�0:104 0:882�0:062�0:116
�0:063�0:119

h 0:732�0:034�0:065
�0:031�0:056 0:773�0:042�0:097

�0:038�0:071 0:728�0:034�0:067
�0:034�0:069 0:716�0:039�0:078

�0:039�0:079 0:738�0:045�0:100
�0:050�0:112

T=S 0 <0:49 (95%) 0 0 <0:57 (95%)
m� 0 0 <0:18 eV (95%) 0 <0:24 eV (95%)

�s 0 0 0 �0:024�0:031�0:062
�0:031�0:061 �0:045�0:036�0:073

�0:040�0:089
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ters: -;!b;!m;�/ � 1 � �m;R; ns, plus ‘‘nuisance pa-
rameter’’ bias b�. For the case without bias, our results are
in broad agreement with those in Ref. [5], although a
slightly different treatment (modification of lowest multi-
poles in WMAP and inclusion of - < 0:3 constraint) does
lead to small changes in the best-fit parameters and their
errors.

A. �8 and bias

Figure 4 shows the 68% and 95% contours in the
��8; b�� plane. The two parameters are strongly correlated
because the SDSS power spectrum constrains their product
to be b��8 � 0:87 � 0:02. Both bias and �8 are in good
agreement with the SDSS � WMAP analysis without bias
constraints, which gives for the basic 6-parameter model
b� � 0:96 � 0:08 and �8 � 0:92 � 0:09 [5] but which in
the presence of massive neutrinos changes to b� � 1:06 �
8
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FIG. 4 (color online). 68% (inner, blue) and 95% (outer, red)
contours in ��8; b�� plane using SDSS � WMAP � bias mea-
surements. The two parameters are strongly correlated because
only their product is determined from SDSS clustering analysis.
The additional bias constraint helps reduce the degeneracy.
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0:10 and �8 � 0:82 � 0:09. We find �8 � 0:88 � 0:06
and b� � 0:99 � 0:07 in the presence of neutrinos and
running with bias constraints included. There remains a
significant degeneracy between �8 and optical depth -, as
shown in Fig. 5. The upcoming WMAP polarization analy-
sis may help improve this degeneracy.

Let us now compare these constraints to other methods
to determine bias and �8. The closest analysis to ours is
that of the WMAP � 2dF bispectrum using k

�0:2–0:3�h=Mpc modes. Our �8 is in good agreement
with the WMAP � 2dF analysis with the bias constraint
from the bispectrum, which gives �8 � 0:84 � 0:04. The
2dF bispectrum analysis has been performed on scales
smaller than the scale of the power spectrum analysis (k <
0:2h=Mpc), so many subsequent analysis papers chose not
to adopt this constraint. The fact that a completely inde-
pendent approach presented here finds the same result is
8
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FIG. 5 (color online). 68% (inner, blue) and 95% (outer, red)
contours in ��8; -� plane using SDSS � WMAP � bias mea-
surements. There is a correlation between the two, so a better
determination of optical depth - from polarization data would
help improve the constraints.
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therefore encouraging and suggests that the systematics are
not dominating the statistical errors in either approach.

There are several other methods of �8 determination,
such as cluster abundance, weak lensing, and Sunyaev-
Zeldovich effect. Cluster abundance estimations of �8

range from 0.6 to 1, often with very small errors (see a
recent overview of the current situation in Ref. [5]). Many
of these are reported for �m � 0:3, so, if the actual value is
somewhat lower, the required value for �8 increases. The
main difficulty is in calibrating the mass-temperature rela-
tion, which cannot be done with simulations, because these
still lack some of the physics of cluster formation such as
cooling, feedback, conduction, etc. Direct calibration from
the mass and temperature measurements on individual
clusters is more promising but is limited by statistical
and systematic errors. With this method, the results are
particularly sensitive to calibration errors at various steps
of the analysis, so the challenge for the future will be to
control them at the required level.

Weak lensing observations also have a similar spread in
reported values of �8 (between 0.7 and 1; see overview in
Ref. [5]). The assigned statistical errors are larger, so there
may not be much conflict among different observations. In
addition, with this method there are also systematic cali-
bration effects at the 10%–20% level in �8. Some of these
are discussed in the context of the present analysis in
Sec. III B, but a similar discussion applies to other weak
lensing analyses as well. These are often not included in
the error budget. As discussed above, these arise both for
shear calibration from ellipticity measurements and for the
redshift distribution of background galaxies.

