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What is needed of a tachyon if it is to be the dark energy?
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We study a dark energy scenario in the presence of a tachyon field � with potential V��� and a
barotropic perfect fluid. The cosmological dynamics crucially depends on the asymptotic behavior of the
quantity � � �MpV�=V

3=2. If � is a constant, which corresponds to an inverse square potential V��� /
��2, there exists one stable critical point that gives an acceleration of the Universe at late times. When
�! 0 asymptotically, we can have a viable dark energy scenario in which the system approaches an
instantaneous critical point that dynamically changes with �. If j�j approaches infinity asymptotically, the
Universe does not exhibit an acceleration at late times. In this case, however, we find an interesting
possibility that a transient acceleration occurs in a regime where j�j is smaller than of order unity.

DOI: 10.1103/PhysRevD.71.043003 PACS numbers: 98.70.Vc, 98.80.Cq
I. INTRODUCTION

There are few more taxing questions facing cosmology
today than what is the nature of the dark energy in the
Universe? This almost uniform distribution of energy den-
sity with a substantial negative pressure completely domi-
nates all other forms of matter and yet the best we can do is
to infer its existence from data (see Ref. [1] for reviews).
Moreover, because today it appears to behave just like a
cosmological constant, we are naturally led to take seri-
ously the possibility that what we are observing is a
remnant of the physics of the very early Universe.

Over the past few years there have been many papers
devoted to addressing the nature of the dark energy.
Explanations include a true cosmological constant possibly
arising from a landscape type picture of string vacua [2];
dynamical ‘‘quintessence’’ fields [3] which have tracker
like properties where the energy density in the fields track
those of the background energy density before dominating
today; K-essence scenarios [4], where the acceleration is
driven by modified kinetic terms in the underlying action;
modifications of gravity [5] (mainly motivated by brane
world models) which lead to late-time accelerating solu-
tions of the modified Friedmann equation and Chaplygin
gas models [6] which attempt to incorporate a unified
description of dark energy and dark matter. The list goes
on, but the aim of all the models is the same, to explain why
the Universe has only recently started accelerating with an
energy density so close to the critical density.

In this paper, we turn our attention to the issue of the
tachyon as a source of the dark energy. The tachyon is an
unstable field which has become important in string theory
through its role in the Dirac-Born-Infeld (DBI) action
which is used to describe the D-brane action [7,8]. A
number of authors have already demonstrated that the
tachyon could play a useful role in cosmology [9], inde-
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pendent of the fact that it is an unstable field. It can act as a
source of dark matter and can lead to a period of inflation
depending on the form of the associated potential. Indeed it
has been proposed as the source of dark energy for a
particular class of potentials [10–14]. However, there has
not really been an effort to understand the general proper-
ties of tachyonic cosmologies. We attempt to do that here.
Starting with the four-dimensional DBI action, the tachyon
field [with arbitrary potential V���] is coupled to a back-
ground perfect fluid of radiation or matter. Modifying the
procedure introduced in [15] (see also Refs. [16–26] on a
related theme), the evolution equations for the system of
tachyon plus a background fluid can be written as first-
order differential equations involving two variables x and y
where x / _� and y /

�����������
V���

p
=H, H being the Hubble

parameter. Such equations have solutions whose behavior
depends crucially on the quantity � � �MpV�=V3=2,
where V� � dV=d�. We analyze this behavior for a
wide class of potentials. Depending on the asymptotic
behavior of � we either obtain late-time attractor solutions
which correspond to the well-known inflationary cosmol-
ogies associated with the tachyon potential V��� / 1=�2,
or perhaps more interesting cosmologies which include
(for �! 0) asymptotic behavior where the system ap-
proaches an ‘‘instantaneous’’ critical point that dynami-
cally changes with �. For the case where j�j ! 1
asymptotically, the system does not lead to late-time ac-
celeration. However, it does show a period of transient
acceleration in the regime where j�j<O�1�. It raises the
possibility that we are living in such a transient regime.

The rest of the paper is as follows: Sec. II introduces the
DBI action and the associated equations of motion for the
tachyon field including the background perfect fluid. The
equations of motion in terms of the new variables x, y and
� are presented along with the effective equation of state
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for the tachyon. Potentials which demonstrate the particu-
lar asymptotic features of � � const, 0 or 1 are included.
Section III considers the particular case of constant �
finding all the associated fixed points for the equations of
motion and demonstrating their stability before going on to
show how the existence restricts the allowed form of the
potential for the tachyon. We show how easy it is to obtain
late-time accelerating solutions in this case. Section IV
considers the case �! 0 for both a nonoscillating and
oscillating late-time evolution of �, considering a class
of potentials that have these features. As before we find it is
possible to have late-time acceleration and classify the
conditions that have to be met by the tachyon potential.
Section V does a similar thing but for a class of potentials
which lead asymptotically to �! 1. Although generally
we do not have late-time inflation, we show there is a novel
feature present which is a transient period of inflation for
exponential potentials. We summarize in Sec. VI.

