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Constraints on field theoretical models for variation of the fine structure constant
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Recent theoretical ideas and observational claims suggest that the fine structure constant � may be
variable. We examine a spectrum of models in which � is a function of a scalar field. Specifically, we
consider three scenarios: oscillating �, monotonic time variation of �, and time-independent � that is
spatially varying. We examine the constraints imposed upon these theories by cosmological observations,
particle detector experiments, and ‘‘fifth force’’ experiments. These constraints are very strong on models
involving oscillation but cannot compete with bounds from the Oklo subnuclear reactor on models with
monotonic timelike variation of �. One particular model with spatial variation is consistent with all
current experimental and observational measurements, including those from two seemingly conflicting
measurements of the fine structure constant using the many multiplet method on absorption lines.
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I. INTRODUCTION

The conventional view is that the fine structure constant
�, the coefficient that determines the strength of the elec-
tromagnetic interaction, is a constant. There is an effective
change in � at energies greater than 1 GeV due to renor-
malization effects associated with electroweak symmetry
breaking. However, at temperatures far below the GeV
scale, and certainly since matter-radiation equality, these
effects are negligible.

There are recent claims of a statistically significant
variation of the fine structure constant at large redshifts
0:2< z< 3:7 (cf. [1]),

��0:2< z< 3:7� � ��z � 0�

��z � 0�
� ��0:57 � 0:10� � 10�5;

(1)

where these measurements are averaged over quasar ab-
sorption systems in the given redshift range. An indepen-
dent measurement using similar techniques is reported in
[2],

��0:4< z< 2:3� � ��z � 0�

��z � 0�
� ��0:06 � 0:06� � 10�5:

(2)

One issue discussed in this paper is whether these two
results are contradictory. The only other possible statisti-
cally significant detection of variation of a coupling con-
stant comes from measurements of isotopic abundances
from the subnuclear reactor at the Oklo mine, where the
analysis allows two possibilities for the value of � [3–5].
The favored branch is a null result providing a strict bound
on variation, but the other branch also would yield statis-
tically significant variation. A full discussion of experi-
dress.
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mental bounds on the variation of coupling constants is
given in [6].

There also is considerable theoretical motivation for the
possibility of variable coupling constants. Coupling con-
stants appear to be naturally variable in unified theories [7]
and among other things will vary with a changing dilaton
[8]. A changing fine structure constant would be accom-
panied by variation in other fundamental parameters, in-
cluding the grand unification scale [9]. Variation in the fine
structure constant also can be associated with violations of
local Lorentz invariance and CPT symmetry [10].

In this paper, we consider experimental and observatio-
nal constraints on field theories allowing variation of the
fine structure constant, as well as whether any simple
models satisfy both these constraints and the measure-
ments of Webb et al. In Sec. III we consider whether
finite-temperature field theory provides a sufficient correc-
tion to account for these observations. In the remainder of
the paper, we consider three classes of models and discuss
phenomenological constraints that must be imposed.
Models with predominantly oscillatory behavior in the
recent past are discussed in Sec. IV. Models with mono-
tonic variation are considered in Sec. V. Finally, spatially
varying but time-invariant models are considered in
Sec. VI. For the remainder of this paper, we will use spatial
variation to refer to models in which the value of � is
different when measured at two points separated by space-
like vectors and similarly time variation will refer to dif-
ferences between points separated by timelike vectors.
While not every model will fall strictly into one of these
three categories, the goal here is to produce representative
constraints applicable to a wide range of models.
II. GENERAL CONSIDERATIONS

If a coupling constant is variable, we can treat it as a
function of some field. This paper will consider models in
which the fine structure constant is a function of a scalar
-1  2005 The American Physical Society
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field. Clearly not every possible scenario can be described
in terms of a scalar field, but for small changes in � a scalar
field will either be exact or a good approximation for a very
wide variety of models. Models that cannot be described in
terms of a scalar field fall outside the scope of this paper.

The QED Lagrangian including a real scalar field � is

LQED �
1

2
�@	��2 � V���

� �l�i
	@	 � 
	A	 �ml�l�
1

4e2 F	�F
	�; (3)

where l is summed over all leptons l � e;	; �, and A	 is
the vector potential. In Sec. VI we will find it useful to
rescale A	 ! eA	. Since the electric charge e is no longer
constant, this produces the more complex but equivalent
Lagrangian

LQED �
1

2
�@	��

2 � V��� � �l�i
	@
	 � e
	A	 �ml�

� l�
1

4e2 	@	�eA�� � @��eA	�
2: (4)

This Lagrangian, while entirely equivalent to (3), should
be used with considerable caution. Because e is no longer
constant, many conventional dynamic variables and trans-
formations must be altered. The gauge transformation is
now eA	 ! eA	 � @	�, but under that transformation
gauge invariance is retained. More worrying is the require-
ment for a redefinition of the E and B fields; contracting
F	�u� produces not only the Lorentz force law but addi-
tional terms of order d	e. For the particular case we shall
consider in Sec. VI, the field is pinned, and therefore d	e is
negligible.

