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Generalized monopoles in six-dimensional non-Abelian gauge theory
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A spherically symmetric monopole solution is found in SO�5� gauge theory with Higgs scalar fields in
the vector representation in six-dimensional Minkowski spacetime. The action of the Yang-Mills fields is
quartic in field strengths. The solution saturates the Bogomolny bound and is stable.
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Long time ago Dirac showed that quantum mechanics
admits a magnetic monopole of quantized magnetic charge
despite the presence of a singular Dirac string [1,2]. A
quantized Dirac string is an unphysical entity in the sense
that it yields no physical, observable effect. Much later ’t
Hooft and Polyakov showed that such magnetic monopoles
emerge as regular configurations in SO�3� gauge theory
with spontaneous symmetry breaking triggered by triplet
Higgs scalar fields [3–6]. ’t Hooft-Polyakov monopoles
emerge in grand unified theory of electromagnetic, weak,
and strong interactions as well. Although a monopole has
not been found experimentally as a single particle, the
existence of such objects has far reaching consequences.
In the early universe, monopoles might have beed copi-
ously produced, significantly affecting the history of the
universe since then. In strong interactions, monopole con-
figurations are believed vital for color and quark
confinement.

In the superstring theory all matter and interactions
including gravity are truely unified in ten spacetime di-
mensions. Six extra dimensions may be compactified in a
small size, or the observed four-dimensional spacetime can
be a brane immersed in ten-dimensional spacetime. It is
important in this scenario to explore solitonic objects in
higher dimensional spacetime, which may play an impor-
tant role in compactfying extra dimensions, or in producing
and stabilizing brane structures. Recent extensive study of
domain walls in supersymmetric theories, for instance,
may have a direct link to the brane world scenario [7]. In
this paper we explore and establish solitons with finite
energies in higher dimensional spacetime.

The energy of ’t Hooft-Polyakov monopoles is bound
from below by a topological charge. Monopole solutions
saturate such bound, thereby the stability of the solutions
being guaranteed by topology [8]. This observation
prompts a question if there can be a monopole solution
in higher dimensions. Kalb and Ramond introduced
Abelian tensor gauge fields coupled to closed strings [9].
Nepomechie showed that a new type of monopole solu-
tions appear in those Kalb-Ramond antisymmetric tensor
gauge fields [10]. Their implications to the confinement
[11] and to ten-dimensional Weyl invariant spacetime [12]
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has been explored. Topological defects in six-dimensional
Minkowski space-time as generalization of Dirac’s mono-
poles were also found [13]. Tchrakian has investigated
monopoles in non-Abelian gauge theory in higher dimen-
sions whose action involves polynomials of field strengths
of high degrees [14,15]. Further, it has been known that
magnetic monopoles appear in the matrix model in the
gauge connections describing Berry’s phases on fermi
states. In particular, in the USp matrix model they are
described by SU�2�-valued anti-self-dual connections [16].

The purpose of this paper is to present regular monopole
configurations with saturated Bogomolny bound in SO�5�
gauge theory in six dimensions. Although the existence of
such solutions has been suspected by Tchrakian for a long
time, the explicit construction of solutions has not been
given. We stress that the monopole solution presented
below is the first example of a soliton in non-Abelian gauge
theory in higher dimensions which is regular everywhere
and has a finte energy.

Let us recall that in ’t Hooft-Polyakov monopoles in four
dimensions, both SO�3� gauge fields and scalar fields are in
the vector representation. In three space dimensions the
Bogomolny equations for those fields match both in space
indices and internal SO�3� indices. This correspondence
seemingly becomes obscure when space dimensions are
greater than three. A key to find correct Bogomolny equa-
tions is facilitated with the use of the Dirac or Clifford
algebra.

Consider SO�5� gauge theory in six dimensions. Gauge
fields Aab

� � �Aba
� are in the adjoint representation,

whereas scalar fields �a are in the vector representation
(a; b � 1� 5). To interrelate these two, we introduce a
basis f
ag of the Clifford algebra; f
a; 
bg � 2�ab (a; b �
1� 5). We write � � �a
a and A � 1=2Aab

� 
abdx�

where 
ab � 1=2	
a; 
b
. The field strength 2-form is
given by F � F�A� � dA � gA2 where g is the gauge
coupling constant. Similarly, a covariant derivative 1-
form of � is given by DA� � d� � g	A; �
. Under a
gauge transformation, A ! �A��1 � �1=g��d��1,
F ! �F��1, and DA� ! �DA���1, where � �
expf"ab�x�
abg
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The action is given by

I �
Z �

�
1

8  4!
TrF2 � F2 �

1

8
TrDA� � DA�

�
�
4!
��a�a � H2

0�
2d6x

�

�
Z

d6x
�
�

1

8  4!
Tr�F2������F2�����

�
1

2
D��aD��a � ���a�a � H2

0�
2

�
(1)

Here the components of F2 � 1
8 fF��; F��gdx� ^ dx� ^

dx� ^ dx� are given by

�F2����� � Te
����
e � S����;

Te
�����A� �

1

2  4!
�abcde�Fab

��F
cd
�� � Fab

��Fcd
�� � Fab

��Fcd
���;

S�����A� �
1

4!
�Fab

��F
ab
�� � Fab

��Fab
�� � Fab

��Fab
���; (2)

so that in the action 1
4 Tr�F

2������F2����� �

Te
����T����

e � 4S����S����. The action of this type has
been considered in Ref. [14]. The relations in (2) are
special to SO�5� gauge theory.