Finally, cosmic background imager (CBI) [60,61] and
Berkeley, Illinois, Maryland Array (BIMA) [62] measure-
ments of the CMB at high l find excess power, which can
be interpreted as a Sunyaev-Zeldovich signal. If so, this
would require a fairly high normalization, with estimates
of �8 ranging from 0:98�0:06

�0:07 [61] to 1:04 � 0:12�stat� �
0:1�sys� [63], where both errors are 2-sigma. Some of the
difference between the two estimates is due to the drop of
the CBI amplitude in the latest analysis, while the rest is
due to the differences in the modeling of the signal from
either simulations or analytic models.

In summary, our value of �8 is consistent with most
recently reported values. It is at the lower end of what is
required to explain the CBI/BIMA excess power in terms
of the SZ effect and at the upper end of some of the weak
lensing and cluster abundance measurements. Each one of
these may have additional systematic errors that could
bring the results into a better agreement. Our values are
in excellent agreement with the WMAP � 2dF analysis.

B. Neutrino mass

Galaxy surveys are important as tracers of neutrino
mass, since neutrinos have a considerable effect on the
matter power spectrum. At the time of decoupling, such
043511
neutrinos are still relativistic but become nonrelativistic
later in the evolution of the Universe if their mass is
sufficiently high. Neutrinos free stream out of their poten-
tial wells, erasing their own perturbations on scales smaller
than the so-called free-streaming length, defined as the
distance at which a neutrino of a given rms velocity vth

can still escape against gravity. The velocity is c when
neutrinos are relativistic and drops as 1=a afterwards be-
cause of momentum conservation, so

vth 

kBT
m�

� 50�1 � z��m�=eV��1 km=s: (15)

Since the comoving Hubble time is proportional to -H 


�1 � z��m�
�1=2H�1

0 , the product of the two gives an
estimate of the free-streaming length. The resulting co-
moving free-streaming wave vector is (for one massive
family)

kfs � 0:4��mh2�1=2�1 � z��1=2 m�
1 eV

Mpc�1: (16)

It should be evaluated at redshift when neutrinos become
nonrelativistic, since the dominant contribution comes
from when neutrinos are relativistic.

For a given wave vector k, neutrino perturbations are
suppressed while k > kfs. After that they can grow again
and may even catch up with the matter perturbations. When
neutrinos are dynamically important, the neutrino damping
also affects the matter fluctuations, decreasing their ampli-
tude on scales below the free-streaming length. One can
see from Eq. (16) that the scale is fairly large for the
neutrino masses of interest, kfs 
 0:1 Mpc�1 at z � 0 for
m� 
 1 eV. Below this suppression scale, the power spec-
trum shape is the same as in regular cold dark matter
(CDM) models, so on small scales the only consequence
is the suppression of the amplitude (see Fig. 6). We can
thus adopt the halo bias predictions from CDM models and
apply them to massive neutrino models as well. We should
note that, while qualitatively the effects are similar for one
or three massive neutrino families, they differ in detail
(Fig. 6), so the constraints are not directly comparable
and one must do a separate analysis in the two cases. We
mostly focus on three degenerate neutrino families here,
but also present MCMC results for 3 massless � 1 massive
families below.

While it is commonly believed that massive neutrinos
have a minor effect on the CMB, this is actually not
entirely the case for the masses of interest below 2 eV.
This is because neutrinos with such a low mass are still
relativistic when they enter the horizon for scales around
k � 0:1h=Mpc and are either relativistic or quasirelativis-
tic at the time of recombination, z
 1100 [Eq. (15)]. As a
result, neutrinos cannot be treated as a nonrelativistic
component with regard to the CMB. Figure 6 shows
how much the CMB spectrum changes for various
neutrino masses relative to the zero mass case, keeping
-14



FIG. 6 (color online). Top panel shows the change in CMB
spectrum Cl for several neutrino masses relative to zero mass.
The masses are m� � 0:15 eV (solid, black line), 0.3 eV (dotted,
red line), and 0.6 eV (long-dashed, blue line), all with three
neutrino families of equal mass. Also shown (short-dashed line)
is the case of 3 massless � 1 massive neutrino family withm� �
0:9 eV. Bottom panel shows the ratio of matter power spectra for
the same models. We see that, while increasing neutrino mass
increases the CMB spectrum, it decreases the matter power
spectrum. For the same total mass, the 3 � 1 model is more
nonrelativistic at recombination, has a smaller effect on the
CMB spectrum relative to three families of equal mass, and
the corresponding mass limits are weaker.

SDSS GALAXY BIAS FROM HALO MASS-BIAS . . . PHYSICAL REVIEW D 71, 043511 (2005)
�m � �cdm � �b � �� constant (as well as the other
cosmological parameters). One can see that for m� �
0:3 eV massive neutrinos increase the spectrum by 6% at
l � 200, well above the errors (neutrinos are also not
degenerate with respect to the CMB if we compare them
to a fixed �cdm � �b instead). In addition, massive neu-
trinos increase the CMB spectrum but suppress the power
spectrum (Fig. 6), which enhances the sensitivity when the
two tracers are combined.