If � has � dependence, the QED Lagrangian will in-
clude a term

L QED � � � � �
1

16�����
F	�F	�: (5)

The equation of motion for a scalar field� in an expanding
universe is


�� 3H�t� _� � �V0���; (6)

where V 0 denotes the derivative with respect to �.
As an illustrative example, consider the case in which �

has a minimum at �0 
 0, and the potential V��� is the
harmonic potential

V��� �
1

2
m2
�����0�

2: (7)

Substituting, the equation of motion becomes


�� 3H�t� _��m2
�����0� � 0: (8)

This is the equation for a damped harmonic oscillator,
with damping term 3H�t� (which has units of time�1), and
043509
therefore admits the following characteristic solutions to-
day:
(1) L
-2
arge m�. If m� � H, �, and therefore �, will be
rapidly oscillating with period T � 3H0, where H0

is the value of the Hubble parameter today. The
universe out to a redshift of 3.7, where variation of
the fine structure constant has been reported in
Webb et al., is observed over a time period of
approximately 1=H0. Therefore, over our range of
observations, these models would predict that �
would appear to be oscillating. Models with these
features are discussed in Sec. IV.
(2) I
ntermediate m�. If m� �H, �, and therefore �,
could be oscillating with period T � 3H. In this
case, we should observe the variation of � as mono-
tonic rather than oscillating over our range of ob-
servations. Also note that the damping term yields a
characteristic decrease in _� of one e-folding per
1=3H0. Models with monotonic time variation of
� are discussed in Sec. V.
(3) S
mall m�. If m� � H, �, and therefore �, will be
frozen at its present value. In this case, variation in�
would only be possible if the value of � frozen in at
different regions of space were different. Such mod-
els are discussed in Sec. VI.
While not every model will contain a minimum or be well
modeled using a harmonic expansion about the minimum,
it is straightforward to adapt the constraints on these three
generic cases to a particular model.

III. RUNNING COUPLING CONSTANTS

Before considering modifications to the QED
Lagrangian in order to explain variation of the fine struc-
ture constant of the sort reported in Webb et al., we should
consider whether the already known variation in coupling
constants from predictions of quantum field theory might
be responsible for this sort of deviation. Using the fine
structure constant as an example, renormalization tells us
that at high energies, the value of � must be different than
at low energies since there are loop calculations involved.
For one-loop diagrams, this ‘‘running’’ of � can be ap-
proximated as (e.g., [11]), for small momentum transfer
Q� me,

��
�

�

�
Q
me

�
2
: (9)

In addition to changes in � from renormalization group
effects leading to a running coupling constant, there will
also be finite-temperature corrections to any process in-
volving a loop diagram. As a result, the Lamb shift will be
altered and therefore the spectral lines used in the many
multiplet measurements. Depending on the temperature
and on the atomic number of the atom involved, there are
two corrections to atomic spectra that must be considered.
Walsh [12] considers a correction to the Lamb shift domi-
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nant at high temperatures and at low atomic number, con-
cluding that

�E � 300
T4

Z4�me��
3 : (10)

Barton [13] considers a second correction, dominant at
lower temperatures and higher atomic number over that
calculated by Walsh, of approximately

�E �
��3Z2T2

8me
: (11)

We also can consider whether these effects could explain
the many multiplet method results described in [1]. These
involve measurements of ions such as Mg II, Fe II, Al II,
Al III, Zn II, and Cr II that occur in the warm ionized
medium, where the most energetic processes take place
typically around 10 000 K [14]..

Taking T � Q� 10 000 K � 0:86 eV, we find that

��
�

� 3 � 10�12; (12)

while the transition energy changes are dominated by (11)
and the correction to the Lamb shift is

�E � 4:8 � 10�14 eV: (13)

Since typical fine structure transitions in iron are of order
0:4 eV and the fine structure constant is only determined to
within a few parts per million, these corrections are also far
too small to cause the variation claimed in [1].

IV. OSCILLATION

As in Sec. II, the equation of motion (8) allows for three
typical behaviors of a massive scalar field in an expanding
universe. For m� � H, the scalar field will oscillate with
an amplitude that is damped by the term 3H�t� _�. As an
example, approximate the universe between a redshift of
z � 4 and the present as matter dominated, so that H�t� �
2t0
3t . This is a good approximation for 0:5< z< 4 while as
dark energy comes to dominate the Hubble parameter
tends toward a constant value. Solving for the matter-
dominated case, we find the amplitude drops off as t�1.
Since the scale factor a�t� / t2=3, the amplitude of oscil-
lation in the recent past increases with higher redshift as

A�z� / �1 � z��3=2; (14)

in the regime in which m� � H.
Assume the value of � today is oscillating and that

therefore the present value is at some random phase of
the periodic cycle. The strongest current bound on _� is [15]

_�
�

� �0:2 � 7:0� � 10�16 yr�1: (15)

With 95% confidence, _� chosen at a random point from
oscillation with amplitude A�z� and frequency f will be
043509
j _�j> 0:08A�z � 0�f: (16)

Therefore, at the 2" level the atomic clock constraint is

A�z � 0�f < 9 � 10�15 yr�1�: (17)

This bound does not apply to oscillations with T <
10�8 s � 10�26=H0, as atomic clocks cannot detect varia-
tion more rapid than the characteristic timescale.

