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Nonlinear cosmological matter power spectrum with massive neutrinos: The halo model
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Measurements of the linear power spectrum of galaxies have placed tight constraints on neutrino
masses. We extend the framework of the halo model of cosmological nonlinear matter clustering to
include the effect of massive neutrino infall into cold dark matter (CDM) halos. The magnitude of the
effect of neutrino clustering for three degenerate mass neutrinos with m�i � 0:9 eV is of order �1%,
within the potential sensitivity of upcoming weak lensing surveys. In order to use these measurements to
further constrain—or eventually detect—neutrino masses, accurate theoretical predictions of the non-
linear power spectrum in the presence of massive neutrinos will be needed, likely only possible through
high-resolution multiple particle (neutrino, CDM and baryon) simulations.
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I. INTRODUCTION

The detection of neutrino flavor oscillation in conjunc-
tion with cosmological arguments has highly constrained
neutrino mass eigenvalues. Solar neutrinos [1,2] and at-
mospheric neutrinos [3,4] oscillate from one flavor to
another. The KamLAND reactor neutrino detector has
found evidence for neutrino oscillations consistent with
the inferred solar neutrino oscillation parameters [5]. The
K2K long-baseline experiment has found evidence for
neutrino oscillations consistent with the atmospheric re-
sults [6]. While flavor oscillation experiments constrain
only the neutrino mass differences, cosmological argu-
ments have the advantage of constraining the total mass.
The present cosmological upper limits are competitive
with terrestrial experiments and are expected to improve
substantially with time.

Massive neutrinos influence the large scale structures of
the Universe in a well-defined way [7] because they do not
cluster, thereby reducing the amount of matter that can
accrete into potential wells. The galaxy power spectrum
has been measured on large scales [8,9] leading to upper
limits on the sum of neutrino mass ranging from 0.7 to
1.8 eV [10–13] (depending on assumptions and data sets).
Combining estimates of the linear matter power spectrum
from the Lyman-� forest in the Sloan Digital Sky Survey
(SDSS) with estimates of the bias of galaxies in the SDSS
with galaxy-galaxy lensing, a tight limit of 0.42 eV is
inferred for the 95% C.L. limit on the sum of three degen-
erate mass neutrinos [14]. The approximation of a linear
spectrum that is valid for such large scale measurements is
no longer valid on smaller scales where matter is highly
clustered. Therefore, all studies (except for Ref. [13]) use
data on the largest scales.

Using small scale data in galaxy surveys requires know-
ing the nonlinear clustering and bias of galaxies relative to
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the dark matter. As we shall show, the precision of the
small scale galaxy clustering data such as that from the
SDSS is not high enough to warrant the inclusion of the
effect of neutrino clustering in dark matter halos, though
other systematic effects may be important (see Ref. [13]).
However, when large weak lensing surveys—which mea-
sure the mass distribution directly—become available, it
will be essential to make direct use of this information,
even on the smallest scales due to the expected precision of
their results [15].

The nonlinear power spectrum for the dominant cluster-
ing component, cold dark matter (CDM) itself has been
best estimated by high-resolution simulations by the Virgo
Collaboration [16], but their work quantifies the uncer-
tainty in their functional fits of the nonlinear power to
approximately 7%. The effects of early free-streaming of
neutrinos in suppressing the linear power spectrum can be
incorporated into predicting the nonlinear power spectrum
such as that from the fits of Refs. [16,17]. However, one
cannot naively expect this to characterize the full effects of
massive neutrinos in the nonlinear regime.

Vale and White [18] showed that the uncertainties in-
troduced by approximations in ray-tracing techniques and
numerical convergence of pure dark matter simulations
may be sufficiently reduced with expected computing re-
sources. Similar to the effects of neutrino infall into dark
matter halos probed here, White [19] and Zhan and Knox
[20] showed that the effects arising due to baryonic cooling
and heating in CDM halos can alter the nonlinear matter
power spectrum to significantly alter the observed weak
lensing signal. Therefore, in order to effectively use the
information gained in upcoming weak surveys, one has to
accurately determine the nonlinear matter power spectrum
for a given cosmological model, and how it is influenced by
the presence of baryons as well as massive neutrinos.
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In this paper, we first describe an analytic Boltzmann
solution of neutrino infall into CDM halos to calculate the
modification of captured neutrinos on the halos in Sec. II.
We then employ the halo model to calculate matter cluster-
ing statistics including the effects of neutrino clustering, as
well as the modification of the weak lensing power spec-
trum while including or ignoring this effect in Sec. III, and
then sum up our conclusions in Sec. IV. In a companion
paper [21], we use multiparticle numerical simulations to
quantify the effects of massive neutrino collapse into CDM
halos on the nonlinear matter power spectrum.
II. CLUSTERING OF MASSIVE NEUTRINOS IN
CDM HALOS