II. DBI MODEL

The Dirac-Born-Infeld type effective 4-dimensional ac-
tion for our system is described by [8]

S �
Z
d4x

( �������
�g

p M2
p

2
R� V���

�
������������������������������������������������
� det�g�� � @��@���

q )
; (1)

where Mp is the reduced Planck mass, R is the scalar
curvature and V��� is the potential of the tachyon field
�. The above tachyon DBI action is believed to describe
the physics of tachyon condensation for all values of � as
long as string coupling and the second derivative of � are
small.

We shall consider a cosmological scenario in which the
system is filled with the field � and a barotropic perfect
fluid with an equation of state pB � ��� 1��B. Note that
� � 1 for a pressureless dust and � � 4=3 for radiation. In
a spatially flat Friedmann-Lemaitre-Robertson-Walker
metric with a scale factor a, the pressure and the energy
densities of the field � are given, respectively, by

p� � �V���
���������������
1� _�2

q
; �� �

V������������������
1� _�2

q : (2)

The background equations of motion are

_H � �
_�2V���

2M2
p

���������������
1� _�2

q �
�
2

�B
M2
p
; (3)

��

1� _�2
� 3H _��

V�
V

� 0; (4)

_� B � 3�H�B � 0; (5)
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together with a constraint equation for the Hubble parame-
ter:

3M2
pH

2 �
V������������������
1� _�2

q � �B: (6)

Let us rewrite the above equations in an autonomous
form. We define the following dimensionless quantities:

x � _� � H�0; y �

�����������
V���

p���
3

p
HMp

; (7)

where a prime denotes the derivative with respect to the
number of e-folds, N � lna. Then we obtain the following
equations:

x0 � ��1� x2��3x�
���
3

p
�y�; (8)

y0 �
y
2

�
�

���
3

p
�xy�

3��� x2�y2��������������
1� x2

p � 3�
�
; (9)

�0 � �
���
3

p
�2xy��� 3=2�; (10)

where

� � �
MpV�
V3=2

; � �
VV��
V2�

: (11)

From Eqs. (3) and (6) we have

H0

H
� �

3

2

	
��

��� x2�y2��������������
1� x2

p



: (12)

We also define

�� �
��
�cr

�
V���

3M2
pH2

���������������
1� _�2

q �
y2��������������
1� x2

p ; (13)

�B �
�B
�cr

�
�B

3M2
pH2

; (14)

where �cr � 3M2
pH

2. Note that these satisfy the constraint
equation �� ��B � 1 by Eq. (6). Since 0 � �� � 1,
the allowed range of x and y is 0 � x2 � y4 � 1. Therefore
both x and y are finite in the range 0 � x2 � 1 and 0 �
y � 1. The effective equation of state for the field � is

�� �
�� � p�
��

� _�2; (15)

which means that �� � 0. The condition for inflation
corresponds to _�2 < 2=3 [9]. It is also convenient to
introduce a standard deceleration parameter as

q � �
�aa

_a2
�
3

2
�� 1�

3

2

�� x2��������������
1� x2

p y2: (16)

Equation (10) implies that one can have � � const for
� � 3=2. In this case integrating Eq. (11) gives [10,11]
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V��� � M2��2: (17)

This corresponds to the potential for scaling solutions in
the context of brane world cosmology [21,23,27]. Recently
a phase-space analysis was performed in Ref. [13] for the
same potential in the tachyon system. In this paper, we
intend to broaden this type of investigation to allow for the
more general situation where the potential is not restricted
to Eq. (17). In fact the tachyon potentials we introduce are
motivated either by string theory or based purely on phe-
nomenological considerations.

For example, in the case of a general inverse power-law
potential [12,28]

V��� � M4�n��n; (18)

one has � / ��n�2�=2 and � � �n� 1�=n. Therefore � is
constant for n � 2, but it dynamically changes for n � 2.
In the limit of �! 1 we have �! 0 for 0< n< 2 and
�! 1 for n > 2.

It is convenient to classify the potential V��� depending
on the asymptotic behavior of � as in the case of a normal
scalar field [19]. They can be classified as follows:

(i) � � const.
In the tachyon system, the inverse square potential

V��� � M2��2 gives a constant �. Note that an exponen-
tial potential corresponds to a constant value of ~� �

�MpV�=V in the case of a normal scalar field [15].
(ii) �! 0 asymptotically.
There exist a number of potentials that exhibit this

behavior. For example:
(iia) V � M4�n��n with 0< n< 2.
In this case � ( / ��n�2�=2) approaches 0 as�! 1. It is

known that inflation occurs for 0< n< 2 [12].
(iib) V � V0e

1=����.
This is the potential that is used in the quintessence

scenario [3], and � / e�1=�2���=�2, which satisfies �!
0 as �! 1.