We note that our bias constraints significantly improve
upon neutrino mass limits. In the absence of biasing con-
straints, the neutrino mass limit from WMAP � SDSS is
m� < 0:6 eV if their masses are nearly degenerate [5].
Biasing constraints improve significantly upon this. We
find

m� < 0:18 eV�95%� �3 families; without running�;

(17)

at 95% for a single component if we assume no running, as
was done in all of the work to date. Our constraints
improve upon WMAP � 2dF constraints, where m� <
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0:23 eV was found by combining WMAP and 2dF with
the bias determination from the bispectrum analysis [10].

However, this result was based on the assumption of no
running. This assumption was present in all of the work so
far, including Ref. [59] where it was argued that there is
weak evidence of running. A running spectral index
changes the shape of the power spectrum as the massive
neutrinos do, so including the running in the parameter
estimation can significantly expand the limits. Naive ex-
pectations are that a negative running (which seems to be
preferred by the data) suppresses the power on small scales
just as a massive neutrino and so would lead to a tighter
constraint on neutrino mass, but MCMC analysis does not
confirm this and the constraints are weakened. With bias-
ing constraints and running our constraint changes to

m� < 0:24 eV�95%� �3 families; with running�: (18)

All of the mass limits presented here are based on three
degenerate massive neutrino families. If one assumes a
model with three massless families and one massive family
(a sterile neutrino model), as motivated by LSND experi-
ment [64], then the mass limits on the sum change, since
both the CMB and the transfer function change. One finds
the limits are significantly weakened: in the WMAP � 2dF
analysis without bias, the limit is 1.4 eV [65]. We find the
same

m� < 1:37 eV�95%� �3 � 1 families; no running�:

(19)

The reason for the relatively weak constraint is that this
case is much more degenerate with �m than the case of
three degenerate massive neutrino families. From the
LSND experiment the allowed regions are four islands
with the lowest mass m� � 0:9 eV and the next lowest
1.4 eV [66]. We see that the windows are rapidly closing
with cosmological constraints, but the case is not yet air
tight.

There were recent claims that the neutrino mass may
have already been detected from cosmological observa-
tions [67]. These claimed detections are inconsistent with
our WMAP � SDSS or with WMAP � 2dF constraints
and are based primarily on the cluster abundance analysis
of Ref. [68], which seems to prefer a low value for the
amplitude, �8 
 0:7. As discussed above, cluster abun-
dance estimates of �8 range from 0.6 to 1 and are likely
to be dominated by systematics often not included in the
quoted errors, such as mass-temperature calibration.
Increasing the error on this method to account for system-
atics removes the evidence for neutrino mass.
V. DISCUSSION AND CONCLUSIONS

In this paper, we presented a detailed comparison be-
tween observations and theoretical predictions of one of
the fundamental predictions of structure formation models,
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that of linear bias as a function of halo mass. In doing so,
we combine two separate observational analyses of SDSS
data, the galaxy clustering analysis and a weak lensing
analysis, both as a function of galaxy luminosity. The
former gives us the relative bias as a function of luminosity,
while the latter connects the galaxies of a given luminosity
class to their dark matter halo mass distribution. We find
remarkable agreement between the observations and theo-
retical predictions of bias over a range of halo masses from
1011h�1M� to 1013h�1M�. This success should be viewed
as an important new confirmation of the current large scale
structure paradigm in predicting the properties of the
Universe in which we live.

The second goal of this work is to provide a determi-
nation of the bias for SDSS galaxies, which can be used to
improve the cosmological parameter estimation. For any
given model, we can determine bias from the halo mass-
bias relation and from the amplitude of galaxy clustering.
The two must agree, which requires the bias of M0:1r �
�20:8 galaxies to be very close to unity. As a result, we can
place constraints on the amplitude of fluctuations, �8 �
0:88 � 0:06, as well as on the other cosmological parame-
ters. Our results are in excellent agreement with the
WMAP � 2dF analysis of Ref. [59]. In particular, we
find no evidence for any systematic differences between
the SDSS and 2dF power spectra in either amplitude or
shape.