To begin, we solve an isolated problem: how neutrinos
cluster in the presence of a dark matter halo. As we will see
in the next section, the neutrino clustering around halos at
late times leads to changes in the nonlinear power spec-
trum. These changes are unique signatures of massive
neutrinos and may eventually be detected. A pioneering
work [22] treated the clustering of massive neutrinos
around a pointlike seed with the Boltzmann equation.
While this seed was taken to be a cosmic string, their
technique was extended to accretion of neutrinos onto a
CDM halo [23]. The density profile of a CDM halo has
been found on average to follow a universal profile over a
wide range of mass scales, which we take to be a Navarro-
Frenk-White (NFW) form [24,25]. The structure of the
inner portion of the profile is not crucial to the neutrino
clustering studied here. One assumption used in Ref. [23]
that simplifies the Boltzmann solution to this problem is
that the NFW CDM profile is not influenced by the accre-
tion of neutrinos; neutrinos do not act back on the CDM.
(Formally, the source term in the Boltzmann equation is a
pure NFW-type CDM distribution plus the neutrinos.) This
approximation is reasonable because the neutrino mass
associated with a cluster is a small fraction of the mass
in the cluster (of order 1%, see below) and more diffusely
distributed, so that changes to the CDM NFW halo are
essentially negligible.

In the notation of Ref. [22], the Boltzmann solution for
the Fourier transform of the neutrino profile in an evolving
CDM halo is

~� ��k; #i; #f� �
4Gm2

�T2
�;0�1� z�3

�ka3�#f�

Z #f

#i
d# 0a4�# 0�

� �~�CDM�k; #
0;MCDM�#

0��

� ~���k; #i; #
0��I

�k�#f � # 0�T�;0
m�

�
;

(2.1)

where a is the scale factor, but we parameterize integrals
by a look back superconformal time, d# � d�=a �
dt=a2; T�;0 is the current neutrino temperature, 1.95 K;
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CDM evolution is included in the term MCDM�#
0�; and

I��� 	
Z 1

0
dx
x sin��x�
ex � 1

: (2.2)

The lower and upper limits of the # integration set the time
when the accretion starts, #i, and when it stops, #f. The
final time is chosen to be at the redshift that the power
spectrum is needed. The initial time is chosen to be early
enough such that an extremely high fraction of the neutri-
nos have velocities that cannot be captured by CDM halos,
and deep enough to be beyond the galaxy distribution of
upcoming weak lensing surveys, at z � 5. Our results are
essentially unchanged by choosing an initial z � 3.

Before writing down the solution for the neutrino profile,
we need to add one ingredient to the earlier work [22,23].
We will be especially interested in the features of the power
spectrum and its suppression around k � 0:5h�1 Mpc,
near the transition from the one-halo to two-halo terms in
the halo model (see below). Around k � 0:5h�1 Mpc,
halos at and above 1014h�1M� dominate the power spec-
trum [26]. These massive halos have collapsed only re-
cently and were significantly growing during the accretion
evolution history of the neutrinos. To include this, we need
to insert a growth factor in the source term of the
Boltzmann equation. The merging and growth of CDM
clusters was studied extensively in Ref. [27], who found
that they evolve as

MCDM�z� � MCDM;todaye�2acz; (2.3)

where the free parameter that defines the growth (ac) is
given by the phenomenological relation M��ac� �
0:018MCDM;today [27], where M� is the characteristic non-
linear mass, defined where the fluctuation scale ��m; z� �
1 (see below). That is, ac is the scale factor at which a halo
of mass 0:018MCDM;today has collapsed. For very large k, on
the other hand, very light clusters dominate the power
spectrum and these clusters have collapsed in the distant
past, so they have changed very little during the period
from z � 1 until today, when most neutrino accretion takes
place [23]. For increasingly large scales, the evolution of
the CDM is significant: at the level of 2%, 6%, 15%, 26%
for 1012, 1013, 1014, 1015 solar mass halos, respectively.