Further, one also must explain why measurements of the
fine structure constant using isotopic abundances from the
subnuclear reactor at the Oklo mine [3,5,16,17] yield a
value so similar to the present value of �. The isotopic
abundances found at the Oklo mine are consistent with a
constant value of � that is sufficiently close to the present
value as to reproduce the approximately 0.1 eV resonance
for the interaction 149

62 Sm � n! 150
62 Sm � 
. It has been

shown that if � can be treated as constant during the
lifetime of the reactor, the fine structure constant was
within 1:44 � 10�8� of the present value while the reactor
was operating [5].

For an oscillating model of � with sufficiently low
frequency that the value of � can be treated as constant
during the approximately �2:3 � 0:7� � 105 yr period of
activity, the Oklo reactor could only operate at a time when
the value of � were fixed so that the 0.1 eV resonance was
reproduced. Assuming that the frequency is sufficiently
high that there have been a large number of periods in
the intervening 1:8 � 109 years, a slight change in the
frequency causes the present value of � to sweep through
multiple periods, so that we should again expect to be at a
random phase today. As before, we require that at least 5%
of possible phases would produce a present value within
the tolerances set by the Oklo measurements. This is
equivalent to a requirement at the 2" level that

A�z � 0�< 1:4 � 10�7�: (18)

No work has been done that would rule out the possibility
that in addition to being a good fit with a constant value of
�, the isotopic abundances at Oklo might also be a good fit
for a model in which the value of � and therefore the
energy of the neutron capture would vary in a specified
manner during the reactor’s operation.

Therefore, for oscillation at an unknown frequency the
results from the Oklo mine strongly suggest a limitation on
the amplitude of oscillation. We can further combine the
atomic clock bound with observational constraints on fre-
quency to produce an additional bound on the amplitude.
For example, Varshalovich et al. [18] measures � from the
spectra of 1500 absorption systems between z � 2 and z �
4 (or a time window �t � 0:15=H0), for an average sam-
pling frequency of fs � 10 000H0. If there were oscillation
within that time window with amplitude A�z � 3�> 4 �
10�5�, the oscillation would be detected in these results
unless the frequency were greater than the Nyquist fre-
quency, requiring
-3



FIG. 1. Feynman Diagram for the � and �2 interaction of two
nucleons N and N0.
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T > 0:15=H0 or T < 1=5000H0: (19)

The low frequency case is really monotonic time variation
and will be considered in Sec. V. Combining these limits
with (17), the allowable frequency range requires A< 3 �
10�8�, so we can conclude from a second set of constraints
independent of Oklo that A�z � 3�< 4 � 10�5�, or equiv-
alently

A�z � 0�< 5 � 10�6�: (20)

As another example, we can consider whether oscilla-
tion could be consistent with the results of Webb et al.
Clearly oscillation cannot be consistent simultaneously
with both the variation claimed in Webb et al. and with
the null result reported by Chand et al., but we will con-
sider just the Webb results in isolation as an example of the
difficulty of constructing an oscillatory model given
present bounds. In that case, the amplitude of the oscilla-
tion today must be at least

A�z � 0� � �0:81 � 10�5��: (21)

This is larger than the bound from (18) and the coincidence
between the values at Oklo and today has a probability of
0.08%. The second (less likely) branch of Oklo would
increase the probability to 1.6%, still requiring greater
than a 2" deviation from expectation.
A�z � 0� is also larger than 5 � 10�6�, and therefore

the Varshalovich bounds on the frequency will apply. It is
possible that future measurements will be sufficiently sen-
sitive to evade the Varshalovich bounds on allowed fre-
quencies. In that case, one can analyze these new
measurements in a similar manner to the analysis per-
formed on the Varshalovich data in order to produce ap-
plicable bounds.

Returning to the example of Webb et al., we can now
calculate the probability that an oscillating model with the
given A�z � 0� is consistent with atomic clock measure-
ments. Including the Varshalovich bounds on the frequency
and assuming that � is at a random phase today, atomic
clock limits on _� today will be satisfied with probability
1:1 � 10�4. For the claimed variation to be the result of an
oscillating model, both this bound and the apparently
independent bound from Oklo must be satisfied, for a
combined probability of 9 � 10�8.

In general, we can see that the constraints on models in
which the fine structure is oscillating are very strong in the
absence of additional physics that would both finely tune
atomic clock measurements today and explain why the
subnuclear reactor at Oklo was active during a period
when the value of the fine structure constant was the
same as it is today. At this point, an improvement of the
precision with which A can be constrained observationally
would strengthen bounds on oscillating models. However,
additional observations of absorption systems at the
present level of precision will only serve as additional
confirmation that oscillation does not exist in a region
043509
already ruled out by current observational and experimen-
tal bounds.
V. MONOTONIC TIME VARIATION FROM
SCALAR FIELDS

In order to produce an � that is monotonically varying
we can introduce a scalar field � and choose a function
���� such that the QED Lagrangian is (4). The equation of
motion (6) requires

������
V 00

p
� 3H0, since small values of V 00

result in a frozen-in field � and large values result in
oscillation with frequency � 3H0.