(iic) V��� � V0e
�1=2�M2�2 .

This potential may appear as the excitation of massive
scalar fields on the D-brane [29] and it has a minimum at
� � 0. Since � / �e��1=4�M2�2 in this case, �! 0 as�!
0.

(iii) j�j ! 1 asymptotically.
There are also several potentials of interest that give this

behavior:
(iiia) V � M4�n��n with n > 2.
As seen earlier, in this case � ( / ��n�2�=2) approaches

1 as �! 1.
(iiib) V � V0e���.
This potential was considered in Ref. [30] in the context

of tachyon inflation. Unlike the case of conventional cos-
mologies, in tachyon cosmology, the exponential potential
does not lead to a constant �. Since � is proportional to
e�1=2���, we find �! 1 as �! 1. This potential may
appear in the late-time behavior of D3 anti-D3 cosmology
043003
[31]. The tachyon in the D3 anti-D3 system is a complex
scalar field T � �ei� [32]. When � is constant, the effec-
tive action of coincident D3 anti-D3 is the same as Eq. (1)
[33]. The tachyon potential for the coincident D3 anti-D3 is
the same as the tachyon potential of the non-BPSD3-brane
which is [34] V��� � 2 2T3= cosh�

����
 

p
m�� where  is a

warp factor at the position of the D3 anti-D3 in the internal
compact space, T3 is the tension of branes and m is the
string mass scale. At the late time (�! 1) the potential

behaves as V��� �  2T3e
�

���
 

p
m�.

(iiic) V��� � V0e
��1=2�M2�2 .

This is the case in which the tachyon rolls down toward
�! 1 unlike the potential (iic). � has a dependence � �

MpM2V�1=2
0 �e�1=4�M

2�2 thereby giving �! 1 as�! 1.
It may be noted that the potentials (iiib) and (iiic) listed

above can be obtained in the framework of string tachyons
whereas the inverse power-law type potentials (iiia) are
motivated from purely phenomenological considerations.

We can now summarize the above behavior in terms of
conditions on V���. The system approaches �! 0 when
the slope of the potential is less steep than that of V �
M2��2 and the field � evolves toward infinity without
oscillations [(iia) and (iib)]. The case (iic) corresponds to
the one in which the field � oscillates as it evolves toward
zero asymptotically.

On the other hand, we have an asymptotic value j�j !
1 when the potential is steeper than that of V � M2��2

and the field � evolves toward infinity without oscillations
[(iiia), (iiib) and (iiic)]. One may consider the potential
V��� � V0����0�n, for n positive, that has a depen-
dence � / ����0�

��n=2�1�, thereby showing a diver-
gence of � for �! �0. However this potential has a
number of problems such as a divergent negative mass
m2eff � �logV��� as �! �0, which leads to a violent
instability of perturbations in the context of tachyon cos-
mology [35]. We do not regard this as a realistic dark
energy tachyon potential. Note that if the potential has a
positive constant energy at � � �0 then this system re-
duces to that of case (iic).
III. CONSTANT �

Let us first consider the situation in which � is constant,
i.e., case (i) in the previous section. The fixed points for this
system can be obtained by setting x0 � 0 and y0 � 0 in
Eqs. (8) and (9). These are summarized in Table I.
Essentially we have four fixed points: (a) x � 0, y � 0,
(b) x � �1, y � 0, (c) x � �ys=

���
3

p
, y � ys and (d) x �����

�
p

, y � �
������
3�

p
=�. Here ys is defined by

ys �
� �����������������
�4 � 36

p
� �2

6

�
1=2
: (19)

The cases (b) and (d) are divided into two cases, respec-
tively, depending on the signs of x. The cases (c) and (d)
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TABLE I. The critical points for constant �.

Name x y Existence Stability �� ��

(a) 0 0 All � and � Unstable saddle for � > 0 0 0
Stable node for � � 0

(b1) 1 0 All � and � Unstable node for � < 3=2 1 1
(b2) �1 0 All � and � Unstable node for � < 3=2 1 1
(c) �ys=

���
3

p
ys All � and � Stable node for � � �s 1 �2y2s=3

Unstable saddle for � < �s
(d1)

����
�

p ������
3�

p
=� � > 0 and � < �s Stable node 3�

�2
1�������
1��

p �

(d2) �
����
�

p
�

������
3�

p
=� � < 0 and � < �s Stable node 3�

�2
1�������
1��

p �
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correspond to stable fixed points. These satisfy the con-
ditions 3x �

���
3

p
�y and 3� �

���
3

p
�xy� �3���

x2�y2=
��������������
1� x2

p
� in Eqs. (8) and (9).