As it stands, the equation for the neutrino density trans-
form (2.1) cannot be simply integrated because the integral
contains ~��. This term in the integral equation represents
the clustered neutrinos acting back on themselves: as more
neutrinos accrete onto a cluster, the cluster mass increases,
and with it the ability to accrete more neutrinos. Since
neutrinos make up a small fraction of the mass in a cluster,
the effect of neutrinos pulling in more neutrinos can also be
ignored as a second-order effect.

For cosmologies with more massive neutrinos that can
make up a significant part of the cluster mass, the nonlinear
effects of the neutrinos acting back on themselves and on
the NFW-type CDM cluster may become important.
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FIG. 1 (color online). A comparison of the spatial distribution
of accreted neutrinos for an NFW CDM profile for a 1014h�1M�

halo that has evolved in the fit of Ref. [27] (solid line) and with a
static profile (dashed line). The virial radius for this halo is
4.8 Mpc for an h � 0:7, �c � 0:26 cosmology.
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Ringwald and Wong [28] found that the effect of this
neutrino gravitational feedback is significant and the line-
arized Boltzmann equation approach underestimates neu-
trino infall by a small amount for less massive halos, but up
to a factor of several for �1015M� halos, which are how-
ever rare. The magnitude of the effect as estimated here is
therefore a minimum estimate of neutrino infall. The mag-
nitude of the effect of infall will be quantified in detail
beyond such one-halo approaches in the multiple particle
simulations in Ref. [21].

The inner I��� is sometimes approximated by letting the
Fermi-Dirac denominator become a Boltzmann exponen-
tial [22]; then the integral can be performed analytically.
But Ref. [23] points out that this approximation is off by
 20% for large k, so we use the full Fermi-Dirac type
distribution.

The neutrino profile around a 1014h�1M� halo is shown
in Fig. 1. We see that neutrinos do not cluster in the halos as
efficiently as cold dark matter, so the profile inwards of
100 kpc is mostly flat and saturated (recall that the dark
matter NFW profile increases as r�1 towards the center).
The CDM profile is truncated at one virial radius. The
choice to cut off the CDM at its virial radius suppresses
the resultant neutrino population around 1 Mpc from the
halo’s center.
1This ratio is usually denoted �, but we use � here to save �
for neutrinos.
III. THE HALO MODEL

Here we show how to include the effects of massive
neutrinos within the halo model of nonlinear matter clus-
tering and then estimate their magnitude. The halo model
posits that all matter exists in halos and the correlations in
the matter can be explained by considering the correlations
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of the halos and the density profile of matter within the
halos. In the context of this model, there are two places
where neutrino masses affect the total mass distribution.
First, the linear power spectrum in a model with massive
neutrinos differs from one with massless neutrinos. The
linear power spectrum determines how halos are correlated
with each other. This first effect then is felt in the power
spectrum in the so-called two-halo term, the contribution
of halo-halo correlations to the total power spectrum. This
first effect is due to the free-streaming of neutrinos on large
scales, in the linear regime. After CDM halos form at
redshift z & 5, massive neutrinos do not cluster as effi-
ciently as cold dark matter (again because of their veloc-
ities), but do fall into the potential wells of CDM halos.
This second effect alters the profile of the matter within a
given halo.

A. Overview

Let us first review the halo model [26,29,30]. (See
Ref. [31] for a recent review.) The nonlinear power spec-
trum gets contributions from one- and two-halo terms:
PNL�k� � P1h�k� � P2h�k�:; we first write them down and
then explain the functions needed to compute them:

P2h�k� � Plin�k�
�Z

d�
f���b���~��k;��

M���

�
2
; (3.1)

and

P1h�k� �
Z
d�

f���
��M���

j~��k;��j2: (3.2)

Here �� � �crit�c is the average matter density in collapsed
halos of the Universe, i.e. �c is the fraction of the critical
density that is in halos, including neutrinos that have fallen
into halos. Note this is different from the usual halo model
definition of �� as the total average mass density �crit�m,
where neutrinos are either not massive or ignored, and
�m � �CDM ��b. Instead, we use �c 	 �CDM ��b �
��halo. ��halo is calculated by integrating the mass of
neutrinos in individual halos over the halo mass function.