The systematic errors from the galaxy clustering data
have been thoroughly examined in Ref. [9], but some open
questions remain to be addressed. One of them is the
correction for nonlinear effects in the power spectrum
analysis. This can affect both the conversion from redshift
space to real space and from the real space power spectrum
to the linear power spectrum. The current analysis in
Ref. [9] is based on the power spectrum with k <
0:2h=Mpc, but this cutoff is somewhat arbitrary and should
be justified within a more realistic model, which will
provide an estimate of the systematic error as a function
of k. Currently, the nonlinear corrections are based on the
nonlinear evolution model of Ref. [56]. However, galaxies
are not a perfect tracer of dark matter and the nonlinear
correction for galaxies could be different from that of dark
matter. For example, in the context of halo models non-
linear effects are entirely due to the correlations within the
halos. If galaxies populate larger (smaller) halos than the
dark matter, then the nonlinear corrections will be larger
(smaller). The halo model is not sufficiently accurate to
address these questions in detail and simulations are
needed instead. To put things in perspective, the overall
galaxy clustering amplitude b��8 from SDSS using k <
0:2h=Mpc data points has an error of 1.5%, while the
nonlinear correction at k � 0:2h=Mpc is around 10%. In
this situation, it does not take much for the systematic error
to dominate over the statistical error. However, much of the
error will be on the overall amplitude and this is still
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limited by the error on our bias determination, which is
around 7%. Nonlinear effects are likely to be even more
important for the luminosity dependent analysis of galaxy
clustering, which was used in this paper as a basis for bias
determination, but statistical errors in this analysis are
larger and systematics may not dominate the results. It is
clear that these issues have to be revisited if one is to
believe the cosmological implications from these results.

We have argued that the method presented here is in
many ways more robust than some of the other methods to
determine the bias from observations. Still, there remain
possible systematic errors in the present analysis that need
to be explored further. Two uncertainties mentioned in the
present analysis are the calibration of the weak lensing
signal and the accuracy of the bias-halo mass relation. We
have argued that the weak lensing method is robust in that
even a 20% calibration error leads to only 0.03 error in
bias. This does not dominate relative to the statistical error
and we have included it in the analysis. Similarly, the bias-
halo mass relation has been calibrated to an accuracy of
0.03 using a suite of large simulations covering some of the
parameter space of interest [19], but larger simulations and
a more extensive grid of parameter space is needed to
improve this to an accuracy of 0.01.

The current paper should be viewed as a first application
of this method of bias determination, rather than the last
word on it. There are many ways the current analysis could
be improved. The most important among these is reducing
the error on the clustering amplitude as a function of
luminosity, especially for low luminosity galaxies. As we
argued, most of the leverage for bias determination comes
from the low luminosity galaxies, which reside in low mass
halos and for which the bias is only weakly dependent on
the nonlinear mass (it is also relatively insensitive to errors
in the lensing analysis). A better analysis optimized to
reduce the sampling variance errors should reduce the
errors considerably. Galaxies with absolute luminosities
in the range �18;�20� seem particularly promising, since
they have a reliable lensing detection (Fig. 1) and a weak
bias dependence on nonlinear mass (Fig. 2), unless the
nonlinear mass is very low. Their clustering amplitude is
currently very poorly determined compared to the overall
sample (Table I), which could be improved dramatically
with a more careful analysis. In addition, the systematic
errors in the lensing analysis could be reduced further. All
of these aspects can be improved in the near future. This
could lead to significant improvements on the cosmologi-
cal parameters such as neutrino mass or equation of state.

The present paper is only the first in several possible
attempts to estimate the large scale bias in SDSS. An
ongoing project closest to our approach is to use the galaxy
autocorrelation function on small scales to constrain the
halo occupation probability distribution. A bispectrum
analysis of SDSS galaxies is also in progress and should
yield results which are statistically comparable to the
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present analysis. A weak lensing analysis on large scales
can also determine the bias, although this would require
larger survey areas than currently available and a tight
control of all possible systematics. Current efforts are
limited to small scales and their statistical power remains
weak [12]. Finally, with better modeling of redshift space
distortions, the constraints on � may also improve beyond
the current limits, which at the moment remain weak [9].
Combining and comparing these with the current analysis
will provide additional checks of systematics in these
methods.

The method presented here can be applied to other
samples of galaxies, such as those selected by color, spec-
tral type, or stellar mass. Of particular interest would be to
apply it to the higher redshift galaxies, such as the lumi-
nous red galaxies, which are very numerous in surveys
such as SDSS and whose photometric redshifts are rela-
tively accurate and well understood. Their clustering am-
plitude on large scales can be determined with a high
accuracy, close to 1%, in several redshift bins up to z �
0:7. Without a model for bias, the amplitude does not give
useful information. If one could determine their halo mass
distribution function with lensing, that would allow one to
predict the bias and thus extract the growth factor as a
function of redshift. While the absolute calibrations of bias
are still difficult at a 1% level, the relative calibration as a
function of redshift may be more promising. This may be
one of the most promising methods to place constraints on
the dark energy equation of state and its evolution.
043511
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