A. Stability of the fixed point solutions

We now study the stability around the critical points
given in Table I. Consider small perturbations u and v
about the points �xc; yc�, i.e.,

x � xc � u; y � yc � v: (20)

Substituting into Eqs. (8) and (9), leads to the first-order
differential equations:�

u0

v0

�
� M

�
u
v

�
; (21)

where M is a matrix that depends upon xc and yc.
The system can be regarded as being perturbatively

stable when the eigenvalues of the matrix M are both
negative [15]. In what follows we shall obtain the eigen-
values�1 and�2 for the fixed points in Table I and discuss
their stability.

Case (a) (xc � 0, yc � 0):
The eigenvalues are

�1 � �3; �2 � 3�=2: (22)

Therefore this critical point is an unstable saddle for � > 0,
whereas it is a stable node for � � 0. This fixed point
cannot be used as a late-time attractor solution, since it
leads to �� � 0.

Case (b) (xc � �1, yc � 0):
Since the eigenvalues are

�1 � 6; �2 � 9=2� 3�; (23)

this fixed point is an unstable node for � < 3=2 . This
corresponds to a dustlike solution with �� � _�2 � 1,
but the system tends to repel from this critical point.

Case (c) (xc � �ys=
���
3

p
, yc � ys):

The eigenvalues are

�1 � �3�
�2

12
�
�����������������
�4 � 36

p
� �2�; (24)
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�2 � �3��
�2

6
�

�����������������
�4 � 36

p
� �2�; (25)

where �1 ranges between �3 � �1 <�3=2. We have
�2 � 0 for

� � �s �
�2

18
�

�����������������
�4 � 36

p
� �2�: (26)

This means that the fixed point is a stable node for � � �s,
whereas it is an unstable saddle point for � < �s.

Case (d) (xc � �
����
�

p
, yc � �

������
3�

p
=�):

The eigenvalues are

�1;2 �
3

4

"
�� 2�

��������������������������������������������������������������������
17�2 � 20�� 4�

48

�2
�2

�������������
1� �

ps #
:

(27)

The real parts of �1 and �2 are both negative if the
condition

0 � � � �s �
�2

18
�

�����������������
�4 � 36

p
� �2� (28)

is satisfied. Note that �s is always smaller than 1. When the
square root in Eq. (27) is positive, the fixed point is a stable
node. The fixed point is a stable spiral when the square root
in Eq. (27) is negative.

The values �� and �� at the critical point are

�� �
3�

�2
1�������������
1� �

p ; �� � �; (29)

which corresponds to a scaling solution in which the
energy densities �� and �B decrease with the same rate.
However we need to caution the reader in that the scaling
solution does not exist in either the matter (� � 1) or
radiation dominated (� � 4=3) eras, because the existence
of the scaling solution requires the condition 0 � � �
�s < 1. In this sense this solution cannot be applied as a
realistic model of dark energy.

B. The existence of scaling solutions

It was shown in Ref. [25] that the existence of scaling
solutions restricts the form of the Lagrangian of a scalar
-4
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field ’ to be

p�X;’� � Xg�Xe�’�; (30)

where X � �g��@�’@�’=2 and g is any function of
Xe�’. Equation (30) was derived by starting from a general
Lagrangian p�X;’� which is an arbitrary function of X and
’. Recently this result was extended to a more general
background given by H2 / �n [27].

The Lagrangian of our tachyon system is

p�X;�� � �V���
���������������
1� 2 ~X

p
; (31)

where ~X � �g��@��@��=2. At first glance it seems that
this Lagrangian does not satisfy the condition for the
existence of scaling solutions given in Eq. (30). However
we have earlier shown that this tachyon system (31) does in
fact possess scaling solutions given by Eq. (29).

One can clarify the situation by expressing the
Lagrangian (30) in terms of the variable � � �2=��e�’=2.
Then Eq. (30) becomes

p� ~X;�� �
4

�2�2
f� ~X�; (32)

where f� ~X� � ~Xg� ~X�. The tachyon system (31) can be
accommodated by choosing

V��� / ��2; f� ~X� /
���������������
1� 2 ~X

p
: (33)

Therefore scaling solutions exist for the Lagrangian (31) in
the case of the inverse square potential, as of course we
already knew. It is interesting to note that Eq. (30) com-
pletely fixes the form of the Lagrangian for the existence of
scaling solutions [25,27].

