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Reconciling dark energy models with f�R� theories
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Higher-order theories of gravity have recently attracted a lot of interest as alternative candidates to
explain the observed cosmic acceleration without the need of introducing any scalar field. A critical
ingredient is the choice of the function f�R� of the Ricci scalar curvature entering the gravity Lagrangian
and determining the dynamics of the Universe. We describe an efficient procedure to reconstruct f�R�
from the Hubble parameter H depending on the redshift z. Using the metric formulation of f�R� theories,
we derive a third order linear differential equation for f�R�z�� which can be numerically solved after
setting the boundary conditions on the basis of physical considerations. Since H�z� can be reconstructed
from the astrophysical data, the method we present makes it possible to determine, in principle, what is the
f�R� theory which best reproduces the observed cosmological dynamics. Moreover, the method allows to
reconcile dark energy models with f�R� theories finding out what is the expression of f�R� which leads to
the same H�z� of the given quintessence model. As interesting examples, we consider ‘‘quiessence’’ (dark
energy with constant equation of state) and the Chaplygin gas.
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I. INTRODUCTION

The impressive amount of astrophysical data which have
been accumulated in recent years has depicted a new
standard cosmological model according to which the
Universe is spatially flat and undergoing a phase of accel-
erated expansion. Strong evidences in favor of this scenario
are the Hubble diagram of Type Ia Supernovae (hereafter
SNeIa) [1], the anisotropy spectrum of the cosmic micro-
wave background radiation (hereafter CMBR) [2], and the
matter power spectrum as measured by the clustering
properties of the large-scale distribution of galaxies [3]
and the data coming from the Ly� clouds [4]. Moreover,
the abundance of clusters of galaxies and the gas mass
fraction in clusters [5] constrain the matter density parame-
ter �M � 0:3 thus giving rise to the need for a new com-
ponent with negative pressure to both close the Universe
��tot ’ 1� and drive its accelerated expansion. This is what
is usually referred to as dark energy whose subtle and
elusive nature has opened the doors to an overwhelming
flood of papers presenting a great variety of models which
try to explain this phenomenon.

The simplest explanation claims for the cosmological
constant 	 thus leading to the so-called 	CDM model [6].
Although being the best fit to most of the available astro-
physical data [7], the 	CDM model is also plagued by
many problems on different scales. If interpreted as vac-
uum energy, 	 is up to 120 orders of magnitudes smaller
than the predicted value. Furthermore, one should also
solve the coincidence problem, i.e., the nearly equivalence
ding author.
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of the matter and 	 contribution to the total energy density.
As a response to these problems, much interest has been
devoted to models with dynamical vacuum energy, dubbed
quintessence [8,9]. These models typically involve scalar
fields with a particular class of potentials, allowing the
vacuum energy to become dominant only recently (see
[10] for comprehensive reviews). Although quintessence
by a scalar field is the most studied candidate for dark
energy, it generally does not avoid ad hoc fine tuning to
solve the coincidence problem.

On the other hand, it is worth noting that, despite the
broad interest in dark matter and dark energy, their physi-
cal properties are still poorly understood at a fundamental
level and, indeed, it has never been shown that they are
actually two different ingredients apart the observational
fact that dark matter furnishes evidences of its existence in
clustered structures (as galaxies, clusters of galaxies, etc.)
and dark energy is an unclustered component which acts to
accelerate the cosmic Hubble flow [11,12]. These consid-
erations motivated the great interest recently devoted to
completely different approaches to the quintessence prob-
lem. Rather than fine tuning a scalar field potential (which,
in several cases, is nothing else but a phenomenological
ingredient not motivated by fundamental theories), it is
also possible to explain the acceleration of the Universe
by introducing a cosmic fluid with an equation of state
causing it to act like dark matter at high densities and dark
energy at low densities. Also this approach is, in some
sense, phenomenological but it shows the attractive feature
that these models can explain both dark energy and dark
matter by a single mechanism (thus automatically solving
the coincidence problem) and have therefore been referred
to as unified dark energy (UDE) or unified dark matter
(UDM). Some interesting examples are the generalized
Chaplygin gas [13], the tachyonic field [14], the conden-
-1  2005 The American Physical Society
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sate cosmology [15], the Hobbit model [16], and the scal-
ing dark energy [17]. It is worth noting, however, that such
models seems to be seriously affected by problems with
structure formation [18] so that some work is still needed
before they can be considered as reliable alternatives to
dark energy and dark matter.

Actually, there is still a different way to face the problem
of cosmic acceleration. As stressed by Lue et al. [19], it is
possible that the observed acceleration is not the manifes-
tation of another ingredient in the cosmic pie, but rather the
first signal of a breakdown of our understanding of the laws
of gravitation. From this point of view, it is thus tempting to
modify the Friedmann equations to see whether it is pos-
sible to fit the astrophysical data with a model comprising
only the standard matter. Interesting examples of this kind
are the Cardassian expansion [20] and the DGP gravity
[21].

In this same framework, there is also the attractive
possibility to consider the Einstein General Relativity as
a particular case of a more fundamental theory. This is the
underlying philosophy of what are referred to as f�R�
theories of gravity [22–26]. Such theories are a class of
the so-called Extended Theories of Gravity which have
become a sort of paradigm in the study of the gravitational
interaction based on corrections and enlargements of the
traditional Einstein-Hilbert scheme. In fact, in the last 30
years, several shortcomings came out in the Einstein
scheme and people began to investigate whether General
Relativity is the only fundamental theory capable of ex-
plaining the gravitational interaction. Such issues come
from cosmology and quantum field theory and essentially
are due to the lack of a definitive quantum gravity theory.
Alternative theories of gravity have been pursued in order
to attempt, at least, a semiclassical scheme where General
Relativity and its positive results could be recovered. The
paradigm consists in adding higher-order curvature invar-
iants and minimally or nonminimally coupled scalar fields
into dynamics which come out from the effective action of
quantum gravity [27]. Other motivations to modify
General Relativity come from the issue of a whole recov-
ering of Mach principle [28] which leads to assume a
varying gravitational coupling. All these approaches are
not the ‘‘full quantum gravity’’ but are needed as working
schemes toward it. In any case, they are going to furnish
consistent and physically reliable results. Furthermore,
every unification scheme as Superstrings, Supergravity,
or Grand Unified Theories, takes into account effective
actions where nonminimal couplings or higher-order terms
in the curvature invariants come out. Such contributions
are due to one-loop or higher-loop corrections in the high-
curvature regimes near the full (not yet available) quantum
gravity regime [27]. Specifically, this scheme is adopted in
order to deal with the quantization on curved spacetimes
and the result is that the interactions among quantum scalar
fields and background geometry or the gravitational self-
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interactions yield corrective terms in the Einstein-Hilbert
Lagrangian [29]. Moreover, it has been realized that such
corrective terms are inescapable if we want to obtain the
effective action of quantum gravity on scales closed to the
Planck length [30]. Higher-order terms in curvature invar-
iants (such as R2, R	
R	
, R	
��R	
��, R�R, or R�kR)
or nonminimally coupled terms between scalar fields and
geometry (such as 2R) have to be added to the effective
Lagrangian of gravitational field when quantum correc-
tions are considered. Furthermore, from a conceptual point
of view, there would be no a priori reason to restrict the
gravitational Lagrangian to a linear function of the Ricci
scalar R, minimally coupled with matter [31]. Finally, the
idea that there are no exact laws of physics but that the
Lagrangians of physical interactions are stochastic func-
tions—with the property that local gauge invariances (i.e.,
conservation laws) are well approximated in the low en-
ergy limit and that physical constants can vary—has been
taken into serious consideration [32].