Any function ���� is possible. In general, we can take a
Taylor series � 


P
�n����0�

n, where �n � @n�=@�n

and where we will take �0 
 0. How could one test for
such a �? The physical properties of the proton and
neutron depend on the fine structure constant [19]. In
particular, mass renormalization leads to a contribution to
the masses of the proton and neutron that depends on �
[20]:

�mp � Bp�� � �0:63 MeV�
��
�
; (22)

�mn � Bn�� � ��0:13 MeV�
��
�
; (23)

defining Bp and Bn coupling constants for the proton and
neutron, respectively.

Dvali and Zaldarriaga[21] (see also Damour and
Polyakov [8]) consider the example ���� � ��, which
leads to a Yukawa interaction

L � � � � �
X

N�p;n

	BN�1� �NN
: (24)

They show this is a long-range force proportional to �2
1 (see

Fig. 1) but different for protons and neutrons, and that
Eötvös experiments require

�2
1 <

10�10

M2
P

: (25)

We can similarly consider the coupling
1
2Bn��2=���2 �NN. As shown in Fig. 1, �2�2 �NN and by
analogy the other higher-order terms in � also produce
long-range forces, mediated by n � particles rather than
just one. The � is the cutoff energy from renormalization,
-4
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and has been brought outside of �2 so that all of the �n will
have the same dimensions.

In comparing the two long-range forces, the matrix
element corresponding to the interaction mediated by n
� particles can be approximated in terms of the matrix
element for the single � interaction as

Mn � A2

�
�n

�n�1�1n!

�
2
M1; (26)

since the matrix element is proportional to the coupling
coefficient squared. A is a constant with units of energyn�1,
and can be approximated as using the center of mass
energy

���
s

p
as

���
s

p n�1. The cutoff energy � is typically taken
to be on the TeV scale. For a long-range interaction be-
tween nucleons separated by a distance r,

���
s

p
typically

scales as 1=r, and therefore the long-range interaction
between two nucleons will have

���
s

p
� �. The �n term

produces a long-range force with magnitude

Fn �
�
�n

���
s

p n�1

�1�
n�1

�
2
F1: (27)

The long-range force is thus depressed by �
��
s

p

� �
2n�2.

Regardless of whether the force is mediated by one �
particle or many � particles, the contributions from each
force will simply add since the external lines on each
diagram are identical. Therefore, we can conclude from
Eötvös experiments that
�
�1�

1

2
�2

� ���
s

p

�

�
����

�
2
�

�
@�
@�

�
1

2

���
s

p @2�

@�2����

�
2
<

10�10

M2
P

:

(28)

This is effectively an upper bound on the coupling of � to
�, although its utility depends on the model, as the higher-
order derivatives of ���� are only very weakly bounded.
We will calculate some examples shortly.

First, we must bound �� in order to use bounds on @n�
@�n

to bound ��. For a flat universe, the kinetic energy density
of our � field cannot be greater than the critical density.
Dvali and Zaldarriaga [21] use this to show that �1 >

10�7

MP
.

However, this is only a bound on the present value. Not
only must the kinetic energy density fit this bound today,
but it also must fit similar bounds in the distant past. In an
expanding universe, the energy density of a type of energy
 with equation of state parameter

w �
p
,
�

_ 2

2 � V� �
_ 2

2 � V� �
; (29)

changes as a function of scale factor a as

, / a�3�1�w�; (30)

so that kinetic energy (w � 1) drops off as a�6. Therefore,
if there is a little kinetic energy now, we should expect a lot
of kinetic energy when the universe was smaller, or equiv-
043509
alently at large redshift [a � 1=�1 � z�]. For example, at a
redshift of z � 1, the ratio of kinetic energy density to
matter density would already be 8 times larger than today;
at a redshift of nine it will be 1000 times larger. The effects
of even a small amount of kinetic energy today would be
enormous in the early universe, as at high redshift it would
dominate the universe. Among the effects we would have
noticed would be a severe suppression of density fluctua-
tions and a very large ��.

This does not prove that � cannot be rapidly changing
today, but rather that, if � is changing, in addition to the
kinetic energy of the field there must be a sufficiently large
potential that w� & 0. Much of the ‘‘missing’’ energy in
the universe, or the so-called dark energy, has w< 0, so it
might be natural to postulate that the scalar quintessence
field postulated to solve the dark energy problem is also
responsible for variation in �.

Having bounded ��, we can now return to our bounds
on @n�

@�n and use them to bound ��. In order to highlight the
limitations of the Eötvös constraints, let us choose as a toy
model an ���� dominated by the �n term. We choose

� � �0 �
an
n!
�n; (31)

with � � 0 at the present value of �. The bound from (28)
thus yields

���
s

p n�1

n!

@n�
@�n <

10�5

MP
: (32)

In this case,

�� �
an
n!