C. Late-time behavior

The cosmological dynamics of the tachyon field with
inverse square potential (17) was studied in Refs. [11,13].
In what follows, we would like to clarify several important
points concerning the application of this model to dark
energy.

Employing slow-roll approximations 3H _� ’ �V�=V
and 3M2

pH
2 ’ V��� in a scalar-field dominated universe

(�� � �B), we obtain

_� �
2Mp���
3

p
M
; (34)

a / tp; with p �
1

2

�
M
Mp

�
2
; (35)

for the potential (17). In order to have acceleration at late
times, we clearly require p > 1, i.e.,

M>
���
2

p
Mp: (36)

Furthermore M needs to be much larger than the Planck
mass to obtain a significant acceleration (p� 1). Such a
043003
large mass is problematic as we expect general relativity
itself to break down in such a regime. This problem is
fortunately alleviated for the inverse power-law potential
V � M4�n��n with 0< n< 2, as we will see later.

When n � 2 the parameter � defined in Eq. (11) is a
constant and given by

� � 2
Mp

M
�

����
2

p

s
: (37)

Then we require � <
���
2

p
for the acceleration. The fixed

point (c) in Table I is the only stable attractor solution with
an accelerating universe at late times [recall that the fixed
point (d) is not a realistic solution]. Let us consider the case
of �� 1 (i.e., p� 1). The fixed point (c) is approxi-
mately given as

x ’
����
3

p ; y ’ 1�
�2

12
; (38)

together with the equation of state

�� ’
�2

3
�
2

3p
: (39)

The condition for acceleration (p > 1) translates into
�� < 2=3. One can easily verify that the slow-roll solution
in Eq. (34) is identical to the critical point (c) given in
Eq. (38). Therefore the slow-roll solution (34) is a stable
attractor which gives �� � 1 and �� � 2=�3p�.

We note that there is another constraint coming from the
energy scale of the tachyon potential. Since the energy
density of the tachyon is supposed to be the same order as
the present critical density �cr � 10�47 GeV4, we require
the condition M2��2

0 ’ �cr. This restricts the present field
values to be �0M * 1060.
IV. CASE OF � ! 0

In this section we shall study the case in which �
dynamically approaches 0. Examples of potentials which
exhibit this behavior were presented in Sec. II. In the limit
of �! 0 Eqs. (8) and (9) read

x0 � �3x�1� x2�; (40)

y0 � �
H0

H
y: (41)

By Eq. (40) x0 < 0 for x > 0 and x0 > 0 for x < 0 (note that
x2 is in the range 0 � x2 � 1). Therefore x! 0.
Integrating Eq. (41) gives y / 1=H, which means that y
continues to increase toward y � 1 as H decreases. Then
the attractor solution should correspond to x � 0 and y �
1. This discussion neglects the contribution from terms like���
3

p
�y, but the solution actually approaches the attractor

�x; y� � �0; 1� for �! 0 as we see below.
-5



0 . 0

0 . 2 0

0 . 4 0

0 . 6 0

0 . 8 0

1 . 0

1 1 0 0 1 04 1 06 1 08 1 01 0

N

( A )

x

y

xc

y
c

- 0 . 2 0

0 . 0

0 . 2 0

0 . 4 0

0 . 6 0

0 . 8 0

1 . 0

1 . 2

1 1 0 0 1 04 1 06 1 08 1 01 0

N

ΩΩΩΩ

ΩΩΩΩ

φφφφ

B

( B )

- 1 . 2

- 0 . 8 0

- 0 . 4 0

0 . 0

0 . 4 0

0 . 8 0

1 . 2

1 1 0 0 1 04 1 06 1 08 1 01 0

N

( C )

λλλλ

q

γγγγφφφφ

FIG. 1. Cosmological dynamics for the field � with potential
V��� � M3��1 and a barotropic fluid with � � 1. We choose
initial conditions as xi � 0:8, yi � 5:0� 10�4 and �i � 1:0.
Each panel corresponds to the evolution with (a) x, y and the
critical points xc, yc for case (c) in Table I, (b)��,�B and (c) �,
�� and the deceleration parameter q.
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While the fixed points we found in the previous section
correspond to the case of constant �, we may regard these
as instantaneous critical points as the function ��N�
evolves toward 0. The only stable critical point leading to
an acceleration at late times is that of case (c) in Table I,
where the dynamical critical point around ��N� � 0 is
approximately given by Eq. (38). This approaches x! 0
and y! 1 as �! 0. Note also that �� ! 0 as �! 0,
which corresponds to the equation of state of a cosmologi-
cal constant. We would like to numerically confirm that the
system actually approaches the dynamical critical point. In
what follows we classify the situation in two classes:
(A) �! 0 without any oscillations of � and (B) �! 0
with � oscillating.