The halo model integrates over regions with overden-
sities parametrized by1 � 	 �2c= �M�2, with �c � 1:68
the linear overdensity at the epoch of a halo’s collapse.
Here we neglect the effects of neutrino clustering on the
definition of �c. The rms of the linear fluctuations,  �M�,
filtered on a scale which on average contains mass M is

 2�M� �
Z d3k

�2��3
Plin�k�j ~WR�k�j2; (3.3)

where ~WR�k� is the Fourier transform of a top-hat window
function of size R, the radius enclosing massM. Each mass
M then is associated with a particular value of �. Rare
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overdensities with large � (high- peaks) correspond to
large mass halos. The correspondence can be inverted to
obtain M���, needed to compute the one- and two-halo
terms in Eqs. (3.1) and (3.2).

The number density of halos with massM is determined
solely by the dimensionless ratio �, which quantifies how
rare the overdensity is; we use the Sheth-Tormen distribu-
tion [32]

dn
dM

dM �
��
M
f���d�; (3.4)

where

f��� � A
1

�
�1� �����p�

��������
��

p
exp����=2�; (3.5)

with A such that f��� integrated over all � must be equal
to 1 by mass conservation. We adopt � � 0:707 and p �
0:3. The correlation between two halos depends on their
mass. For cluster masses greater than M�� � 1� 	 M�,
halos will be much more strongly clumped than surround-
ing matter. This is the nonlinear clustering regime, whose
threshold is indirectly set by the linear power spectrum.
The halo model bias, b���, folds in this mass-dependent
correlation into the overall correlation of two halos, the
‘‘two-halo’’ term. The bias associated with the Sheth-
Thormen distribution is

b��� � 1�
�� 1

�c
�

2p
�c�1� ����p�

: (3.6)
B. Modification for neutrino clustering

The components of the halo model described above can
be readily updated if neutrinos have mass. They depend
solely on the linear power spectrum via  , and one can
easily insert the effect of massive neutrinos on the linear
power spectrum. The final ingredient of the halo model is
the mass profile around halos, represented by its Fourier
transform ~��k;�� in Eqs. (3.1) and (3.2). Usually, a natural
choice is the NFW form mentioned above,

�CDM�r;M� �
�sr

3
s

r�r� rs�2
: (3.7)

Here r is the distance from the center of the halo (the
conjugate variable to k), M is the halo mass, and the two
parameters �s and rs are functions of M and the concen-
tration c. In terms of these,

�s �
%vc3�M� ��

3�ln�1� c�M��� c�M�
1�c�M�

�
; (3.8)

r3s �
3M

4�c�M�3%v ��
; (3.9)

and %v is the virial overdensity with respect to the mean
matter density,
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%v �
18�2 � 82x� 39x2

1� x
; (3.10)

and x 	 �c�z� � 1 [33]. We allow the concentration to
vary with redshift z and halo mass [34]

c�M; z� �
9

1� z

�
M
M�

�
�0:13

; (3.11)

where M� is the cosmology-dependent characteristic non-
linear mass scale. Cluster evolution becomes nonlinear for
virial masses greater thanM�. The halo model is simplest if
we work in Fourier space, where a given spherically sym-
metric density ��r� becomes

~��k� �
Z rcutoff

0
�4�r2dr���r�

sin�kr�
kr

: (3.12)

We choose this cutoff to be at the virial radius of a given
cluster rvir 	 crs.

While the NFW profile accurately describes the matter
distribution if all matter is cold, it does not account for
infall clustering of neutrinos. Since neutrinos have nonzero
thermal velocities even at latest times, they will not strictly
follow the cold dark matter profile in the halos. To account
for this aspect of neutrino infall clustering, we need to
generalize Eqs. (3.1) and (3.2) by letting

~��k;�� ! ~�CDM�k;�� � ~���k; ��; (3.13)

M��� ! MCDM��� �M����: (3.14)

Note that, for both cold matter and for neutrinos,

Mi �
limk!0 ~�i�k�

�1� z�3
; (3.15)

the factor of 1� z entering because r in Eq. (3.12) is
comoving distance.