Besides fundamental physics motivations, all these theo-
ries have acquired a huge interest in cosmology due to the
fact that they naturally exhibit inflationary behaviors able
to overcome the shortcomings of Standard Cosmological
Model (based on General Relativity). The related cosmo-
logical models seem very realistic and, several times,
capable of matching with the observations [33,34].
Furthermore, it is possible to show that, via conformal
transformations, the higher-order and nonminimally
coupled terms always correspond to Einstein gravity plus
one or more than one minimally coupled scalar fields [35–
38]. More precisely, every higher-order term always ap-
pears as a contribution of order two in the equations of
motion. For example, a term like R2 gives fourth-order
equations [39], R�R gives sixth-order equations [38,40],
R�2R gives eighth-order equations , and so on. By a
conformal transformation, any second order of derivation
corresponds to a scalar field; for example, fourth-order
gravity gives Einstein plus one scalar field, sixth-order
gravity gives Einstein plus two scalar fields, and so on
[38,42]. This feature results very interesting if we want to
obtain multiple inflationary events since an early stage
could select ‘‘very’’ large-scale structures (clusters of gal-
axies today), while a late stage could select ‘‘small’’ large-
scale structures (galaxies today) [40]. The philosophy is
that each inflationary era is connected with the dynamics of
a scalar field. Furthermore, these extended schemes natu-
rally could solve the problem of ‘‘graceful exit’’ bypassing
the shortcomings of former inflationary models [34,43].

However, in the weak-field limit approximation, these
theories are expected to reproduce General Relativity
which, in any case, is experimentally tested only in this
limit [44]. This fact is matter of debate since several
relativistic theories do not reproduce exactly Einstein re-
sults in the Newtonian approximation but, in some sense,
generalize them. As it was first noticed by Stelle [45], a R2
-2
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theory gives rise to Yukawa-like corrections to the
Newtonian potential which could have interesting physical
consequences. For instance, some authors claim to explain
the flat rotation curves of galaxies by using such terms
[46]. Others [47] have shown that a conformal theory of
gravity is nothing else but a fourth-order theory containing
such terms in the Newtonian limit. Besides, indications of
an apparent, anomalous, long range acceleration revealed
from the data analysis of Pioneer 10/11, Galileo, and
Ulysses spacecrafts could be framed in a general theoreti-
cal scheme by taking corrections to the Newtonian poten-
tial into account [48]. In general, any relativistic theory of
gravitation can yield corrections to the Newton potential
(see for example [49]) which, in the post-Newtonian (PPN)
formalism, could furnish tests for the same theory [44].
Furthermore the newborn gravitational lensing astronomy
[50] is giving rise to additional tests of gravity over small,
large, and very large scales which very soon will provide
direct measurements for the variation of Newton coupling
GN [51], the potential of galaxies, clusters of galaxies , and
several other features of gravitating systems. Such data will
be, very likely, capable of confirming or ruling out the
physical consistency of General Relativity or of any
Extended Theory.

In this paper, we will restrict to f�R� theories and we will
face the problem to find the cosmological models (derived
from a generic f�R�) consistent with data. In this case, the
Friedmann equations have to be given away in favor of a
modified set of cosmological equations which are obtained
by varying a generalized gravity Lagrangian where the
scalar curvature R has been replaced by a generic function
f�R�. The usual General Relativity is recovered in the limit
f�R� � R, while completely different results may be ob-
tained for other choices of f�R�. While in the weak field
limit, in particular, at Solar System scales, the theory
should give the usual Newtonian gravity, at cosmological
scales there is an almost complete freedom in the choice of
f�R� thus leaving open the way to a wide range of models.1

The key point of f�R� cosmological models is the presence
of modified Friedmann equations obtained by varying the
generalized Lagrangian. However, the main problem of
this approach lies here since it is not clear how the variation
has to be performed. Actually, once the Robertson-Walker
metric has been assumed, the equations governing the
dynamics of the Universe are different depending on
whether one varies with respect to the metric only or
with respect to the metric components and the connections.
It is usual to refer to these two possibilities as the metric
and the Palatini approach, respectively. The two methods
give the same result only in the case f�R� � R, while lead,
in general, to significantly different field equations for
1Since, in this class of models, higher-order geometrical terms
give rise to a quintessential behavior, it is customary to refer to
this scenario also as curvature quintessence [23].
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other choices of the gravity Lagrangian (see [31,53–55]
and references therein).

Although much interest has been recently devoted to the
Palatini approach [56], it is worth noting that f�R� theories
were initially investigated in their metric formulation. In
particular, in Ref. [57], a toy model with f�R� � f0R

n and
no matter term was discussed in detail and confronted with
the SNeIa Hubble diagram and the age of the Universe.
Choosing between the Palatini and the metric approach for
the f�R� theories is an open problem and a definitive
answer is likely far to come. Actually, a significative
advantage of the Palatini formulation with respect to the
metric approach to f�R� theories is related to the mathe-
matical simplicity of the dynamical equations that turns out
to be of second order. On the other hand, the metric
approach leads to a fourth-order nonlinear differential
equation for the scale factor a�t� that, in general, cannot
be solved analytically even for the simplest expressions of
f�R�. Looking for numerical solutions is a difficult task
because of the large uncertainties on the parameters deter-
mining the boundary conditions.

It is interesting to wonder whether it is possible to
overcome these difficulties with a radically different ap-
proach to f�R� theories in the metric formulation. As we
will show, the equation governing the dynamic of the
Universe in higher-order theories of gravity may be con-
sidered as a linear third-order differential equation for
f�R�z�� as function of the redshift z. Moreover, the bound-
ary conditions for f�R�z�� are easily set on the basis of
physical considerations only and are thus not affected by
measurement errors. Since the Ricci curvature scalar R
may be also expressed as a function of z, it is then imme-
diate to get f�R� and thus determine the gravity
Lagrangian. The price to pay is to choose an ansatz for
H�z�, with H � _a=a the expansion rate. Such an approach
makes it possible to directly reconstruct f�R� from the data
since H�z� may be determined, for instance, from the
SNeIa Hubble diagram and/or the gas mass fraction in
galaxy clusters in a model-independent way. Rather than
proposing a theory and testing it against the data, we follow
here the opposite way around: we start from the data and
determine which is the f�R� theory that reproduces those
data. In this sense, we are facing an inverse problem.

Although it can be conceived as an observationally-
based method, our approach allows to tell something
more. As we will see, what is needed to reconstruct f�R�
is an expression for H�z�, whatever is its underlying mo-
tivation. As a consequence, one could adopt for H�z� what
is predicted by a given dark energy model (whatever it is)
and determine what is the f�R� theory which gives rise to
the same dynamics (i.e., the same expansion rate and scale
factor). As a consequence, we will show that there is an
intrinsic degeneracy among f�R� theories and dark energy
models so that these two apparently radically different
-3
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explanations of cosmic acceleration are reconciled as two
different aspects of the same underlying physics.

The outline of the paper is as follows. In Sect. II we
derive the cosmological equations from a generic f�R�
theory. Section III is devoted to a detailed explanation of
the method to determine f�R� from a given expression for
the expansion rate H as function of the redshift z. An
ansatz for H�z� is suggested starting from astrophysical
data or from theoretical motivations. The former case is
discussed in Sect. IV and makes it possible to reconstruct
f�R� directly from the data. The latter possibility instead
allows to reconcile f�R� theories with popular dark energy
models and is discussed in Sect. V. A summary of the
results and the conclusions are presented in Sect. VI. In
the Appendix, we comment on the stability of f�R� theories
in the metric formulation.

II. CURVATURE QUINTESSENCE

Although being a cornerstone of modern physics,
Einstein General Relativity has been definitely experimen-
tally tested only up to the Solar System scales. As such, it
should not come as a surprise if some modifications could
be needed on the larger cosmological scales. Furthermore,
any attempt of formulating a quantum theory of gravitation
claims for a revision of the Einstein theory which could
only be attained by generalizing the gravity Lagrangian.
Motivated by these considerations, it is worth considering a
generic fourth-order theory of gravity given by the action:

A �
Z

d4x
�������
�g

p
�f�R� 
Lm� (1)

with g the trace of the metric, f�R� a generic function of the
Ricci scalar curvature R, and Lm the standard matter
Lagrangian. Hereafter, we adopt units such that 8�G �
c � 1. The field equations may be obtained by varying
with respect to the metric components and can be recast in
the expressive form [23,25]:

G�� � R�� �
1

2
Rg�� � T�curv�

�� 
 T�m�
�� (2)

where we have defined a stress-energy tensor for the ef-
fective curvature fluid:

T�curv�
�� �

1

f0�R�
fg���f�R� � Rf0�R��=2
 f0�R�;	


�g�	g�
 � g��g	
�g (3)

and the matter term enters Eq. (2) through the modified
stress-energy tensor:

T�m�
�� � ~T�m�

��=f
0�R� (4)

with ~T�m�
�� the standard minimally coupled matter stress-

energy tensor. Here and in the following, we denote with a
prime the derivative with respect to R and with a dot that
with respect to cosmic time t. Equations (2)–(4) show that
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the effect of geometrical terms may be taken into account
by introducing an effective fluid and a coupling of the
matter term to the geometry through the function f0�R�.
Note that the ansatz f�R� � R
 2	 reproduces the stan-
dard General Relativity with a cosmological constant term.