A. � ! 0 with no oscillations of �

The potentials which lead to this behavior correspond to
(iia) V��� � M4�n��n with 0< n< 2 and (iib) V��� �
V0e

1=����. In this class of models the field �! 1 without
oscillations. As long as the tachyon potential is not steep
relative to the inverse square potential, i.e., n < 2, ��N�
asymptotically approaches 0 as � increases. This means
that the equation of state of the field � approaches �� ’

��N�2=3! 0, which leads to the Universe accelerating at
late times.

Let us consider the inverse power-law potential V��� �
M4�n��n. In this case one has � � �n� 1�=n in Eq. (11),
which means that � continues to decrease for 0< n< 2.
The slow-roll parameter for the tachyon-type scalar field is
[9]

* �
M2
p

2

�V�
V

�
2 1

V
�
n2

2

�Mp

M

�
2 1

��M�2�n
: (42)

When 0< n< 2, * decreases as the field evolves toward
large values. The condition for the accelerated expansion
corresponds to * < 1, which yields

�M>
�
n���
2

p
Mp

M

�
2=�2�n�

: (43)

If this tachyon field is to be responsible for the observed
inflation today, then it must satisfy Eq. (43).

The present potential energy is approximated as
V��0� � M4=��0M�n ’ �cr ’ 10�47 GeV4. Combining
this relation with Eq. (43) we get

M
Mp

>
	�
�c
M4
p

�
1�n=2

�
n���
2

p

�
n


1=�4�n�

: (44)

The right-hand side becomes smaller as n decreases. For
example one has M=Mp * 10�20 for n � 1. Therefore the
super-Planckian problem for the inverse square potential is
alleviated for n < 2.

In Fig. 1 we plot the cosmological evolution for n � 1
with initial conditions xi � 0:8, yi � 5:0� 10�4 and �i �
1:0. We consider a pressureless dust (� � 1) as a back-
043003-6
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ground fluid. Note that * and � satisfy the relation * �
�2=2 by Eqs. (11) and (42). Our choice �i � 1 corresponds
to the initial condition *i � 0:5. This does not mean that
inflation occurs at the initial stage, since the energy density
of the barotropic fluid dominates over that of the scalar
field. When the energy density of � eventually wins out,
this leads to the acceleration of the Universe since the
slow-roll parameter is smaller than of order 1.

From Fig. 1(a) we find that x decreases initially. This
comes from the fact that the condition 3x�

���
3

p
�y holds in

Eq. (8) for our initial conditions. On the other hand y grows
through the relation y0 � �3�=2�y. Since this growth is
rather rapid and � is nearly constant initially, the

���
3

p
�y

term temporarily surpasses the 3x term in Eq. (8), which
leads to the increase of x for a short period. After that, �
begins to decrease [see Fig. 1(c)] and this has the effect of
balancing the two terms (3x �

���
3

p
�y). In Fig. 1 we plot the

dynamically changing critical points (c) in Table I, i.e.,

�xc; yc� � ���N�ys�N�=
���
3

p
; ys�N�� with ys�N� �

��
������������������������
��N�4 � 36

p
� ��N�2�=6�1=2. We find that the solution

approaches these instantaneous critical points with the
decrease of x. Therefore the discussion of constant � can
be applied to the case of varying � after the system
approaches the stable attractor solutions. One can find
the asymptotic evolution of � by substituting Eq. (38) for
Eq. (10). This gives the dependences � / 1=

����
N

p
, x /

1=
����
N

p
and 1� y / 1=N2, which we confirmed numeri-

cally. Note that this relation holds as long as � is asymp-
totically constant with �< 3=2.

The evolution of��,�B, �, �� and q is plotted as well
in Figs. 1(b) and 1(c). The deceleration parameter q be-
comes negative for N * 100, after which the system enters
the acceleration stage with the growth of ��. We checked
that �� evolves toward 0 with the decrease of ��N� keep-
ing the relation �� ’ ��N�2=3.

We can also account for a combined system of two fluids
(matter and radiation) with a scalar field �. We have done
this, running our numerical code from a redshift z � 106,
finding that it is possible to obtain a viable cosmological
evolution for the inverse power-law potential with n < 2.
The basic property of the dynamical system for the poten-
tial V��� � V0e

1=���� is similar to what we discussed
above.

