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Large-scale magnetic fields from density perturbations
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We derive the minimal seed magnetic field which unavoidably arises in the radiation and matter eras,
prior to recombination, by the rotational velocity of ions and electrons, gravitationally induced by the
nonlinear evolution of primordial density perturbations. The resulting magnetic field power spectrum is
fully determined by the amplitude and spectral index of density perturbations. The rms amplitude of the
seed field at recombination is B � 10�23��=Mpc��2 G, on comoving scales � * 1 Mpc.
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I. INTRODUCTION

Magnetic fields are present in most astrophysical sys-
tems [1–5], but their origin is still unknown. Spiral gal-
axies typically contain magnetic fields of about 10�6 G
that are aligned with the spiral density waves [1]. A plau-
sible explanation is that these fields have been produced
from the exponential amplification of an initially weak
field by a mean-field dynamo [6,7], in which a seed field
was amplified by the differential rotation of the galaxy in
conjunction with magnetohydrodynamic turbulence.
Magnetic fields of comparable amplitude are also found
on cluster scales [8].

The seed-field strength required at the time of completed
galaxy formation for a galactic dynamo to produce the
present magnetic field strength of a few �G is usually
quoted in the range ��10�23–10�19� G [1–5]. These esti-
mates, though, are obtained by considering the dynamo
amplification in a flat Universe with zero cosmological
constant for ‘‘typical’’ values of the parameters of the
�! dynamo. According to Ref. [9] these lower bounds
can be relaxed to about 10�30 G, for a Universe with a dark
energy component (e.g. a cosmological constant or quin-
tessence), which appears to be favored by recent results
from high-redshift supernovae observations, cosmic micro-
wave background experiments and large-scale structure
data.

Most proposed models of primordial seed-field genera-
tion either fail to meet these requirements or invoke non-
standard coupling between the electromagnetic field and
the inflaton scalar sector responsible for a primordial pe-
riod of accelerated Universe expansion (see, e.g., Ref. [4]
and references therein).

The most economic and conservative physical mecha-
nism for producing such a seed field was proposed by
Harrison [10]. The mechanism relies on the fact that
weak magnetic fields are generated during the radiation
era in regions that have nonvanishing vorticity. The main
problem with Harrison’s mechanism is that the required
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vorticity of the plasma does not have any dynamical origin,
but has to be put in by hand, as an initial condition. In this
paper we show that rotational velocity of the plasma is
unavoidably induced gravitationally by the nonlinear
mode-mode coupling of primordial density perturbations
generated during inflation, arising at second order in per-
turbation theory. Therefore, we predict that a minimal seed
magnetic field is generated by the differential rotational
velocity of ions and electrons. The resulting magnetic field
power spectrum is fully determined by the amplitude and
the spectral index nS of primordial scalar perturbations.
The rms amplitude of the seed field at recombination is
B � 10�23��=Mpc��2G, on comoving scales � * Mpc.

The plan of the paper is as follows. In Sec. II we briefly
recall Harrison’s mechanism and we show how the seed
magnetic field is produced. In Sec. III we compute the
power spectrum of such a seed field in terms of the power
spectrum of primordial scalar perturbations generated dur-
ing inflation. Finally, in Sec. IV we draw our conclusions.

II. GENERATION OF SEED MAGNETIC FIELD

Let us first recall how Harrison’s mechanism [10] works.
Consider a rotating region in the expanding early Universe
(with scale factor a), consisting of matter (mostly protons)
with average energy density �m, electrons and photons
with energy density �. Electrons and photons are tightly
coupled and are considered as a single fluid in Ref. [10].
Let !m and ! be their angular velocities. In the absence
of interactions, their angular momenta, proportional, re-
spectively, to �m!ma

5, and �!a
5, are separately con-

served (see also the Appendix). As the Universe expands,
they scale differently, !m / a�2 and ! / a�1. Ions and
the electron-photon fluid spin down at different rates and
then currents and magnetic fields are generated.