To get the equations governing the dynamics of the
Universe, we have to choose a metric. The assumed homo-
geneity and isotropy of the Universe motivate the choice of
the Robertson-Walker metric. The modified Friedmann
equations are [23,25]:

H2 

k

a2 �
1

3

�
�curv 


�m

f0�R�

�
; (5)

2
�a
a

H2 


k

a2 � ��pcurv 
 pm�; (6)

where a�t� is the scale factor, H � _a=a is the Hubble
parameter, ��m; pm� are the matter-energy density and
pressure, and we have defined the same quantities for the
effective curvature fluid as:

�curv �
1

f0�R�

�
1

2
�f�R� � Rf0�R�� � 3H _Rf00�R�

�
; (7)

pcurv � wcurv�curv (8)

with the effective barotropic factor given by:

wcurv � �1

�Rf00�R� 
 _R� _Rf000�R� �Hf00�R��

�f�R� � Rf0�R��=2� 3H _Rf00�R�
: (9)

Note that the coupling with geometry makes the
Friedmann equations nonlinear in the scale factor a�t�
since this quantity enters the definition of the energy
density and the pressure of the curvature fluid. Moreover,
the Hubble parameter H (and thus the scale factor) deter-
mines how the Ricci scalar evolves with time through the
following constraint equation:

f00�R�
�
R
 6

�
�a
a

H2 


k

a2

��
� 0 ! R

� �6
�
_H 
 2H2 


k

a2

�
(10)

where we have used the definition of H and assumed
f00�R� � 0. Note that this latter assumption means that
we are indeed considering a generalization of Einstein
theory since f00�R� � 0 implies f�R� / R that is indeed
the standard General Relativity.

There is still another equation that has to be considered.
Applying the Bianchi identity to Eq. (2), we get a conser-
vation equation for the total energy density:

_� tot 
 3H��tot 
 ptot� � 0:

Starting from this general scheme, we want to reconstruct
the form of f�R� from the Hubble parameter as a function
-4
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of the redshift z. According to the present day observations
[2,3,5], we can assume a spatially flat universe (k � 0)
filled with dust matter.

Inserting �tot � �curv 
 �m=f0�R� and modelling the
matter as dust (i.e., pm � 0), we get:

_�curv 
 3H�1
 wcurv��curv � �
1

f0�R�
� _�m 
 3H�m�

� �m
df0�R�

dt
: (11)

Since there is no interaction between the matter and cur-
vature fluid, we may assume that the matter energy density
is conserved so that:

�m � �M�crita�3 � 3H2
0�M�1
 z�3 (12)

with z � 1=a� 1 the redshift (having set a�t0� � 1), �M
the matter density parameter2 and hereon quantities labeled
with the subscript 0 refers to present day (z � 0) values.
Inserting Eq. (12) into Eq. (11), we get the following
conservation equation for the effective curvature fluid:

_� curv 
 3H�1
 wcurv��curv � 3H2
0�M�1
 z�3


_Rf00�R�

�f0�R��2
: (13)

Actually, the continuity equation and the two Friedmann
equations are not independent since it is possible to show
that the dynamics of the Universe is completely determined
by the two cosmological equations [58]. Let us then con-
sider only Eqs. (5) and (6). Using the definition of H, we
may conveniently reduce the system formed by these
equations to the following single equation:

_H 

1

2

�
�m

f0�R�

 �1
 wcurv��curv

�
� 0:

Using Eq. (9) for wcurv and Eq. (12) for �m, we get:

_H � �
1

2f0�R�
f3H2

0�M�1
 z�3 
 �Rf00�R�


 _R� _Rf000�R� �Hf00�R��g: (14)

It is convenient to change variable from cosmic time t to
redshift z. To this end, one has simply to use:

d
dt

� ��1
 z�H
d
dz

:

With this rule, Eq. (10) can be written, for k � 0, as:

R � �6
�
2H2 � �1
 z�H

dH
dz

�
: (15)
2Note that �M is defined in terms of the usual critical energy
density, but it is not forced to be unity in a spatially flat universe
since the role of �	 is now played by �curv which can be
formally derived starting from the curvature quantities.
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Although straightforward to derive, we find useful to report
the explicit expression of the derivatives of f�R� with
respect to R as function of the same derivatives with
respect to z. It is:

f0�R� �
�
dR
dz

�
�1 df

dz
; (16)

f00�R� �
�
dR
dz

�
�2 d2f

dz2
�

�
dR
dz

�
�3 d2R

dz2
df
dz

; (17)

f000�R� �
�
dR
dz

�
�3 d3f

dz3

 3

�
dR
dz

�
�5
�
d2R

dz2

�
2 df
dz


�

�
dR
dz

�
�4
�
3
d2R

dz2
d2f

dz2



d3R

dz3
df
dz

�
: (18)

Using Eqs. (15)–(18), it is possible to rewrite Eq. (14) as a
differential equation containing only the unknown func-
tions H�z� and f�z� and their derivatives with respect to z.
Note that we are using the abuse of notation f�R�z�� �
f�z�. Some simple but lengthy algebra allows to rewrite
Eq. (14) as:

H 3�z�
d3f

dz3

H 2�z�

d2f

dz2

H 1�z�

df
dz

� �3H2
0�M�1
 z�3 (19)

with:

H 1 � _R2

�
dR
dz

�
�4
�
3
�
dR
dz

�
�1
�
d2R

dz2

�
2
�

d3R

dz3

�


�� �R� _RH�

�
dR
dz

�
�3 d2R

dz2


�2�1
 z�H
dH
dz

�
dR
dz

�
�1

; (20)

H 2 � � �R� _RH�

�
dR
dz

�
�2

� 3 _R2

�
dR
dz

�
�4 d2R

dz2
; (21)

H 3 � _R2

�
dR
dz

�
�3

: (22)

The derivatives of R may be evaluated from Eq. (15). For
instance, differentiating with respect to z, we get:

dR
dz

� �6
�
��1
 z�

�
dH
dz

�
2

H

�
3
dH
dz

� �1
 z�
d2H

dz2

��
(23)

and so on for higher-order derivatives. For completeness,
we also report the following useful relations:
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_R � ��1
 z�H
dR
dz

; (24)

�R� _RH � 6�1
 z�H2

�
3�1
 z�2

dH
dz

d2H

dz2


H
�
�1
 z�2

d3H

dz3
� 6

dH
dz

��
: (25)

Inserting Eqs. (23)–(25) into Eq. (19), we get a cumber-
some differential equation which we do not report here for
sake of shortness. Our task is now to solve this equation in
order to obtain a form of f�R�z�� from the Hubble parame-
ter H�z�.