B. � ! 0 with oscillations of �

One example exhibiting this type of behavior is
case (iic), i.e., a rolling massive scalar field with potential
V��� � V0e�1=2�M

2�2 [29]. This potential has a minimum at
� � 0 with an energy density V0. As an example, consider
an anti-D3 brane at the tip of the Klebanov-Strassler throat
in the KKLT setup [2]. Since there is a warp factor  at this
point, the potential of a massive excitation of the anti-D3
brane �may be written as V��� �  2T3e�1=2� m

2�2 , where
T3 is the brane tension and m is the mass of the excited
043003
state of the brane which is of order the string mass scale.
Hence, if we introduce a very small warp factor , it should
be possible to explain the origin of the present dark energy.
Note that with a warp factor  of order 1, the massive
scalar field decays to � � 0 very soon in the reheating
epoch. However, for a very small warp factor, the stabili-
zation of the field � is considerably delayed allowing it to
play the role of dark energy today.

Another possibility is to consider an anti-D3 brane with a
warp factor  0 and a negative cosmological constant ( �
 ) arising from the stabilization of modulus fields in the
KKLT vacua with the assumption that the potential energy
of the rolling massive scalar does not exactly cancel the
cosmological constant [V��� � ’ �cr] [29]. The rolling
massive scalar, in order to play the roll of quintessence, is
expected to be stabilized in the future.

In this work we shall simply adopt the potential V��� �
V0e�1=2�M

2�2 and study the dynamics of the system when
the field oscillates around the potential minimum. Since
� � �MpM2�=

������
V0

p
e��1=4�M2�2 , this quantity gradually

decreases toward 0 and is accompanied with the oscilla-
tions of �. In Fig. 2 we plot one example of the cosmo-
logical evolution for this scalar potential. The quantity x
approaches 0 with damped oscillations as expected. We
find that the instantaneous critical points (c) in Table I
provide a good description of the late-time evolution of x
and y. �� begins to grow toward 1 around N � 20, after
which the system enters the accelerating stage [see the
evolution of q in Fig. 2(c)].
V. CASE OF j�j ! 1

There are a number of potentials that give j�j ! 1
asymptotically. One can classify the tachyon potentials
into two classes: (1) j�j ! 1 without the oscillation of
the field � [(iiia), (iiib), (iiic)] and (2) j�j ! 1 with the
oscillation of the field, that is, V��� � V0����0�

n for
positive n. In the latter case the effective mass squared
m2eff � �logV��� of the field� is negative, which leads to a
violent instability for the tachyon perturbations [35]. This
is not regarded as a stable attractor unlike the potential
V��� � V0e�1=2�M

2�2 discussed in the previous section.
We shall investigate the case (1) in which j�j continues

to grow asymptotically. For example let us consider the
exponential potential V��� � V0e

��� with �> 0
[case (iiib)]. Since � � 1 for this potential, we have �0 �
�

���
3

p
=2��2xy, thereby leading to the growth of � for x > 0.

In Fig. 3 we plot the cosmological evolution for this system
with initial conditions xi � 0:7, yi � 1:0� 10�4 and �i �
0:5. There is a short initial stage in which the conditions,
x� 1 and y� 1, are satisfied with �� ’ 0 and �� ’ 0.
This is an unstable fixed point (a) in Table I, thus showing a
deviation from x � 0 and y � 0 for N * 100. From
Fig. 3(c) we find that the Universe begins to accelerate
for N * 400 (see the evolution of q). After that x and y
-7
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FIG. 3. Cosmological evolution for the field � with potential
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show the evolution of the same quantities as in Fig. 1.
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approach the instantaneous critical points (c) in Table I. As
long as � � O�1�, one can see that the condition q < 0 is
satisfied by substituting xs � �ys=

���
3

p
and y � ys for

Eq. (16). With the growth of �, however, the acceleration
of the Universe stops for N * 6:5� 104. At this stage x
grows toward 1, whereas y decreases toward 0. The asymp-
totic behavior corresponds to x! 1 and y!

���
3

p
=�, which

can be obtained by taking the limit �� 1 for the instan-
taneous critical points (c) in Table I. Substituting this
solution for Eq. (10), we obtain � / e3N=2. This relation
holds when � is asymptotically constant with �> 3=2. In
this regime the equation of state for the field � is charac-
terized by �� ’ 1 (i.e., a pressureless dust) with a domi-
nant energy density (�� ’ 1).

It is worth reflecting here briefly on the fact that there
exists a period of transient acceleration when we have an
exponential potential. Because of a dynamical change of �,
it is possible to have a temporal acceleration for � & 1 and
have a deceleration for �� 1. If this temporal accelera-
tion corresponds to the one at present, the Universe will
eventually enter the nonaccelerating regime in which the
tachyon field behaves as a pressureless dust. This is a nice
feature of the model which makes it free from the future
event horizon problem present in most of the quintessence
models.

As long as j�j approaches infinity asymptotically, we do
not have an acceleration of the Universe at late times. This
comes from the fact that the fixed point (c) in Table I
approaches x! 1 and y ’

���
3

p
=�! 0 as j�j ! 1.