A formal derivation of the resulting magnetic field
strength in terms of the vorticity in the proton fluid includ-
ing the electron-proton coupling can be found in [4]. It is
necessary to consider the evolution of the multicomponent
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fluid formed by photons, electrons and protons during the
radiation era. At temperatures T * me (where me is the
electron mass), the interactions between ions and electrons
are strong due to copious lepton-pair production, and they
are locked together. The interaction between electrons and
photons is also very strong. This means that all the plasma
has the same angular velocity at T � me and no magnetic
field can be generated. Below this temperature, electrons
and photons are still tightly coupled through Thomson
scattering. Protons and electrons are tightly coupled
through Coulomb scattering (scattering between photons
and protons can be neglected as the coupling is weaker)
and so the photon fluid drags the protons in its motion. The
difference in the strength of these interactions and in the
mass of electrons and protons leads however to a small
difference in the electron and proton fluid rotational veloc-
ities that gives rise to nonvanishing currents and magnetic
fields. In our case the rotational velocity of the plasma is
sourced by the nonlinear evolution of scalar (density)
perturbations. The generation of the magnetic field ends
at recombination, when electrons and protons combine to
form neutral hydrogen and radiation decouples from mat-
ter. This means that the generation of the magnetic field
starts around T � me and ends when T � Trec. Dark en-
ergy and neutrinos can be ignored throughout the evolu-
tion. Moreover, during the radiation era we can safely
neglect the role of the cold dark matter (CDM) component,
that is, we consider a plasma with only baryons (protons),
electrons and photons, and electromagnetic (EM) fields.
After matter-radiation equality, CDM plays the dominant
gravitational role and it enters our equations determining
the evolution of perturbations.

Let us now go into the details of this mechanism. The
momentum equation for the interacting components can be
written using the total energy-momentum-conservation
equation T��;� � 0 The energy-momentum tensor of each
component is not conserved independently and its diver-
gence has a source term that takes into account the energy
and momentum transfer among the components, T�A��

�;� �

Q�A�
� , with A � ; p; e;EM. We will describe the proton,

electron and photon components as approximately perfect
fluids, thus their energy-momentum tensor can be written
as

T����
� � �p��� � �����u����u���� � p������ ; (1)

with � � e; p;  and p��� � w�������. We can expand the
energy density and four velocity of each component as

���� � ����
0 �1� �����; u���� �

1

a
���0 � v�����: (2)

In what follows we will neglect the electron and proton
pressure, i.e., we set w�e� � w�p� � 0, while for the pho-
tons we have w�� � 1=3.
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The crucial step in our computation is that we have to
include second-order terms in the metric and the matter
perturbations [11–13], since the rotational component of
the velocity, and hence magnetic field, are only generated
at second order. Indeed linear vector modes are not gen-
erated during inflation and, by Kelvin’s circulation theorem
vorticity is conserved for a perfect fluid. Of course, this
conservation holds at second order as well, and it applies to
the vorticity of the fluid which generates the gravitational
field. As explained in detail in the Appendix, this conser-
vation law does not prevent the occurrence of a rotational
velocity component of the charged particles, thus giving
rise to a nonzero magnetic field. A similar point can be
found also in Ref. [14].

Let us expand ���� � ����
�1� � ����

�2� and v���� � v����
�1� �

v����
�2� , where the superscripts (1) and (2) indicate first- and

second-order perturbation quantities. We will work in the
Poisson gauge, which is the generalization of the so-called
longitudinal (or Newtonian) gauge when vector and tensor
modes are allowed. The perturbed metric reads

ds2 � a2���f��1� 2��d�2 � 2�id�dxi

� 
�1� 2 ��ij � �ij�dx
idxjg: (3)

In this gauge, the first-order scalar perturbations are equal
if there are no anisotropic stresses, ��1� �  �1� � ’. The
vector perturbation is �i, and we will assume that it is not
generated at first order ��1�

i � 0. We will also neglect
primordial tensor modes.

Although first-order primordial vector and tensor modes
are absent, the nonlinear evolution of the primordial scalar
perturbations gives rise to nonvanishing vector and tensor
perturbations (and corrections to the scalar perturbations)
at second order, �i � ��2�

i and �ij � ��2�
ij [11,12].