III. SOLVING WITH RESPECT TO f�z�

In the usual metric approach to f�R� theories in cosmol-
ogy, one chooses an expression for f�R�, uses Eq. (15) to
replace R with H and finally get Eq. (14) as a differential
equation for the scale factor. Unfortunately, here the game
is over. Indeed, Eq. (19) is a fourth-order nonlinear differ-
ential equation for a�t� which is difficult to solve analyti-
cally also for the simplest models of f�R� such as power
law or logarithmic. To overcome this problem, one could
impose an analytical ansatz for a�t� and look whether and
under which conditions the chosen expression solves
Eq. (14). Actually, this approach is quite unsatisfactory
since there are no hints which may suggest a possible
expression for a�t� so that one has to perform a blind search
with the risk of wasting time without ending with any
successful result. Moreover, even if such a solution were
found, it should be of limited applicability so that drawing
any conclusion on the viability of a given f�R� theory on
the basis of this particular solution is dangerous. A possible
way to overcome this problem is to resort to numerical
solutions. However, also this approach is plagued by its
own problems. Actually, numerically solving Eq. (14) de-
mands for the knowledge of boundary conditions. Since the
equation is of fourth order, one should give the present day
values of the scale factor and its derivatives up to the third
order. From an observational point of view, this means that
one should set the values of a0, the Hubble constant H0, the
deceleration parameter q0, and the jerk parameter j0 [59]
or one should take into account another set of parameters
(see, e.g., [60] for a discussion). While in a flat universe we
may set a0 � 1 and H0 is reasonably well constrained,
setting q0 and j0 is quite complicated.3 It is worth stressing
that q0 and j0 should be estimated in a model-independent
way. To this end, one may Taylor expand the scale factor up
to the fourth order (or to higher orders) and fit the corre-
sponding luminosity distance to the SNeIa Hubble diagram
3Note that the boundary conditions may also be set using the
statefinder parameter r0 [61] instead of the jerk j0.
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[62]. While this is technically possible, the results are
affected by quite large errors (especially for j0) and, more-
over, are somewhat dependent on the order to which the
series is truncated.4 As a consequence, one should numeri-
cally solve Eq. (14) for a quite large set of boundary
conditions thus leading to a so great uncertainty on the
reconstructed a�t� that it remains practically undetermined.

Given this situation, it is worth asking whether a radi-
cally different approach is possible. To this end, let us first
observe that which is indeed determined from the data is
the Hubble parameter H�z� since this is the quantity enter-
ing the definition of both the luminosity and angular di-
ameter distances which are tested by the SNeIa Hubble
diagram and the data on the gas mass fraction in galaxy
clusters, respectively. Actually, this is what is usually done
when matching any dark energy model to this kind of
astrophysical data. Given a background cosmological
model, one first computes the corresponding H�z;p� and
then constrains the model parameters p by comparing with
the data. Moreover, H�z� could also be directly recovered
from the luminosity distance in a model-independent way
[63,64] although this procedure is still affected by large
errors. Motivated by these considerations, we try to go
backward from the data to f�R� by assuming an ansatz
for the Hubble parameter H�z� rather than for f�R� itself.
Inserting an ansatz for H�z� into Eqs. (20)–(25), Eq. (19)
can be seen as a third-order differential equation for the
function f�z�. Since R�z� may be straightforwardly eval-
uated from Eq. (15) for a given H�z�, we may then obtain
f�R� by eliminating (numerically) the redshift z from the
solution f�z� of Eq. (19). Note that considering f�z� as
unknown has two immediate advantages. First, the equa-
tion is of third rather than fourth order so that the numerical
solution is easier to find. Second, the equation is linear in
f�z� and its derivatives so that, for given boundary con-
ditions, the solution exists and is unique.

To numerically solve the differential equation for f�z�,
one has to set the boundary conditions, i.e., the values of f
and its first and second derivatives with respect to z eval-
uated at z � 0. Here lies another advantage of this ap-
proach: the boundary conditions may be chosen on the
basis of physical considerations only. To this end, let us
first remind that it has been shown that, in order to not
contradict Solar System tests of gravity, a whatever f�R�
theory must fulfill the condition f00�R0� � 0 [65]. Using
Eq. (17), we thus get the constraint:

f00�R0� �

��
dR
dz

�
�2 d2f

dz2
�

�
dR
dz

�
�3 d2R

dz2
df
dz

�
z�0

:

A second condition may be obtained considering Eq. (5).
Let us rewrite it introducing back the coupling factor 8�G
4To be more precise, the best fit values of q0 and j0 are almost
unaltered, but the uncertainties get larger as the order of the
series expansion increases.
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and k � 0. It is:

H2 �
8�G
3

�
�curv 


�m

f0�R�

�
:

This equation shows that the coupling of the matter with
geometry through the function f0�R� is equivalent to re-
define the Newton gravitational constant G as G=f0�R� so
that we get the well-known result that in f�R� theories G is
redshift (and hence time) dependent. Indeed, at z � 0, the
effective gravitational constant G=f0�R0� must be equal to
G so that we get:

f0�R0� � 1 !

��
dR
dz

�
�1 df

dz

�
z�0

� 1:

Combining the constraints on f0�R0� and f00�R0�, we get the
following boundary conditions:�

df
dz

�
z�0

�

�
dR
dz

�
z�0

; (26)

�
d2f

dz2

�
z�0

�

�
d2R

dz2

�
z�0

: (27)

A comment is in order here. We have derived the present
day values of df=dz and d2f=dz2 by imposing the consis-
tency of the reconstructed f�R� theory with local Solar
System test. One could wonder whether tests on local
scales could be used to set the boundary conditions for a
cosmological problem. It is easy to see that this is indeed
meaningful. Actually, the isotropy and homogeneity of the
Universe ensure that the present day value of a whatever
cosmological quantity does not depend on where the ob-
server is. As a consequence, a hypothetical observer living
in the Andromeda galaxy and testing gravity in his plane-
tary system should get the same results. As such, the
present day values of df=dz and d2f=dz2 adopted by this
hypothetical observer are the same as those we have used
based on our Solar System experiments. Therefore, there is
no systematic error induced by our method of setting the
boundary conditions.

Finally, to set f�z � 0�, let us evaluate the present day
value of �curv using the definition (7) and Eqs. (26) and
(27). We get:

�curv�z � 0� �
f�R0� � R0

2
:

Evaluating Eq. (5) at z � 0 and solving with respect to
f�R0�, we finally get:

f�z � 0� � f�R0� � 6H2
0�1��M� 
 R0: (28)

Summarizing, to reconstruct f�R� from the data, we adopt
the procedure schematically sketched below.
(1) A

5A fast and efficient code implementing this procedure, writ-
ssume an expression for H�z� and determine the
model parameters from fitting to the data.
ten for the Mathematica 4.1 software, is available on request.
(2) C
ompute R�z� from Eq. (15).

6Remember that we are using units such that c � 1.
(3) U
se Eqs. (20)–(25) to write Eq. (19) for f�z�.
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(4) S
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olve numerically the above equation with the
boundary conditions given by Eqs. (26)–(28).
(5) W
ith the aid of the derived expressions for R�z� and
f�z�, eliminate z from f�z� and finally get f�R�.
This quick pipeline5 makes it possible to obtain an expres-
sion for f�R� that is observationally well founded since the
f�R� theory thus reconstructed fits the same dataset used to
determine the parameters entering H�z�. It is worth stress-
ing that such a result has been obtained without the need to
solve Eq. (14) with respect to the scale factor a�t�.
Moreover, any arbitrariness in the choice of an expression
for f�R� has been removed.
IV. DETERMINING f�R� FROM THE DATA

A key ingredient in the procedure outlined above is the
choice of an analytical expression for the dependence of
the Hubble parameter on the redshift. Rather than choosing
a somewhat motivated ansatz, one should resort to an
empirical determination of H�z� from the data. When
used as input for our pipeline, this function makes it
possible to reconstruct f�R� directly from the data thus
avoiding any systematic bias or theoretical prejudice. We
will consider here two different approaches to implement
an observations-based determination of f�R�.

A. f�R� from DL�z�

Fitting to the SNeIa Hubble diagram is nowadays a
standard tool to investigate the viability of a given cosmo-
logical model. The essence of the method relies on the
well-known relation:

	�z� � 5 logDL�z� 
 25 (29)

being 	 the distance modulus of an object at redshift z and
DL its luminosity distance (in Mpc) which is determined
by the Hubble parameter as follows6:

DL�z� � �1
 z�
Z z

0

d#
H�#�

: (30)

This equation may be inverted to give [63]:

H�z� �
�
d
dz

�
DL�z�
1
 z

��
�1

(31)

so that H�z� may be determined from DL�z�. Because of
Eq. (29), the luminosity distance may be empirically de-
termined by measuring the distance modulus for a class of
standard candles thus allowing a direct reconstruction of
H�z� from the data in a model-independent way.