Therefore any potentials which exhibit this behavior can-
not be used as a late-time dark energy candidate. In order to
lead to acceleration at late times, we require that the
tachyon potential has the property (i) � � const or (ii) �!
0 asymptotically, as we showed in previous sections. Of
course, as we have just mentioned, it is possible that the
acceleration we are experiencing is not a late-time evolu-
tion, but part of a transient regime.
VI. SUMMARY

In this paper we have studied the cosmology associated
with the tachyon field � as the dark energy. In the tachyon
system the inverse square potential (17) is the marginal
case which leads to an accelerating universe. However, it is
not the only possible tachyon potential and so we have
deliberately set out to develop a unified analysis that can be
applied for any type of tachyon potentials.

A crucial quantity to determine the cosmological dy-
namics is � defined in Eq. (11). The inverse square poten-
tial (17) corresponds to a constant � with � � 2Mp=M. In
this case we have essentially four critical points as shown
in Table I. Among them a viable fixed point that gives a
stable attractor for dark energy is the case (c) with a
barotropic equation of state � larger than �s [�s is defined
in Eq. (26)]. The critical point (d) corresponds to a scaling
043003
solution in which the energy density of � decreases simi-
larly to that of the barotropic fluid. However this is not a
viable cosmological scaling solution, since the existence of
it requires the condition � < 1.

The tachyon potentials can be placed into three classes:
(i) � � const, (ii) �! 0 asymptotically and (iii) j�j ! 1
asymptotically. The class (ii) corresponds to the case in
which the potential is not steep relative to V��� � M2��2,
whereas the potential in the class (iii) is steeper than
V��� � M2��2. While the former leads to the accelera-
tion at late times, the latter does not.

We have carried out a detailed analysis about the cos-
mological evolution of the tachyon system in two cases: (1)
�! 0 without the oscillation of � and (2) �! 0 with the
oscillation of �. We adopt the inverse power-law potential
V��� � M4�n��n with 0< n< 2 as an example of
case (1). This is favorable relative to the inverse quadratic
potential (n � 2), since the mass scale M is not severely
constrained. We solved the dynamical equations (8)–(10)
numerically and found that the solutions approach the
instantaneous critical point (c) in Table I with the decrease
of � toward 0 [see Fig. 1(a)]. Since x ’ ��N�=

���
3

p
! 0 and

y ’ 1� ��N�2=12! 1 as ��N� ! 0, the Universe exhib-
its an acceleration at late times. This is a dark energy
scenario in which the future Universe is dominated by
the field � (�� ’ 1) with an equation of state �� ’ 0.
We adopt the rolling massive scalar potential V��� �
V0e

�1=2�M2�2 to study case (2) mentioned above. We find
that x and y again approach the instantaneous critical point
(c) with oscillations. Since the potential has an energy V0 at
the potential minimum, this eventually leads to an accel-
eration of the Universe even if the scalar-field oscillates.

On the other hand we do not find an accelerated expan-
sion at late times when j�j grows towards infinity, since the
dynamical critical point (c) approaches x! 1 and y! 0
as j�j ! 1. Nevertheless we found that a transient accel-
eration can occur in the region where ��N� is smaller than
of order unity (see Fig. 3). It is tempting to speculate that
this could be the transient regime we are experiencing
today, and to try and predict when we expect it to change
over again to a matter dominated era. Recall that the
supernova data are not actually informing us about the
evolution today (z � 0), rather they tell us that the
Universe is accelerating at a redshift of order 0.05.
Perhaps we are actually back in a matter dominated regime
today and just do not know it yet.

In spite of the existing features of cosmological dynam-
ics based upon DBI scalars, it may happen that these
models lead to the formation of caustics where the second
and the higher-order derivatives of the field become sin-
gular. We do not know whether caustics are a generic
prediction of string theory or appear as a result of the
derivative truncation leading to the DBI action. As dem-
onstrated in Ref. [36], caustics inevitably form in a tachyon
system with potentials decaying as��2 or faster at infinity.
-9
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It remains to extend the analysis of Ref. [36] to the case of
potentials such as V ���n with 0< n< 2 analyzed in
our paper. Caustics normally form in systems with pressur-
eless dust which is mimicked by a tachyon field with
runaway potentials. It is therefore quite likely that caustics
may not develop in Born-Infeld systems with a ground
state at a finite value of the field. The rolling massive scalar
potential V��� � V0e

�1=2�M2�2 belongs to this category. In
our opinion, these are important issues which require fur-
ther investigations.

Finally we believe it is quite intriguing that the tachyon
system provides rich and fruitful cosmological scenarios
043003
for dark energy. The classification we have performed in
this paper provides a very useful way to find out about the
cosmological evolution for any type of tachyon potentials.
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