����n �
@n�
@�n

����n

n!
; (33)

so (32) becomes

��
�

<
10�3����n

MP
���
s

p n�1 : (34)

Since �� can be as large asMP �
���
s

p
, the resulting bound

of

��
�

< 10�3

�
MP���
s

p

�
n�1

; (35)

does not provide a useful constraint for n > 1.
Dvali and Zaldarriaga consider the specific case n � 1,

for which ��
� may be as large as 10�3 between the present

value and observations at a redshift of 2. However the
bound from the Oklo reactor is much more restrictive.
For their model with constant _� and thus constant _�, at
the time of Oklo we should measure

�
��
�

�
Oklo

� 10�6: (36)

Both branches of Oklo bounds rule out variation of this
-5
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order. Indeed, at the present time the Oklo bounds are the
strictest bounds on monotonic time variation.

Bounds on violation of the equivalence principle have
improved by a few orders of magnitude over the past
decade or two [22]. The Satellite Test of the Equivalence
Principle (STEP) has been proposed to improve the sensi-
tivity of Eötvös experiments by five or 6 orders of magni-
tude [23] and therefore the bounds on @�=@� may in the
near future become more restrictive on a linear coupling
than the measurements from Oklo. Particle accelerator
results such as those discussed in Sec. VI will be orders
of magnitude weaker even than the Eötvös bounds.

One might be tempted to conclude that because Eötvös
experiments are only capable of bounding models with
� � �0 �

an
n!�

n for n � 1, models with n > 1 are capable
of producing large variation in � between z � 0 and z � 1.
Indeed, the best direct bounds on models with this type of
time variation come from terrestrial bounds on and obser-
vations of the fine structure constant itself rather than from
experimental bounds on associated effects such as viola-
tion of the equivalence principle.

However, in order to produce such a model, the linear
term in ���� must be very small and only the higher-order
� derivatives of� contribute. In the absence of a symmetry
(for example, a function of leading order �2 might natu-
rally be produced by the symmetry �! �� about the
present value of�), this is an unnatural model. Even with a
symmetry, the linear term will only disappear in an expan-
sion about the minimum. Since the Eötvös experiments
that constrain @�=@� take place today, this requires that
the value of � be very near a minimum at present. Since we
are dealing with monotonic oscillation, the requirement is
for the value of � to be very close to the minimum today
but to be far from the minimum both in the recent past and
in the near future. Therefore just like the oscillating models
discussed in Sec. IV, such a model requires a very improb-
able coincidence.

We do know that something fundamental has changed
about the universe between a redshift of 3.5 and today. The
universe has gone from decelerating to accelerating, and
has gone from matter-dominated to a universe dominated
by a dark energy with negative pressure. Therefore, one
might naturally consider a model in which either � or � is
a function of the composition of the universe, perhaps a
nonminimally coupled scalar field (e.g., the Brans-Dicke
[24] model with a scalar field coupling to the Ricci scalar).

The coincidence between the timing of dark energy and
of the reported variation in � from Webb et al. suggests
that the two might be related. Wetterich and others [25–28]
have considered the possibility that such a model might
satisfy both variation on the order reported in Webb et al.
and the Oklo bounds. In order to produce the large varia-
tion between z � 0:1 and z � 2 compared to the variation
between today and z � 0:1, the dependence of � on dark
energy must be similar to a step function.
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Assume that the dark energy is a time-varying quintes-
sence fieldQ rather than a cosmological constant. Then the
kind of dependence one is looking for might be of the form

��&Q� � �0 � �1e
�&Q=Q0 : (37)

Letting, as an example, Q0 � 0:1, � would take on a
constant value in the distant past as well as a constant
value today, but the constant value would be different in
those two epochs. Similar ideas have been discussed by
Barrow [29] among others. However, no such model that
fits both the variation reported by Webb et al. and all of the
other measured bounds, from not only Oklo but also the
CMB [30] and nucleosynthesis [31], has yet been worked
out in detail. While Barrow [32] suggests that a model with
some features in common with the one proposed here will
have the correct asymptotic features, it is not at all clear
that the boundary conditions can be matched in such a way
as to actually fit current measured limits.

To this point, a model that both is consistent with the
claimed variation in [1] and arises naturally from current
theory has not been forthcoming. Additionally, for time
variation the recent results reported by Chand et al. are in
direct conflict with those of Webb et al. Any model in
which the variation of � is time requires that independent
measurements of � over the same range of redshift must
produce the same result. Therefore an additional require-
ment of any model that produces variation of the sort
claimed by Webb et al. by introducing some ��Q� is that
either the Chand et al. results are shown to be erroneous or
&Q is shown to have already taken on its present local
value in some regions of the universe at a redshift of 2.3,
which would be inconsistent with inflation.

VI. SPATIAL VARIATION

Another logical possibility for producing a different
value of � at z � 1 than at z � 0 is that rather than
changing over time, � undergoes spatial variation. This
is perhaps the simplest way of removing the Oklo con-
straint, as spatial variation could produce a different value
of � at large distance (or, equivalently, at large red shift)
while retaining the same constant value on Earth in the
distant past. Oscillating models will run into similar con-
straints as Sec. IV, although only the bound (17) will be
pertinent.