It is worth wondering how accurate the determination of
	�z� must be in order to efficiently recover H�z� and thus
f�R�. A quantitative answer requires detailed simulations
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and it is outside the scope of the present paper. Actually, we
may get a qualitative understanding of the problem by
considering the error on R�z� due to the measurement
uncertainties on 	�z�. To this end, let us first insert
Eq. (31) into Eq. (15) to get:

R�z� �
6�1
 z�6D00

L�z�

�DL�z� � �1
 z�D0
L�z��

3 (32)

where, only in this section, the prime denotes the derivative
with respect to z. If the errors on DL, D0

L, and D00
L are

Gaussian distributed, we can determine the uncertainty $R
on R by the usual rules. This is likely to not be the case.
Nonetheless, propagating the errors on DL, D0

L, and D00
L

should give us an order of magnitude to estimate $R that is
enough for our aims. To this end, let us denote with
�%0; %1; %2� the quantities �DL;D0

L;D
00
L�, respectively, and

let �$0; $1; $2� the corresponding uncertainties. A naive
estimate of $R may be obtained as:

$R �

�������������������������������������������������������������������������������������								 @R
@%0

								2
$2

0 


								 @R
@%1

								2
$2

1 


								 @R
@%2

								2
$2

2

s
:

Inserting Eq. (32) into the above relation, we get:

$R �

								 6�1
 z�6

�%0 � �1
 z�%1�
3

								�R (33)

with:

�R �

��������������������������������������������������������������������������������������������������								 3%2$0

�1
 z�%1 � %0

								2



								 3�1
 z�%2$1

%0 � �1
 z�%1

								2

$2

2

s
:

(34)

Inverting Eq. (29), we may express �%0; %1; %2� as functions
of the distance modulus 	�z� and its derivatives up to the
second order. Following the same procedure for propagat-
ing the errors, we get:

$0 � k%0$	; (35)

$1 � k
��������������������������������
	2

1$
2
0 
 %2

0$
2
	1

q
; (36)

$2 � k
�����������������������������������������������������������������������������
�k	2

1 
	2�
2$2

0 
 k�k$2
	1


 $2
	2
�2%2

0

q
; (37)

having set k � ln�10�=5, 	1 � d	=dz, 	2 � d2	=dz2

and denoted with �$	;$	1
; $	2

� the measurement uncer-
tainties on �	;	1; 	2�, respectively. Note that Eqs. (35)–
(37) clearly show that the errors on the luminosity distance
and its derivatives are correlated, while Eq. (33) has been
obtained considering the errors as uncorrelated. As a con-
sequence, Eq. (33) underestimates $R. Nonetheless, some
interesting conclusions on $R may be drawn. First, we note
that $R / �1
 z�6 so that the error on the reconstructed
Ricci scalar quickly increases with the redshift. This con-
clusion is further strengthened considering that �%0; %1; %2�
become larger and larger with DL. Although a detailed
043503
investigation (with the aid of simulations) is needed, one
should argue that the distance modulus must be measured
with a tiny uncertainty in order to reduce as much as
possible $R. Moreover, Eqs. (32) and (33) show that both
R and $R depend on the derivatives up to the second order
of the distance modulus with respect to the redshift.
Actually, observationally constraining d	=dz and
d2	=dz2 is a quite complicated task likely demanding
for very large samples of SNeIa. Since reconstructing
f�R� needs first a determination of R�z�, we may thus
conclude that a completely model-independent determina-
tion of f�R� from the luminosity distance data is plagued
by too large uncertainties and is far to come.

A possible way to escape these problems is to resort to
some parametrized expression of DL�z� so that one has
only to constrain a limited set of quantities rather than
recover a function (i.e., determine an infinite number of
unknowns). To this end, a series expansion [64] or a more
versatile fitting function [66] have been proposed. Inserting
the expression for DL into Eqs. (32) and (33), one could
evaluate both R and $R as function of the parameters
assigning the luminosity distance so that the problem of
reconstructing R�z� reduces to the determination of these
parameters. Similar considerations also hold for f�z�.
Calibrated simulations are needed to investigate the viabil-
ity of this promising approach.

B. Polynomial fit to the dark energy density

The problem to recover f�R� from the luminosity dis-
tance in a model-independent way is partially related to the
need of determining from the data not only DL�z�, but its
derivatives too. To overcome this difficulty, one should
resort to a less ambitious program choosing a parametric
ansatz for H�z� which should be as general as possible. A
useful expression is [67]:

H�z� � H0

�������������������������������������������������������
�Mx3 
 A1 
 A2x
 A3x

2
q

(38)

with x � 1
 z and �A1; A2; A3� parameters to be deter-
mined from the data. Note that the case �A1; A2; A3� �
�0; 0; 0� corresponds to a flat matter only universe, while
the case A1 � 0 and �A2; A3� � �0; 0� gives H�z� for the
	CDM concordance model. In general, Eq. (38) refers to a
universe containing a matter term and a second component
whose energy density is approximated by a second-order
polynomial fit.

This expression has the remarkable property of simplic-
ity. Actually, by inserting Eq. (38) into Eq. (32), we get:

R � �3H2
0�4A1 
 3A2 
 2A3 
�M�; (39)

while the boundary conditions turn out to be given as:

f�z � 0� � �3H2
0�4A1 
 3A2 
 2A3 
 3�M � 2�; (40)

df=dzjz�0 � �3H2
0�3A2 
 4A3 
 3�M�; (41)
-8
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d2f=dz2jz�0 � �3H2
0�2A3 
 3�M�: (42)

Denoting with $i the uncertainty on Ai and with �$H;$M�
those on H0 and �M, respectively, a naive estimate of the
error on R is given by:

$R � 3H2
0

������������������������������������������������������������������������������������
�12=H2

0�$
2
H 
 16$2

1 
 9$2
2 
 4$2

3 
 $2
M

q
(43)

having assumed that the errors are statistical and uncorre-
lated. It is worth noting that $R turn out to be independent
of the redshift z so that a reliable reconstruction of the
evolution of the scalar curvature only demands for low-
ering the errors on the parameters �H0;�M; A1; A2; A3�.
This could be achieved by increasing the sample of
SNeIa or reducing the measurement and systematic errors
on the distance modulus or by a judicious use of priors on
�H0;�M�.

Having reconstructed R�z�, one has only to determine
f�z�. Inserting Eq. (38) into Eq. (19), we get:

P 3�z�
d3f

dz3

 P 2�z�

d2f

dz2

 P 1�z�

df
dz

� �3H2
0�M�1
 z�3

(44)

where P i are cumbersome functions of the redshift z and
the parameters ��M; A1; A2; A3� that may be computed
inserting Eq. (38) into Eqs. (20)–(25). We do not report
them for sake of shortness. Equation (44) may be straight-
forwardly solved numerically using the boundary condi-
tions (40)–(42) so that f�z� may be obtained and coupled
with the above reconstructed R�z� to finally determine f�R�
from the data. Estimating what is the error on f�R� is quite
complicated and it is likely that a numerical analysis is
needed.
V. f�R� THEORIES AND DARK ENERGY MODELS

As discussed in the previous section, H�z� may be
directly reconstructed from the data on the luminosity
distance. Although in principle possible, this method is
nowadays still not feasible since it is affected by quite
large errors. Furthermore, H�z� is thus recovered only on
the redshift range probed by the data used so that a poten-
tially dangerous extrapolation is needed to go to higher z.
This problem forces us to adopt for H�z� a theoretically
rather than observationally motivated ansatz. To this end, it
is worth referring to the literature where the accelerated
expansion of the Universe is usually explained proposing a
wide variety of dark energy models. Although different in
their physical background, all these models share the prop-
erty of well fitting the same dataset so that, from this point
of view, we could adopt for H�z� the expression corre-
sponding to one of these models. This choice also allows us
to stress one interesting point. Since the procedure above
sketched makes it possible to recover f�R� from H�z�, we
are able to construct an f�R� theory of gravity which gives
043503
the same dynamics (i.e., the same expansion rate and scale
factor) of a whatever dark energy model. We will show this
explicitly for two popular dark energy models, namely,
quintessence with constant equation of state referred to
as quiessence and the Chaplygin gas.