Let us consider the momentum continuity equation for
each fluid component (whose general expression up to
second order in perturbation theory is reported in the
Appendix). The contribution of the electromagnetic field
can be included in the source of the charged fluid compo-
nents, as T�EM��

�;� � F�%j
%, with j%  en�u�p�% � u�e�%�,

where we have assumed charge neutrality (n � n�e� ’
n�p�). The momentum equation for photons up to second
order can be written as

4���
0

3

�
�v��i ��i�0�

1

4
@i����@i��

1

4
�3’�

����@i�
���’0v��i �

1

3
v��;jj v��i �

1

2
�v��2�;i�

1

2
�’2�;i

�
�'ei ; (4)

and for protons
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��p�
0

�
�v�p�i ��i�

0�H �v�p�i ��i��@i��2’0v�p�i �
1

2
�v�p�2�;i�

1

2
�’2�;i

�
�en�Ei�)ijkv

�p�iBk��'epi ; (5)
where H � a0=a is the expansion rate in conformal time.
The momentum equation for electrons is similar to that for
protons, but it has the opposite sign in the right-hand side
terms and an additional source, �'ei , due to the momen-
tum transfer between the electron and photon fluids. This
momentum transfer is due to Thomson scattering and is
given by 'ei � � 4

3�
��
0 +0�v��i � v�e�i �, where the differen-

tial optical depth is +0 � an,T , and ,T is the Thomson
cross section. The momentum transfer between electrons
and protons is due to Coulomb scattering and can be
written as 'epi � �n�v�p�i � v�e�i �=+e, where the collision
time between electrons and protons is +e � me,=ne2 in
terms of the conductivity of the plasma ,.

During the whole period we are interested in, up to the
time of hydrogen recombination, the collision times be-
tween electrons and photons ( / +0�1) and the electron-
proton one are much shorter than the Universe expansion
time, thus momentum transfer is very efficient. A tight
coupling expansion of the momentum equations gives, to
lowest order, v��i ’ v�e�i ’ v�p�i .

We can obtain an equation for the vorticity of the proton
fluid by taking the curl of Eq. (5) and combining it with
Maxwell’s equations

d
d�

�
a2
�
- �p�i ��i �

e
mp

Bi

��

� 2)ijka’0;jv�p�k �
ea2

,mp
r2Bi; (6)

where we have kept terms up to second order in the metric
perturbation and defined - �p�i  )ijk@jv�p�k=a and �i 

)ijk@j�k=a. In the last equation the diffusion term can be
dropped in the highly conductive protogalactic medium.

The seed magnetic field can be written as

Bi � �
mp

e

�
%�p�
i �

a2I
a2
%�p�

�I�i �
2

a2
Z �

�I
d~�a)ijk@j’0v�p�k

�
;

(7)

where the subscript I denotes the initial time, correspond-
ing to T �me, when BI � 0, and where we introduced the
useful combination %�A�

i  - �A�i ��i.
Taking now the curl of the photon momentum equa-

tion (4) we obtain an equation for the photon vorticity

�a%��
i �0 �

3

4
)ijk

�
�@j’@k��� �

4

9
vj@k@lvl �

4

3
@j’0vk

�
;

(8)

where we have set v��  v. Solving Eq. (8) we finally get
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%i��� �
aI
a
%�I�i �

3

4a

Z �

�I
d~�)ijk

�
�@j’@k���

�
4

9
vj@k@lvl �

4

3
@j’0vk

�
; (9)

where we have set %�p� ’ %��  %.
Equation (7) with the solution Eq. (9) is our main result

and provides the resulting magnetic field in terms of the
metric and matter perturbations. In order to finalize our
computation we have to consider the linearly perturbed
Einstein’s equations. For a Universe dominated by a fluid
with equation of state p � w�, with w � const, we can
express the fluid velocity v�1�i and the energy density
perturbations ��1� in terms of the gravitational potential ’
as

v�1�i � �
2

3�1� w�H 2
@i�’

0 �H’�;

��1� �
2

3H 2

r2’� 3H �’0 �H’��:

(10)

The evolution equation for the peculiar gravitational po-
tential ’ is given by

’00 � 3H �1� w�’0 � wr2’ � 0; (11)

whose solution in the radiation dominated era in Fourier
space reads

’�k; �� �
3j1�x�
x

’0�k�; (12)

where x  k�=
���
3

p
and j‘ denote spherical Bessel func-

tions of order ‘. The latter expression manifests the well-
known stagnation effect for perturbations which crossed
the Hubble radius during the radiation era.