To include the effect of neutrino clustering, we add the
clustered neutrino mass profile ���k;�� to the halo mod-
el’s k-space density. In the spherical halo model, ���k;��
can be approximated by solutions to the Boltzmann equa-
tion for neutrinos around an NFW CDM halo of mass
M���. Figure 2 shows a comparison of the Fourier trans-
forms of the NFW CDM halo profile and Boltzmann
derived neutrino profiles. The k! 0 limit of the
Boltzmann equation (2.1) gives the total neutrino mass
accreted onto a cluster, M����, which appears in the halo
model denominators, Eqs. (3.17) and (3.18). We do not
include any potential changes of the form of the mass
function f���, since we assume the evolutions of the
CDM halos are unperturbed by the presence of massive
neutrinos.

With these modifications, the nonlinear power spectrum
becomes

PCDM��
NL �k� � PCDM��

1h �k� � PCDM��
2h �k�; (3.16)
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FIG. 3 (color online). The estimated change in the nonlinear
matter power spectrum at z � 0 calculated with the halo model,
�PNL�k� � �P�NL�k� � P0

NL�k��=P
0
NL�k� due to late time neutrino

clustering only. [Both P0
NL�k� and P�NL�k� are calculated with a

transfer function that includes the same early neutrino free-
streaming.] The lines of increasing magnitudes denote models
with three neutrinos with masses of 0.1, 0.3, 0.6, 0.9 eV, respec-
tively.

FIG. 2 (color online). A comparison of the Fourier transform
of the accreted neutrino profile into an NFW CDM halo of
1014h�1M� that has evolved with redshift (lower line) and
with a static profile (upper line). The Fourier transform for the
CDM NFW profile is shown for reference of scale.
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PCDM��
1h �k� �

Z
d�

f���
���MCDM��� �M�����

j~�CDM�k;��

� ~���k;��j
2; (3.17)

and

PCDM��
2h �k� � PCDM��

lin �k�
�Z

d�
f���b���

MCDM��� �M����

� �~�CDM�k;�� � ~���k;���
�
2
: (3.18)

We calculate the change in the nonlinear power spectrum
due to these modifications from neutrino clustering for a
*CDM universe with parameters �CDM � 0:26���,
h � 0:7, �b � 0:04, n � 1 and  8 � 0:9. Massive neu-
trino models are chosen with three degenerate mass neu-
trinos with m� � 0:1, 0.3, 0.6, 0.9 eV (i.e., sum of all
neutrino masses of 0.3, 0.9, 1.8, 2.7 eV), with �� chosen
appropriately for these masses, while  8 is fixed. The
modification �PNL�k� � �P�NL�k� � P0

NL�k��=P
0
NL�k� is

shown in Fig. 3, P0
NL excludes the effects of late neutrino

clustering and P�NL includes them. Both P�NL�k� and P0
NL�k�

include the linear effects of early neutrino free-streaming,
since we are interested in the bias imposed by ignoring the
effects of neutrino infall into CDM halos. The drop in
power at k� 0:5h Mpc�1 occurs as expected at the scale
where the most massive clusters are contributing to the
nonlinear power spectrum, and increases with increasing
neutrino mass. The reduction in power is due to the smooth
structure of the accreted neutrino halo relative to the CDM
halo.
043507
C. Weak lensing convergence power spectrum

Planned weak lensing surveys have the potential to
measure the power spectrum very accurately. Therefore,
here we calculate the deviations due to massive neutrino
clustering on a weak lensing observable, namely, the con-
vergence power spectrum, C‘. This quantity is effectively
the projected angular matter-matter power spectrum
weighted by the distribution of lensed galaxies. The signal
is estimated by [35–37]

C‘ �
9

16

�
H0

c

�
4
�2
m

Z +h

0
d+

�
g�+�
a+

�
2
P
�
‘
+
; z
�
; (3.19)

for a universe with flat geometry, where + is the comoving
radial distance, +h is the distance to the horizon, a 	
1=�1� z�, and P�k; z� is the nonlinear power spectrum at
the appropriate redshift. The weak lensing weighting func-
tion is

g�+� � +
Z 1

+
d+0n�+0�

+0 � +
+0

; (3.20)

where n�+� is the redshift distribution of the lensed gal-
axies normalized such that

R
dzn�z� � 1.