As a preliminary remark, it is worth discussing what are
the dimensions of the different quantities involved in the
units (with 8�G � c � 1) we are adopting. To this end, let
us first consider Eq. (10). Since H is expressed in s�1, the
Ricci scalar turns out to be measured in s�2. From Eq. (5)
and the consideration that �curv and �m have the same
dimensions, we conclude that f0�R� � df=dR is dimen-
sionless and hence f has the same dimension as R. Finally,
the energy density is expressed in s�2 as can be inferred
from the expression of the critical density that is �crit �
3H2

0 in these units. It is straightforward to check that this is
consistent with what is obtained for �curv from Eq. (7).
Hereon, we measure time in units of 1=H0 so that H0 � 1
and all the quantities we are interested in, namely R and
f�R�, are dimensionless; that is a useful feature when
dealing with numerically solved differential equations.

A. Quiessence from f�R�

As a first straightforward application, let us consider the
ansatz:

H�z� � H0

����������������������������������������������������������������
�M�1
 z�3 
�X�1
 z�3�1
w�

q
(45)

with �X � �1��M� and w a constant parameter.
Equation (45) gives the Hubble parameter for the so-called
quiessence models (or QCDM) where the acceleration of
the Universe is due to a negative pressure fluid with con-
stant barotropic factor w. This is the easiest generalization
of the cosmological constant which is obtained for w �
�1. Quiessence has been successfully tested against the
SNeIa Hubble diagram and the CMBR anisotropy spec-
trum that has made it possible to severely constrain the
barotropic factor w [68]. It is interesting to note that these
constraints extend into the region w <�1 so that models
violating the weak energy condition are allowed. This class
of models, dubbed phantom models, are affected by serious
problems with the growth of perturbations and are there-
fore worrisome.

Inserting Eq. (45) into Eq. (15), we get:

R � �3H2
0��M�1
 z�3 
�X�1� 3w��1
 z�3�1
w��:

(46)

Note that R is always negative as a consequence of the
signature f
;�;�;�g adopted. If we had used the oppo-
site signature, Eq. (46) is the same, but with an overall
positive sign. The ansatz in Eq. (45) leads to the following
equation for f�z�:
-9
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FIG. 2. Reconstructed f�R� for quiessence models with �M �
0:3 and three different values of the dark energy barotropic
factor, namely w � �0:5 (short dashed line), w � �1 (solid
line), and w � �1:5 (long dashed line). We report lf � ln��f�
as function of lR � ln��R� rather than f�R� to better show the
results.
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Q 3�z�
d3f

dz3

Q2�z�

d2f

dz2

Q1�z�

df
dz

� �3H2
0�M�1
 z�3 (47)

where Qi�z� may be evaluated by inserting Eq. (45) into
Eqs. (20)–(25). The resulting cumbersome functions of the
redshift z and the model parameters ��M;w� are not re-
ported here for sake of shortness. Equation (47) may be
easily solved numerically using the boundary conditions
(26)–(28). The result is shown in Fig. 1 for models with
�M � 0:3 and three different choices of the barotropic
factor w. Note that we have plotted �f�z� rather than
f�z� since f turns out to be negative because of the sig-
nature adopted. Moreover, we use a logarithmic scale to
better show the results. For z < 0:5 the three curves show a
different behavior, while, for higher z, the shape of f�z� is
unaffected by w which only acts as a scaling parameter.
This is also true for �M: changing this parameter only
shifts up or down the curves plotted in Fig. 1. Inverting
numerically Eq. (46), we may obtain z � z�R� and finally
get f�R� shown in Fig. 2 for the same models considered
above. It turns out that f�R� is the same for different
models for low values of R and hence of z. This is a
consequence of the well-known degeneracy among differ-
ent quiessence models at low z that, in the standard analy-
sis, leads to large uncertainties on w. Because of this
degeneracy, models with different barotropic factors may
not be discriminated and are therefore dynamically equiva-
lent. This is reflected in the shape of the reconstructed f�R�
that is almost w-independent in this redshift range.

Figure 2 may suggest that ln��f� is a quasi-linear
function of ln��R� that is not the case. Actually, we have
checked that the following empirical function

ln��f� � l1�ln��R��l2�1
 ln��R��l3 
 l4 (48)
0 2 4 6 8 10
z
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FIG. 1. Reconstructed f�z� for quiessence models with �M �
0:3 and three different values of the dark energy barotropic
factor, namely w � �0:5 (short dashed line), w � �1 (solid
line), and w � �1:5 (long dashed line). We report lf � ln��f�
rather than f to better show the results.
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approximates very well the numerical solution provided
that the parameters �l1; l2; l3; l4� are suitably chosen for a
given value of w. For instance, for w � �1 (the cosmo-
logical constant7) it is:

�l1; l2; l3; l4� � �2:6693; 0:5950; 0:0719;�3:0099�:

The error in this case is of the order �2� 10% for z < 1,
but remains smaller than �4% up to z � 10. We have
checked that Eq. (48) works very well also for other values
of w in the range ��1:6;�0:6� with an error8 depending on
z and w, but always smaller than �10%.

Some comments are in order as final remarks. First,
remember that we are using units with 8�G � c � 1 and
1=H0 � 1. As a consequence, the values of the fitting
parameters should be adjusted if physical units are used.
However, this does not change the shape of the approx-
imating function since the numerical solution does not
depend on the adopted units. Let us also stress that
Eq. (48) is only a fitting function tested over the large,
but still limited redshift range (0, 10). Extrapolation to
higher z may introduce large errors and should therefore
be avoided.

B. Chaplygin gas as f�R�-model

Recently, much attention has been devoted to models
where a single fluid with an exotic equation of state ac-
7The case of the cosmological constant may be solved analyti-
cally giving f�R� � R
 2	 which is quite different from
Eq. (48). Actually, Eq. (48) is only an approximating function
chosen because of its versatility. Indeed, for w � �1, the fitting
parameters renders the approximating function as similar as
possible to the exact expression.

8Tables with the values of the parameters and the approxima-
tion error for different w and z are available on request.
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counts for both dark matter and dark energy. Usually
referred to as unified dark energy models, such models
have the nice feature to solve two problems in a single
step and have thus attracted a lot of interest. As a prototype
example, we consider the generalized Chaplygin gas
(GCG) whose equation of state is [13]:

p � �A=�� (49)

with A and � positive parameters to be determined from
the data. Assuming a spatially flat universe, the Hubble
parameter is:

H�z� � H0�As 
 �1� As��1
 z�3�1
���1=2�1
�� (50)

with As � A=��z � 0�. Note that As � 1 reduces to a
universe with the cosmological constant as unique compo-
nent, while As � 0 describes a matter dominated universe.
Motivated by this consideration, we will only take into
account models with As in the range (0, 1) although, in
principle, nothing prevents As to be larger than 1.

We may apply our procedure to recover the f�R� theory
which reproduces the same dynamics of the GCG. For
simplicity, we concentrate our attention only to the case
� � 1 that is the originally proposed Chaplygin gas. The
Ricci scalar turns out to be:

R � �3H2
0

�
C�z� �

3�1� As��1
 z�6

C�z�

�
(51)

with:

C �z� �
����������������������������������������������
As 
 �1� As��1
 z�6

q
: (52)

Proceeding as for the quiessence case, we get the following
equation for f�z�:
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FIG. 3. Reconstructed f�z� for Chaplygin gas with �M � 0:3
and three different values of the normalization constant, namely
As � 0:25 (short dashed line), As � 0:50 (solid line), and As �
0:75 (long dashed line). We report lf � ln��f� rather than f to
better show the results.
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C 3�z�
d3f

dz3

 C2�z�

d2f

dz2

 C1�z�

df
dz

� �3H2
0�M�1
 z�3

(53)

where Ci�z� are functions of the redshift z and As which are
derived by inserting Eq. (50) into Eqs. (20)–(25). The
numerical solution of Eq. (53) is plotted in Fig. 3, while
Fig. 4 shows the corresponding f�R� obtained by eliminat-
ing z using Eq. (51). An important caveat is in order here.
Although �M is identically one in the usual approach to
Chaplygin gas, one has to choose a value of �M � 1 since
the Friedmann equations have been modified. Moreover,
this choice should be based on model-independent deter-
mination of this parameter which also enters the determi-
nation of the boundary condition f�z � 0� through
Eq. (28). We set �M � 0:3 as for the best fit concordance
	CDMmodel since this value is also in agreement with the
model-independent estimates coming from the abundance
of galaxy clusters.