In order for spatial variation to occur, there must be (at
least) two values of � for which it will remain constant.
One possibility, which we will not consider here, is that a
light field, such as that postulated by ‘‘tracker’’ quintes-
sence models, is stuck as in [33]. For V 0 � H and V00 �

H2, _� will be small. Such models typically produce small
V0 and V00 by requiring the field to couple to almost nothing
else; since � must be a function of our scalar field it will
couple to almost everything.

The other possibility is a relatively heavy field in which
the potential V��� has at least two local minima, corre-
-6
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sponding to the values of � locally and at large distances.
In the early universe, the temperature is very high, and for
total energy much greater than the potential, � can take on
any value. As the universe expands and cools, at some
point � falls into one of these local minima and cannot get
out of the potential well. However, the local value deter-
mines which well � will fall into, and thus different
regions of the universe can randomly fall into different
potential wells. Therefore, it is possible that we are in one
potential well with one value of� and much of the universe
is in another potential well with a different value.

As in the previous section, we can equivalently consider
a real scalar field � such that � is a function of �. We
select the minima to be �". We can then write the
Lagrangian as

L �
1

2
�@	��2 �

1

4
���2 � "2�2; (38)

where � is typically of order unity.
At high temperatures, @	�� �2 � "2, and therefore

the expectation value h�i � 0. However, at lower tempera-
tures � will take on a vacuum expectation value of either
h�i � " or h�i � �", spontaneously breaking the Z2

symmetry under �! ��. We might imagine that the
local vacuum has h�i � " and that the vacuum containing
absorption systems measured by Murphy et al. has h�i �
�". Since ��x	� must be continuous, even at very low
energies there will be a region of space called a domain
wall for which� � 0. The major problem that we shall run
into will be the total energy density of these walls.

At the time of spontaneous symmetry breaking (SSB),
the ratio of the energy density in domain walls to the
critical density will be

&wSSB
�

"

�1=2MP

: (39)

Since � is an electroweak coupling constant, this symme-
try cannot be broken until at or after electroweak decou-
pling at approximately 300 GeV [34]. Since
MP � 1019 GeV, for �� 10�31 (which is shown to be
the case below), &w � 1 and therefore we can treat do-
main walls as negligible in the Friedmann equation de-
scribing the expanding universe. WMAP bounds using the
Integrated Sachs-Wolfe effect confirm that &w < 10�4 to-
day [35] compared to &m � 0:28, so domain walls can be
ignored in the Friedmann equation for the entire history of
the universe.

The energy density of a domain wall network is known
to scale with the size of the universe as approximately
,w / a�1:44 [36]. This will again underestimate ,w, since
a solitary wall has ,w / a�1 and the additional dropoff is
due to coarsening, based on interactions between different
causally connected walls.

Let the scale factor at the time of symmetry breaking be
aw 
 1=�1 � zw�, where today a0 � 1. Then,
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&w0
� &wSSB

�
a0

aw

�
�1:44 ,cSSB

,c0

: (40)

During the radiation-dominated era, i.e., z� 3500, ,c /
a�4 and during the matter-dominated era, z� 3500, ,c /
a�3. (The effects of � domination since a redshift of 0.5 or
so are negligible.) So, for 1 � zw > 3500,

&w0
�

"

�1=2MP

�1 � zw�
1:56 1 � zw

3500
: (41)

If instead the symmetry is broken during the matter-
dominated era,

&w0
�

"

�1=2MP

�1 � zw�1:56; (42)

so (41) is a lower bound on &w0
.

In general, the scale factor is inversely proportional to
the temperature, a / T�1. We know that the symmetry is
broken at approximately a temperature of ". Therefore, we
can conclude that

1 � zw �
"

TCMB
; (43)

where TCMB is the current temperature of the universe,
0.000 235 eV. Substituting, we conclude that

&w0
�

"3:56

�5:65 � 10�7��1=2MP

; (44)

with " in eV.
&w < 10�4 today, so substituting we conclude that

"��0:140 < 103 keV: (45)

Is this upper bound valid in all cases? If the formation of
walls occurs prior to inflation, the walls can be inflated far
away, similar to the solution of the monopole problem. It
might then simply be an accident that one happens to lie in
our observable universe. However, as mentioned above, the
electroweak decoupling only occurs around 300 GeV, well
after inflation. Further, if the domain wall were inflated out
of our observable universe, our observable universe would
all be in the same domain. Therefore, this model could not
produce variation in the fine structure constant.

Another way to prevent domain wall problems is restore
the symmetry at a lower temperature. At first, this might
also seem problematic, since we want the spatial variation
laid down initially to remain today. Indeed, such a model
does not properly fit under the spatial variation heading at
the start of this section. Because of causality, we cannot
observe the present value of � at large distances, and
therefore we cannot rule out the possibility that the value
of � is different at present in gas clouds at large distances
than it was when light we observe today was passing
through those regions. However, since the observations of
Webb et al. include systems at z � 0:5, WMAP bounds on
-7
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&w using the Integrated Sachs-Wolfe effect since z � 2
will continue to constrain such models.