We can now evaluate in Eq. (7) the contribution from
%���, given by Eq. (9). With the solutions Eqs. (10) it reads

%i����
aI
a
%�I�i�

1

a

Z �

�I
d~�)ijk

�
2@j’@k’0

H
�
7@j’r2@k’

12H 2

�
@j’@kr2’0

12H 3
�
@j’0@kr2’

12H 3
�
@j’0@kr2’0

12H 4

�
:

(13)

This expression can be integrated analytically exploiting
the nontrivial result given by Kelvin’s circulation theorem
(see the Appendix), which states the conservation of angu-
lar momentum to all orders. In fact, it can be seen that at
second order
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FIG. 1. Power spectrum of the magnetic field at recombination
as a function of the comoving wave number. The upper and
lower curves refer to the case with or without Silk damping
included, respectively.
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%i��� �
1

a
)ijk

�
2

H 2
@j’0@k’�

1

12H 3
@j’@kr2’

�
1

12H 4
@j’0@kr2’

�
; (14)

where we simply used Eqs. (10) and (11), withw � 1=3, in
Eq. (A10), assuming vanishing vorticity of the radiation
fluid, !i � 0, which fixes the value of our integration
constant %�I�i. One can explicitly check that the time
derivative of Eq. (14) gives the integrand in Eq. (13).

III. POWER SPECTRUM OF THE SEED
MAGNETIC FIELD

We can now compute the power spectrum of the mag-
netic field generated up to recombination. The correlation
of the Fourier modes of the field can generally be written as
[15]

hBl�k�B�
m�k0�i �

�21�3

2
�3�k� k0�
��lm � k̂lk̂m�S�k�

� i)lmjk̂jA�k��; (15)

where k̂ denotes the unit vector in the direction of k. The
term proportional to A�k� represents a ‘‘helical’’ compo-
nent, that is a nonvanishing field component in the direc-
tion of the current [B � �r� B � 0�]. It can be seen that
the seed field obtained in the previous section has no
helical component, thus A�k� � 0. The relevant component
S�k� can be obtained from

hB�k� �B��k0�i � �21�3S�k��3�k� k0�: (16)

By replacing Eq. (14) into Eq. (7), the Fourier modes of B
can be written as

B�k;����
mp�1�z�

eH 2

Z d3k0

�21�3
k�k0

�
2’0�jk�k0j�’�k0�

�
k02

12H 2
’0�jk�k0j�’�k0�

�
k02

12H
’�jk�k0j�’�k0�

�
; (17)

where we have neglected the last term in Eq. (7).
Up to the matter-radiation equality time the gravitational

potential and its derivative are given by Eq. (12), and the
correlation function of B modes can be computed in terms
of that of ’0�k�, which is a Gaussian random field with
autocorrelation function

h’0�k�’0�k0�i � �21�3P’�k��3�k� k0�; (18)

where P’�k� is the gravitational potential power spectrum,
P’�k� � P0’k

�3�k=k0�
ns�1 and k0 is some pivot wave

number. For the normalization of P’ we can use its relation
with the power spectrum of the comoving curvature per-
turbation (see, e.g., Ref. [16]) R, namely �2

R�k� �
�2

R�k0��k=k0�ns�1, where �2
R�k0� � �25=9��P0’=212�
043502
[17]. Then, the resulting magnetic field is a chi-square
distributed random field with power spectrum

S�k;���
162m2

p�1�z�2

e2H

Z d3k0

�21�3
P’�jk�k0j�P’�k

0�jk

�k0j2
�
x1
4x2

j1�x1�j1�x2��j2�x2�j1�x1�
�
2

x1
�
x1
4

��
2
;

(19)

where we have defined x1 � k0 ~�=
���
3

p
, x2 � jk� k0j~�=

���
3

p
.

The main contribution to the power spectrum comes
from the term in B with a time derivative of ’ [second
term in Eq. (19)]. As ’ tends to a constant after equality,
the contribution to the generation of B during the period
from equality to recombination is subdominant with re-
spect to that up to equality time.