The similarity among the curves for different values of
As is striking, but not fully unexpected. Actually, at larger z
(where the curves are almost overlapping in these logarith-
mic plots), the Chaplygin gas reduces to a matter only
universe whatever is the value of As so that the dependence
on this parameter is washed out. A stronger dependence on
� may be expected in the GCG scenario since this parame-
ter controls the rate of transition from a 	 dominated to a
matter dominated universe.

Finally, we have checked that the numerical solution for
f�R� is very well approximated by Eq. (48) with:

�l1; l2; l3; l4� � �1:9814; 0:5558; 0:2665;�2:5337�

for the model with ��M; As� � �0:3; 0:75�. We stress again
that Eq. (48) is only an empirical fitting function so that it is
dangerous to draw any physical implications from the fact
2 3 4 5 6 7 8
lR

0

2

4

6

8

lf

FIG. 4. Reconstructed f�R� for Chaplygin gas with �M � 0:3
and three different values of the normalization constant, namely
As � 0:25 (short dashed line), As � 0:50 (solid line), and As �
0:75 (long dashed line). We report lf � ln��f� as function of
lR � ln��R� rather than f�R� to better show the results.
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that the same functional expression for f�R� works well for
both quiessence and Chaplygin gas models. Actually, such
a result could be somewhat explained noting that both
classes of models are designed to fit the same dataset
over the same redshift range. As such, there is a sort of
degeneracy among quiessence and Chaplygin gas that
could be the reason why Eq. (48) works well for both class
of dark energy models.
VI. DISCUSSION AND CONCLUSIONS

The observed cosmic acceleration may be seen as the
first signal of a breakdown of the Einstein theory of
General Relativity. Indeed, there are several theoretical
motivations invoking modifications of General Relativity.
Motivated by these considerations, much attention has
been recently devoted to higher-order theories of gravita-
tion which are obtained by replacing the Ricci scalar R
with a generic function f�R� in the gravity Lagrangian.
Usually referred to as f�R� theories, these scenarios make
it possible to explain the observed cosmic acceleration
without introducing any scalar field or changing the prop-
erties of matter term (curvature quintessence). Although
physically well motivated and mathematically elegant, this
approach has its own problems. The metric formulation of
f�R� theories leads to a fourth-order nonlinear differential
equation for the scale factor a�t� which cannot be analyti-
cally solved in general even for some simple choices of the
function f�R�. Moreover, a numerical solution, although
possible, is difficult to handle because of the large uncer-
tainties on the parameters �a0; H0; q0; j0� which determine
the boundary conditions.

It is worth noting that the same equation may also be
seen as a linear third-order differential equation for the
function f�z�. For a given H�z�, this equation is easier to
solve numerically since the boundary conditions may be
set on the basis of physical considerations only. We have
therefore developed a straightforward procedure which
makes it possible to solve for f�R�, given an expression
of the Hubble parameter H�z� and a physically motivated
choice of the boundary conditions. We stress that our
approach to f�R� theories is reversed with respect to the
usual one. Rather than arbitrarily choosing the function
f�R� and then comparing the corresponding model to the
observational data, we reconstruct f�R� from a quantity
which (at least, in principle) may be directly estimated
from the data. As a consequent result, the f�R� theory so
obtained will intrinsically fit the data and thus it is a viable
candidate to solve the dark energy puzzle.

Our method to determine f�R� needs a precise knowl-
edge of the Hubble parameter H�z�. This quantity could be
derived, for instance, from the luminosity distance of
SNeIa, but the uncertainties are still too large thus prevent-
ing a full reconstruction of f�R� directly from the data. An
easy way to overcome this problem is resorting to a pa-
rametrized expression of H�z� to be fitted against the
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available data in order to determine its parameters. This
function may then be used as input for the pipeline we have
devised. We have explored one possible choice also eval-
uating (the order of magnitude of) the uncertainty on R�z�.
Exploring in detail this approach, however, demands for
simulated datasets in order to estimate the error on the
reconstructed f�R� and the properties of the sample needed
for a reliable determination of the gravity Lagrangian
directly from the data. This further issue will be investi-
gated in a forthcoming paper.

Although implemented as an observations-based
method, it is possible to use our procedure as a simple
way to investigate intrinsic degeneracies among popular
dark energy models and f�R� theories. We have indeed
shown that from the point of view of dynamics of the late
time universe, higher-order theories of gravity may mimic
several dark energy models. Actually, using as input for our
pipeline the Hubble parameter corresponding to a given
model, we may have found the f�R� theory which repro-
duces the same dynamics and thus fits the data with the
same goodness as the given dark energy model. We have
explicitly shown this for quiessence (dark energy with
constant equation of state) and Chaplygin gas (as a proto-
type of UDE models). It is worth noting that the same
functional expression fit well the numerically recon-
structed f�R� for both class of models. Although unex-
pected, this result could also be a consequence of the fact
that both models fit the same dataset so that they are forced
to resemble each other over the redshift range probed by
the data. However, the corresponding f�R� theories extend
this similarity over the full evolutionary history of the
Universe since it is likely that the functional shape of
f�R� does not change with z even if R evolves. The
successful application of the method to two radically dif-
ferent dark energy models is perhaps the most important
result of this paper since it suggests that the crowded zoo of
dark energy models may be seen as the result of our
ignorance to what is the correct expression for f�R� that
has to be inserted in the gravity Lagrangian. Actually,
observations tell us that something is wrong with the old
standard picture of the Universe, but cannot indicate what
it is. It is then somewhat a matter of taste to choose whether
we are lacking an ingredient (such as a scalar field), or the
matter equation of state needs to be modified (as in UDE
models) or rather it is the underlying theory of gravity
which has to be generalized. What we have shown here
is that these three philosophically different approaches
may indeed be considered as distinct manifestations of
the same physics of the late universe.

Discovering what is this physics remains an open prob-
lem demanding for both theoretical investigations and
observational evidences. From an observer’s point of
view, CMBR anisotropy and polarization spectra and the
clustering properties of the large-scale distribution of gal-
axies are ideal tools to discriminate among the rival pos-
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sibilities outlined above. Indeed, while the SNeIa Hubble
diagram and the data on the gas mass fraction in galaxy
clusters probe only the Hubble parameter, both CMBR and
large-scale structure depend on how the evolution of per-
turbations takes place in the background cosmological
model. Actually, the perturbation equations for scalar field
quintessence and UDE models are radically different from
those in f�R� theories even if the dynamics of the model
(controlled by the Hubble parameter) is the same. From a
theoretician’s point of view, choosing among higher-order
gravity theories and dark energy models is quite difficult
because of the intrinsic degeneracy we have shown.
Nonetheless, constraints on f�R� theories may be obtained
by considering the full evolutionary history of the
Universe. Since the functional expression of the gravity
Lagrangian does not change with z, a given f�R� theory
should not only describe the late time universe, but also
give rise to an inflationary period. If we will be able to
reconstruct f�R� directly from the data without resorting to
a parametrized expression, we could study the picture of
the Universe assigned by this model and discard such f�R�
theories which are not able to reproduce inflation.

The procedure we have presented relies on the field
equations (2) that have been obtained varying the
Lagrangian with respect to the metric only. Actually, as
we have discussed above, f�R� theories may also be
studied using the Palatini approach where the variation is
performed with respect to the metric and the connection
considered as independent variables. Being that the field
equations are different, the procedure we have imple-
mented does not hold in the Palatini formulation of f�R�
theories. We note, however, that it is still not clear what is
the correct approach to higher-order gravity theories.
Indeed, the possibility of mimicking dark energy models
offered by the metric formulation of f�R� theories could be
considered as an encouraging evidence favoring this strat-
egy because of the capability to reproduce all the success-
ful dark energy phenomenology. A similar method has to
be developed also for the Palatini formulation, as we are
going to do in [69].