The expected error in the observed weak lensing con-
vergence power spectrum comes from two sources: sample
variance on large scales due to finite sky coverage, and on
small scales by the finite number density of galaxies on the
sky,

%C‘ �

��������������������������
2

�2‘� 1�fsky

s �
C‘ �

-2
rms

�ngal

�
; (3.21)
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FIG. 4 (color online). The weak lensing convergence power
spectrum (upper panel) for nonzero neutrino mass models of 0.1,
0.3, 0.6, and 0.9 eV, with decreasing peak convergence, respec-
tively. The power spectra are normalized at  8 � 0:9, therefore
showing a pivot at ‘� 200. The deviations including and
excluding this effect are plotted in the lower panel, with increas-
ing mass neutrinos corresponding to an increased amplitude of
the effect. Gray (cyan) boxes are expected errors for an LSST-
like survey as described in the text.
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where the fraction of sky covered fsky, intrinsic inferred
galaxy ellipticity -rms, and average number density of
galaxies �ngal are survey dependent.

As an example, we use survey parameters similar to
those possible with the Large Synoptic Survey Telescope
(LSST).2 Specifically, the galaxy redshift distribution is of
the form n�z� / z2e��z=z0�2 , with z0 � 1, average galaxy
density �ngal � 50 arcmin�2, a sky coverage of fsky � 0:5,
and -rms � 0:15. In Fig. 4 we show the effect on the weak
convergence power spectrum �C‘ � �C�‘ � C0

‘�=C
0
‘, when

we include (C�‘) and exclude (C0
‘) the effect of neutrino

clustering in CDM halos to see the dependence of the weak
lensing signal. Note that the linear effect of early neutrino
free-streaming is included in both C�‘ and C0

‘, since we are
interested in the bias imposed by ignoring the effects of
neutrino infall into CDM halos. The cosmological parame-
2http://www.lsst.org/
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ters are chosen as in Sec. III B. Here, we take the neutrino
infall effect evaluated near the peak of the weak lensing
weighting function g�+� at z � 0:4, causing a change in the
shape of the weak convergence power spectrum deviation
relative to the z � 0 nonlinear power spectrum above. The
change in the nonlinear power spectrum affects the weak
convergence power spectrum from �0:1% for three 0.1 eV
neutrinos to �1% for three 0.9 eV neutrinos.

IV. CONCLUSIONS

We have estimated the effect of massive neutrinos in a
concordance *CDM cosmology on the nonlinear power
spectrum in the halo model. The shape of the nonlinear
power spectrum is changed due to neutrino infall in CDM
halos at a level of �0:5% for three 0.1 eV neutrinos to
�3% for three 0.9 eV neutrinos, corresponding to a change
in the expected shape of the weak convergence power
spectrum at a level of �0:1% for three 0.1 eV neutrinos
to �1% for three 0.9 eV neutrinos, being reduced due to
the weight of higher redshift structures in cosmic shear
measurements.

Using the linear information from weak lensing surveys
we may be able to constrain the neutrino mass so that the
effect of neutrino clustering may be neglected [38]. Even
given the inferred current upper limits on neutrino masses
from the linear power spectrum (-m�i < 0:42 eV, 95%
C.L.) [14], the effect of neutrino clustering may be negli-
gible unless current neutrino mass upper limits from the
linear power spectrum are too stringent, or new degener-
acies may emerge among features in the primordial power
spectrum (e.g., running of the primordial spectral index
[39] or a break in the spectrum [40]) which allow for larger
neutrino masses.

For more general cases where massive neutrinos are
present in fits to observed weak lensing convergence power
spectra, massive neutrinos will need to be included in
numerical simulation predictions of the weak lensing sig-
nal in addition to phenomena arising from baryonic con-
densation and heating [19,20], leading to the potential
necessity of high-resolution multiparticle (neutrino, CDM
and baryon) hydrodynamic numerical simulations.
Coupled with upcoming weak lensing surveys, these pre-
dictions will be power probes of the contents of the cos-
mological soup as well as the process of cosmological
structure formation.
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