A third option would be for there to be a slight asym-
metry, such that the two local minima are unequal. In that
case, one vacuum would be preferred with regions of
higher-density vacuum shrinking and eventually becoming
black holes. However, this effect only saves the model
from becoming wall dominated when these regions start
to disappear, so a model that postulates two regions of
different vacuum today or in the recent past is
incompatible.

By introducing a scalar field �, we have also introduced
a particle �. What is the mass of this particle? As in (38),

L �
1

2
�@	��2 �

1

4
���2 � "2�2: (46)

The mass at the present value � � " will be m� ��������������
V 00�"�

p
, or

m� � �1=2"
���
2

p
: (47)

(As an aside, notice that had we allowed a complex scalar
field it also would yield a particle of mass �"

���
2

p
along with

a Goldstone boson.)
We can constrain �"

���
2

p
for a model of the sort that

might fit measurable variation by requiring that the sym-
metry is broken after electroweak decoupling and before
z � 3, or

300 GeV> T � "�1=4 > 10 K: (48)

Combining this with the WMAP bound on domain wall
density from (45), we find

�1=2"
���
2

p
< 5:7 � 10�9 eV: (49)

Because there is no lower bound on the wall density,
there is no direct upper bound on �. As � gets large,
constraints on "�1=4 require that " approaches zero and
the Lagrangian simply describes ��4 theory. Having fixed
� on some energy scale M, the effective �� will be [11]

���p� �
�

1 � �3�=16�2� log�p=M�
: (50)

When �3�=16�2� log�p=M� � 1, the perturbation theory
breaks down. We require that the theory be valid for p <
300 GeV, the range on which accelerator experiments may
be able to test it. If we fix � at M � 91 GeV, the energy
scale of the relevant L3 measurements discussed below,
this requires � < 41:6, and therefore

m� < 760 GeV: (51)

Because variation in � depends on the expectation value
of � rather than on the presence of the associated particle,
it is acceptable for the mass of the particle to be far above
the background temperature at the time of spontaneous
symmetry breaking. However, since in the near future there
043509
will be experimental results at energies greater than even
the largest possible m�, let us consider the case of a
particle with mass less than 91 GeV and ask whether it
would have been observed.

The QED Lagrangian includes a term

L QED � �e
����������
4��

p

	A	e; (52)

where e is the electron field. Since we have postulated a
�! �� symmetry in the Lagrangian, we can write ����
as ���2�. So, we expand � about �2 � 0 to first order in
�2 as � � �0 �

@�
@�2 �2. Since @�

@�2 �2 is small compared to

�0, we can approximate
����
�
�0

q
� 1 � 1

2�0

@�
@�2 �2. Over a

change in � of 2", � changes by ��. While we do not
know the function ����, we can estimate the resulting
bound by assuming a constant @�

@�2 between� � 0 and� �

", between which by symmetry the change in � must be
1
2 ��. Then,

@�

@�2 �
����

���2�
�

��

2"2 : (53)

So, the coupling �eA	e splits into two branches,

L QED � � � � �
������������
4��0

p
�e
�
1 �

1

2

�
��

2�0"2

�
�2

�

	A	e:

(54)

Known electron-positron decays begin with e�e� decay-
ing first to a virtual photon, and then to real products. We
have now introduced a different decay in which e�e� !

��. No � particles have been detected, so this decay
should appear to be a single-photon decay, forbidden by
conservation of momentum in the center of mass frame.
However, the coupling producing� particles is a five-point
interaction with mass dimension six, and is therefore
Planck suppressed. Therefore, even the best L3 bound
[37] of 
e�e�!
��=
other � 1:1 � 10�6 cannot be used
to constrain this theory.

It is also possible that the Z2 symmetry in the effective
Lagrangian is explicitly broken instead of spontaneously
broken, and that there is a coupling �e�A	e. This would
yield two unequal minima and the corresponding problems
discussed earlier. We can repeat the calculation above
using a coupling to a single �, but even so the mass
dimension will be five and the four-point coupling will
be Planck suppressed.

So, this model is consistent with every observational and
experimental bound aside from the many multiplet results.
As mentioned earlier, using these methods Webb et al. (1)
and Chand et al. (2) report seemingly conflicting results,
with Webb et al. reporting statistically significant variation
but Chand et al. reporting a null result. The two measure-
ments are inconsistent with one another if � is spatially
uniform, but closer examination is required if � is spatially
varying. In particular, one might examine whether the
-8



CONSTRAINTS ON FIELD THEORETICAL MODELS FOR . . . PHYSICAL REVIEW D 71, 043509 (2005)
discrepancy can be explained by the fact that the two
groups examined different regions of the sky. The Chand
et al. results are based on a sample from the southern
hemisphere only, whereas Webb et al. consider systems
in both the southern and northern hemispheres. For sim-
plicity, we divide the Webb et al. data into southern only
and northern only. (A more sophisticated study might
break the Webb et al. data set along a different boundary,
but our choice will suffice for the purposes of illustration.)
For 96 quasars in the northern sample,�

��0:2< z < 3:7� � ��z � 0�

��z � 0�

�
North

� ��0:66 � 0:12� � 10�5; (55)

while for 32 quasars in the southern sample,�
��0:2< z < 3:7� � ��z � 0�

��z � 0�

�
South

� ��0:36 � 0:19� � 10�5: (56)