We would like to conclude with a general comment. The
method we have presented makes it possible to reconcile
dark energy models and f�R� theories as two different
faces of the same medal. Both rival theories are able to
reproduce the same dataset and thus to describe the same
dynamics of the late time universe since we have shown
that they are distinct manifestations of the same underlying
physics. Discriminating among them is only possible going
back into the past to the period of structure formation and
still before, up to inflation. In our opinion, a unified study
of both the early and late universe is the unique way to
understand what is the correct physics. Higher-order grav-
ity theories naturally offer this possibility and may thus be
used as powerful light to look into the dark sector of the
Universe.
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APPENDIX: STABILITY OF f�R� THEORIES

Soon after the first proposals of f�R� theories as alter-
native explanations of the cosmic acceleration, several
criticisms were raised on the stability of such models in
the metric formulation. In particular, in Ref. [70], it was
pointed out that the model f�R� � R
	4=R suffers vio-
lent instabilities and was argued that something similar
should hold in every theory of gravity which leads to
higher-order differential equations for the scale factor.
This argument has been often used as an evidence against
the metric formulation of f�R� theories thus motivating the
great interest dedicated to the Palatini approach which
avoids this problem. Actually, things are different. It is,
indeed, possible to show that a leading role in the deter-
mination of the stability of the theory is played by the
following potential (see, e.g., [71]):

U�R0� �

�
f�4��R0�

f�2��R0�
�

f�3��R0�
2

f�2��R0�
2

�
r�R0r

�R0 

R0

3

�
2f�1��R0�f�3��R0�R0

3f�2��R0�
2

�
f�1��R0�

3f�2��R0�



2f�R0�f�3��R0�

3f�2��R0�
2

�
R0f�3��R0�

3f�2��R0�
2

(A1)

where f�i� � dif=dRi and R0 is the solution of the unper-
turbed field equations. Note that, to be coherent with
Ref. [71], here we are using the signature f�;
;
;
g
so that R0 is positive and the trace of the matter stress-
energy tensor is negative. Equation (A1) has been obtained
by setting R � R0 
 R1 with jR1j � jR0j and developing
the equation at the first perturbative order. If U�R0� is
positive, since �R1 ��@2

t R1, the perturbation R1 be-
comes exponentially large and the system is unstable.
Assuming that the matter is uniformly distributed, we
may simplify Eq. (A1) setting r�R0 � 0 and then study
the sign of U�R0� for a given f�R� theory.

For the model f�R� � R
	4=R, U�R0� turns out to be
positive so that the theory is indeed unstable. But this is not
a general result. For instance, the choice f�R� � �Rn

[23,25,57] gives:

U�R0� �
�n� 2��2�Rn�1

0 � 1�

3�n�n� 1�Rn
0

: (A2)

Assuming that the coupling constant � is positive, the
constraint U�R0� � 0 reduces to:

2�Rn�1
0 � 1 � 0 for n � 0 and 1 � n � 2;

2�Rn�1
0 � 1 � 0 for 0 � n � 1 and n > 2;

so that the stability of the theory depends on n and �. A
similar analysis can be conducted for the approximating
function (48) in order to determine the stability of the
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reconstructed f�R�. It is thus worth stressing, as a final
remark, that the usual criticism against the metric approach
to f�R� theories about the stability arguments has to be
reconsidered on a case by case basis. Therefore, we are
043503
confident that the procedure we have implemented to
reconstruct f�R� is meaningful and not affected by any
systematic problem related to the metric formulation of
f�R� gravity.
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Viollier, Phys. Lett. B 535, 17 (2002); M. C. Bento, O.
Bertolami, and A. A. Sen, Phys. Rev. D 67, 063003 (2003).

[14] G. W. Gibbons, Phys. Lett. B 537, 1 (2002); T.
Padmanabhan, Phys. Rev. D 66, 021301 (2002); T.
Padmanabhan and T. R. Choudury, Phys. Rev. D 66,
081301 (2002); J. S. Bagla, H. K. Jassal, and T.
Padmanabhan, Phys. Rev. D 67, 063504 (2003); E.
Elizalde, S. Nojiri, and S. D. Odintsov, Phys. Rev. D 70,
043539 (2004).

[15] B. A. Bassett, M. Kunz, D. Parkinson, and C. Ungarelli,
Phys. Rev. D 68, 043504 (2003).

[16] V. F. Cardone, A. Troisi, and S. Capozziello, Phys. Rev. D
69, 083517 (2004).

[17] S. Capozziello, A. Melchiorri, and A. Schirone, Phys. Rev.
D 70, 101301 (2004).

[18] H. Sandvik et al., Phys. Rev. D 69, 123524 (2004).
[19] A. Lue, R. Scoccimarro, and G. Starkman, Phys. Rev. D

69, 044005 (2004).
[20] K. Freese and M. Lewis, Phys. Lett. B 540, 1 (2002); K.

Freese, Nucl. Phys. (Proc. Suppl.) 124, 50 (2003); Y.
Wang, K. Freese, P. Gondolo, and M. Lewis, Astrophys.
J. 594, 25 (2003).

[21] G. R. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B
485, 208 (2000); G. R. Dvali, G. Gabadadze, M.
Kolanovic, and F. Nitti, Phys. Rev. D 64, 084004
(2001); G. R. Dvali, G. Gabadadze, M. Kolanovic, and
F. Nitti, Phys. Rev. D 64, 084004 (2001); A. Lue, R.
Scoccimarro, and G. Starkman, Phys. Rev. D 69, 124015
(2004).

[22] R. Kerner, Gen. Relativ. Gravit. 14, 453 (1982).
[23] S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002).
[24] S. Nojiri and S. D. Odintsov, Phys. Lett. B 576, 5 (2003);

S. Nojiri and S. D. Odintsov, Mod. Phys. Lett. A 19, 627
(2003); S. Nojiri and S. D. Odintsov, Phys. Rev. D 68,
123512 (2003); S. M. Carroll, V. Duvvuri, M. Trodden,
and M. Turner, Phys. Rev. D 70, 043528 (2004); S.
Carloni, P. K. S. Dunsby, S. Capozziello, and A. Troisi,
astro-ph/0410046.

[25] S. Capozziello, S. Carloni, and A. Troisi, astro-ph/
0303041.

[26] S. Nojiri and S. D. Odintsov, Gen. Relativ. Gravit. 36,
1765 (2004); X. H. Meng and P. Wang, Phys. Lett. B 584,
1 (2004).

[27] I. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro,
Effective Action in Quantum Gravity (IOP Publishing,
Bristol, 1992).

[28] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[29] N. D. Birrell and P. C. W. Davies, Quantum Fields in

Curved Space (Cambridge University Press, Cambridge,
1982).

[30] G. Vilkovisky, Classical Quantum Gravity 9, 895 (1992).
[31] G. Magnano, M. Ferraris, and M. Francaviglia, Gen.

Relativ. Gravit. 19, 465 (1987); M. Ferraris, M.
Francaviglia, and G. Magnano, Classical Quantum
Gravity 7, 261 (1990).

[32] J. Barrow and A. C. Ottewill, J. Phys. A 16, 2757 (1983).
-14



RECONCILING DARK ENERGY MODELS WITH f�R� THEORIES PHYSICAL REVIEW D 71, 043503 (2005)
[33] A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
[34] D. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989).
[35] P. Teyssandier, J. Math. Phys. (N.Y.) 24, 2793 (1983).
[36] K. Maeda, Phys. Rev. D 39, 3159 (1989).
[37] D. Wands, Classical Quantum Gravity 11, 269 (1994); S.

Capozziello, R. de Ritis, and A. A. Marino, Gen. Relativ.
Gravit. 30, 1247 (1998); S. Capozziello and G. Lambiase,
Gen. Relativ. Gravit. 32, 295 (2000).

[38] S. Gottlöber, H.-J. Schmidt, and A. A. Starobinsky,
Classical Quantum Gravity 7, 893 (1990).

[39] T. V. Ruzmaikina and A. A. Ruzmaikin, JETP Lett. 30,
372 (1970).

[40] L. Amendola, A. Battaglia-Mayer, S. Capozziello, S.
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