We show in Fig. 1 the power spectrum of B at recom-
bination, S�k�, obtained from the numerical integration of
Eq. (19), as a function of the comoving wave number k. We
have used the following values for the model parameters:
�2

R�k0� � 2:3� 10�9, zEQ � 3454, zrec � 1088, h � 0:7
and ns � 1 [16,18]. At small scales diffusion damps the
fluctuations in the photon and baryon fluids. This effect can
be taken into account by a factor exp��k2=k2D� multiplying
the velocity perturbations (see e.g. [19]). As shown in the
plots, Silk damping affects the produced magnetic field on
scales smaller than about two comoving Mpc.

For small k (k < 0:04 Mpc�1), S�k� / k2, as pointed out
in Ref. [15], in order for the magnetic field to be diver-
genceless. For wave numbers k > 1 Mpc�1 the magnetic
field spectral index approaches instead n ’ �1, i.e., S�k� /
k�1, for scale-invariant (nS � 1) primordial perturbations.
For a general scalar spectral index nS, S�k� / k2nS�3.

The mean square value of the field on a given scale � is
obtained by averaging over a volume of size / �3 [15,20],
-4
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convolving with a Gaussian window function, namely

B2
� �

Z d3k

�21�3
S�k� exp���2k2=2�: (20)

For comoving scales larger than �1 Mpc, up to 50 Mpc the
rms magnetic field at recombination is well approximated
by

B���rec� � 10�23��=Mpc��2 G: (21)

After recombination the magnetic field can be considered
to be frozen into the plasma and thus it redshifts with the
expansion of the Universe as B��� � B��rec��a=arec�

�2.
Then, the average field scaled to its value today results

B���0� � 10�29��=Mpc��2 G: (22)
IV. CONCLUSIONS

In this paper we have discussed a new mechanism for the
generation of the cosmic seed magnetic field. It acts during
the evolution of the Universe up to the epoch of hydrogen
recombination. The underlying physical phenomenon is
the vorticity of charged particles driven by gravitational
vector modes. The latter, in turn, arise from the nonlinear
evolution of purely scalar (density) primordial perturba-
tions. Hence, our mechanism is a generic prediction of the
standard hierarchical structure formation scenario and does
not require any ad hoc assumption.

Maybe the most important feature of the created mag-
netic field discussed in this paper is that its power spectrum
is fully determined by the power spectrum of the primor-
dial density perturbations. As a consequence, a significant
signal is expected over cosmological scales much greater
than those encountered in other mechanisms acting during
the early evolution of the Universe. It may be worth
stressing that weak magnetic fields on megaparsec scales
may also be generated through large-scale oblique shocks,
which are expected as part of galaxy formation in the
standard model of cosmic structure formation.
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APPENDIX: VORTICITY CONSERVATION

We want to illustrate here how one can generate a non-
zero rotational component of the fluid velocity at second
order in the (dominant) radiation fluid without violating the
conservation of vorticity, dictated by Kelvin’s circulation
theorem, which is nonperturbative and applies to a perfect
fluid with equation of state p � p��� coupled to gravity
(see Ref. [21]).

As we can see from Eq. (8), we were indeed able to
generate at second order a nonzero value for %��

i (and also
043502
for - ��i ). And then, through Eq. (7), this -i ’ -
�p�
i ’ - ��i

acts as a source for the magnetic field. The crucial point is
that none of these quantities (neither -i nor%i) coincides at
second order with the quantity that is conserved, according
to Kelvin’s theorem.

We recall what the theorem states [21]. First of all one
considers a system with a single perfect fluid (in our case
this is the radiation fluid, in the limit in which the other
components are negligible), with four-velocity u�. Then
one constructs the quantity

v�� � h��h
%
�u�;%; (A1)

where h��  g�� � u�u� is the projection tensor into the
rest frame of an observer moving with four-velocity u�.
Then we split v�� into its symmetric and antisymmetric
parts, namely

v�� � 9�� �!��; (A2)

where the antisymmetric part !�� is called the vorticity
tensor. The symmetric part 9�� can be further split into its
trace (volume expansion) and trace-free part (shear ten-
sor):

9��  ,�� �
1

3
9h�� 9 � u�;�: (A3)

Finally, one can construct the vorticity vector as [22]

!� 
1

2
����,u�!�,: (A4)

It is possible to show now, using the field equations [21],
that this quantity obeys the equation

h�� �l2!� _� � ,�� �l2!�� �
l2

2
����,u� _u�;,; (A5)

where the overdot stands for the convective time derivative
along u� and the scalar l is defined by

_l
l
�

1

3
9; (A6)

thus representing the local expansion of the fluid in its rest
frame (which coincides with the scale factor in an exactly
homogeneous and isotropic Friedmann-Robertson-Walker
model). Substituting into Eq. (A5) the momentum-
conservation equation one can find (see Ref. [23]) that
the following equation holds for ! 