Therefore, this model allows for the possibility that both
Chand et al. and Webb et al. are consistent despite initially
appearing contradictory. Additional observations by both
groups in both hemispheres would allow a determination of
whether the two sets of analysis agree on the value of �
when looking at an identical patch of sky. If so, and if both
groups agree that there is a different value in parts of the
northern and southern hemispheres, this would be strong
evidence for spatial variation. Such a test could be accom-
plished with an additional sample of approximately 50
quasars and would be capable of either ruling out or con-
firming whether such a model can explain the discrepancy.
Alternatively, this test might instead show a systematic
difference between the results of the two groups in identi-
cal patches of sky, which would suggest that the apparent
discrepancy should be resolved through a reexamination of
systematic errors rather than through a new theoretical
model.

VII. DISCUSSION

Observations from distant absorption systems suggest
that the fine structure constant may not be constant but
rather varying as a function of distance or time. While
other measurements suggest the value of � might instead
be constant, in this paper we have considered features
generic to models that predict spatial or time variation. In
particular, we have considered models in which � varies as
a function of some scalar field, since such models could be
motivated either by string theory or more recently by
cosmological attempts to solve the dark energy problem.
Scalar fields can cause any of three classes of variation of
�, considered in Sec. II.
(i) O
scillating �. If � is oscillating rapidly in the
recent past, the characteristic change in � is con-
strained by measurements of _� from atomic clocks
043509-9
today. For oscillation of amplitude A and frequency
f, this requires

A�z � 0�f < 9 � 10�15�; (57)

except at frequencies greater than 100 MHz. For
sufficiently large amplitude, it also would be a
coincidence that the value of � at Oklo is very
nearly the same as � today. This coincidence re-
quires

A�z � 0�< 1:4 � 10�7�: (58)
(ii) M
onotonic time variation of �. If � is changing
monotonically in the recent past, the strongest
bound comes from the Oklo subnuclear reactor.
For the simplest model with ���� � �0 � K�
and with constant _� than the Oklo bound

j _�j< 10�17� yr�1 (59)

is stronger than any phenomenological bounds.
Projected Eötvös-type experiments such as STEP
may improve this bound.
Eötvös bounds on higher-order couplings of � to �
do not provide useful constraints.
(iii) S
patial variation of �. If � is changing with
distance rather than with time, there are two possi-
bilities. A light, minimally coupled field could
result in a monotonic ��xi�, but it is difficult to
have a minimally coupled field that also causes a
change in the ubiquitous fine structure constant. Or,
a heavier field with a discrete symmetry can
undergo spontaneous symmetry breaking, resulting
in different values of � in different regions of
space.
We have shown that the seemingly contradictory Chand
et al. and Webb et al. results do not disagree in the southern
hemisphere, where their sampled regions overlap. Both are
consistent with no variation in � from the terrestrial value.
However, Webb et al. also include a sample from the
northern hemisphere which does show a statistically sig-
nificant deviation from the terrestrial value. If� is uniform,
then the two results are inconsistent. However, we have
found that a model in which � has different values in
different domains (with one value for the Earth and south-
ern hemisphere and another for the northern hemisphere) is
consistent with both measurements and with all other
current constraints. Alternatively, the observed difference
between southern and northern hemisphere may be due to a
systematic bias that has not yet been identified. Further
observations should clear up the situation.

Another possible explanation for spatial variation of
coupling constants is the recent ‘‘Chameleon’’ model in
which a scalar field can have a mass dependent upon the
local matter density [38]. Such a model would allow the �
field to take on one value terrestrially and another value in
gas clouds, and therefore allows variation that cannot be
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constrained by Oklo or atomic clocks. However, unlike the
spatial variation case discussed in Sec. VI, there is no
artifact such as a domain wall that would restrict such a
model. The only additional constraint that may prove
useful would be from nucleosynthesis, but there are no
restrictions on the form of ����, and therefore it should be
possible to satisfy this constraint. Similar behavior also
may be obtained without a direct coupling to the density, as
proposed by Barrow and Mota [32,39]. To first approxi-
mation, gas clouds in different regions of the sky should
have the same density, and therefore we should not observe
spatial variation of � between gas clouds in different
patches of sky. However, since the desired effect on � is
quite small, it may be that only a tiny but systematic
difference between the densities of gas clouds in one
region of sky and in another is required to produce differ-
ences in � of a few parts per million. Experiments sched-
uled for the next decade or two should be sufficiently
sensitive to test predicted variation of the gravitational
constant G according to this model [38].

Certainly if spatial variation of � were confirmed in the
near future, this would provide an immediate and strong
043509
constraint on allowable models for unified theories.
However, it should be stressed that any scalar field intro-
duced that would cause the variation of � is subject to the
bounds discussed in this paper. Therefore, improving cur-
rent constraints on the variation of the fine structure con-
stant and other coupling constants will continue to restrict
particular models for unification. As there are at present
very few measurements of observations with the potential
to restrict such theories, it is even that much more critical
to resolve the issues with the two many multiplet results
and to continue to improve these bounds.
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