��������������
!�!

�p
:

_!
!

�
5

3
9�

��� p _�
�� p

� ,��
!�!�

!2 ; (A7)

for a perfect fluid with equation of state p � p���, imme-
diately leading to the result that if ! is zero at some given
initial time, then it will be always zero.

If we deal with ! as a small perturbation, the right-hand
side of Eq. (A7) can be neglected (being of higher order
due to the presence of ,��), so, we get the usual angular-
-5
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momentum-conservation law (e.g., Ref. [24])

!��� p�a5 � const; (A8)

which means that, even if we start with a small nonzero !,
it will decay with time at a rate which depends on the
equation of state p���.

We can show indeed that at first order!i is related to the
curl of the fluid velocity

!i
�1� � �

1

2a2
)ijk�@jvk � @j�k� (A9)

and it is well known that this vortical component is not
generated by standard perturbation generating processes—
such as inflation—so it can be safely set to zero.

At second order, though, the quantity !i does not coin-
cide with the curl of the velocity -i, nor with the quantity
%i, but it also contains squared first-order terms [25],

!i � �
1

2a2

�a%i� � )ijk�3vj@k’� vjv

0
k��: (A10)

This shows that in order for !i to vanish %i has to be
generated. In other words, the momentum-conservation
equation, whose general form for a perfect fluid at second
order in the Poisson gauge is

�vi��i�0��1�3w�H �vi��i��
w

1�w
@i��

@i��
w

1�w
�3’���@i���2�3w�’0vi�

wv;jj vi�
1

2
�v2�;i�

1

2
�’2�;i�0; (A11)

leads to a conservation equation for !i

!0
i � 3�1� w�H!i � 0; (A12)

which is of course equivalent to Eq. (A8) above. In par-
ticular, it can be checked that the direct solution, Eq. (13),
043502
of Eq. (A11) (with w � 1=3) coincides with the expression
of %i which is found using the fact that !i in Eq. (A10) is
always zero. This result is given in Eq. (14).

Finally we can understand why the magnetic field is
generated by looking at Eq. (5). In fact, from there, we
see that the magnetic field is sensitive to the vorticity of the
charged matter components like protons. In a Universe
with only self-gravitating pressureless matter, this would
be conserved, so no magnetic field would be created. Note
also that in the case of pure matter it is possible to show
that the conserved vorticity vector is a3!�m�i �

�a2%�m�i=2 (see Ref. [12]). Then, let us consider what
happens to a subdominant matter fluid in a radiation domi-
nated Universe. We may consider first, as an illustration,
the case of a noninteracting matter component. Since we
are in the radiation era the matter components yield a
negligible contribution to gravity, and the potentials are
driven by radiation. So the quantity %�m�i is no longer
conserved but has a source (which is nonzero as long as
’0 is not zero and its gradient is not parallel with that of’).
In fact it has to satisfy (the curl of) the momentum-
conservation equation for a pressureless fluid, which is

�a%�m�
i �0

a
�H �%�m�

i � � 2
)ijk@

j�’0vk�m��

a
� 0: (A13)

Finally, accounting for an interacting fluid (and so v�p� ’
v�� and %�p� ’ %��), Eq. (A13) is no longer satisfied.
However, the left-hand side is compensated by the rota-
tional part of a nonzero electromagnetic field, as one can
see in Eq. (6), that we rewrite (neglecting once again the
diffusion term and taking v�p� ’ v�e�) as

�a%�m�
i �0

a
�H �%�m�

i � � 2
)ijk@j�’0vk�m��

a
� �

e
m

�a2Bi�
0

a2
:

(A14)
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