The action is quartic in F��, but is quadratic in F0k. The
Hamiltonian is positive semidefinite and is bounded from
below by a topological charge. To see it, first notice that

Te
0jkl � Fab

0i Mab;e
i;jkl ; Mab;e

i;jkl �
1

2  4!
�abcdeLcd

i;jkl;

S0jkl � Fab
0i Nab

i;jkl; Nab
i;jkl �

1

4!
Lab

i;jkl;

Lcd
i;jkl � �ijF

cd
kl � �ikF

cd
lj � �ilF

cd
jk :

(3)

The canonical conjugate momentum fields are given by

�ab
i �

�I

� _Aab
i

�
1

3!
Te
0jkl

�Te
0jkl

� _Fab
0i

�
4

3!
S0jkl

�S0jkl

� _Fab
0i

�
1

3
�Mab;e

i;jklM
cd;e
m;jkl � Nab

i;jklN
cd
m;jkl�F

cd
0m

� Uab;cd
i;m Fcd

0m: (4)

U is a symmetric, positive-definite matrix. To confirm the
positivity of the Hamiltonian, we take the A0 � 0 gauge in
which Fab

0i � _Aab
i . It immediately follows that

E �
Z

d5x
�
1

2
�U�1��

1

2  4!
f�Te

ijkl�
2 � �Sijkl�

2g

�H�

�

� 0; (5)

where H� is the scalar field part of the Hamiltonian
density.
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In the A0 � 0 gauge the energy becomes lowest for
static configurations _Aab

i � _�a � 0. It is given by

E �
Z

d5x
1

4!

�
1

2
�Te

ijkl � �ijklmDm�e�2 �
1

2
S2

ijkl

� �ijklmTe
ijklDm�e � ���a�a � H2

0�
2

�

� �
Z

d5x
1

4!
�ijklmTe

ijklDm�e

� �
Z

TrDA�F2

�
16'2

g2 H0Q: (6)

As DAF � 0 and therefore TrDA�F2 � d�Tr�F2�, Q can
be expressed as a surface integral

Q � �
g2

16'2H0

Z
S4
Tr�F2; (7)

where S4 is a space infinity of R5.
Q is a charge

R
d5xk0 of a 6-dimensional current k�

defined by k � k�dx� � � � �g2=16'2H0�TrDA�F2,
which is conserved, d � k � 0. Q can also be viewed as
a topological charge associated with Abelian Kalb-
Ramond 3-form gauge fields whose 4-form field strength
G is given by [14]

G � Tr
�
�̂F2 �

1

2g
�̂�DA�̂�2F �

1

16g2 �̂�DA�̂�4
�

� Tr�̂
�
F �

1

4g
�DA�̂�2

�
2
: (8)

Here �̂ � �=j�j, j�j �
�������������
�a�ap

and DA�̂ � d�̂ �

g	A; �̂
.
It is the salient feature of G given in (8) that it can be

written as

G � dC�
1

16g2 Tr�̂�d�̂�4;

C �
1

2g
Tr�̂

�
�d�̂�2A � g�d�̂A�̂A � dAA � AdA�

� g2

�
A3 �

1

3
A�̂A�̂A

	�
:

(9)

C does not have a singularity of the Dirac string type where
j�j � 0. G and C are the ’t Hooft 4-form field strengths
and the corresponding Kalb-Ramond 3-form fields in six
dimensions, respectively. The expression (9) is valid in the
entire six-dimensional spacetime. We remark that the
Kalb-Ramond 3-form fields C in (9) is almost the same
as those in Ref. [15] where A is replaced by the asymptotic
one which is valid only at r ! 1 (on S4). We also note that
for configurations with �̂ � 
5, only gauge fields in the
unbroken SO�4�, Â � 1

2

P4
a;b�1 Aab

� 
abdx�, contribute in
-2
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FIG. 1. Solution : U�+� and K�+� in (13).
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(8) and (9). Indeed, Tr
5�dAA � AdA� �
Tr
5�dÂ Â�ÂdÂ� and Tr	�̂A3 � 1

3 ��̂A�3
 � 1
6Trf�̂;Ag3 �

1
6Trf�̂; Âg3.

As DA�̂ � 0 on S4 at space infinity for any configura-
tion with a finite energy, G coincides with Tr�̂F2 on S4.
Hence

Q �
g2

16'2H0

Z
S4
j�jG

�
1

256'2

Z
S4
Tr�̂�d�̂�4:

(10)

In the second equality we used the fact that C is regular in
S4 as j�j � H0. The quantity appearing in the last equality
in (10) is the winding number. The charge Q is thus
regarded as the magnetic charge associated with Abelian
Kalb-Ramond field strengths G.

The Bogomolny bound equation is

�5�F ^ F� � �DA�; (11)

where �5 is Hodge dual in five-dimensional space. In
components it is given by

�ijklmTe
ijkl � �Dm�e;

Sijkl � 0:
(12)

Let us define e � xa
a=r. We make a hedgehog ansatz
[15]

� � H0U�r�e;

A �
1� K�r�

2g
ede:

(13)

It follows immediately that

DA� � H0�KUde � U0edr�;

F �
1� K2

4g
de ^ de �

K0

2g
edr ^ de:

(14)

Boundary conditions are given by U�0� � 0, K�0� � 1,
U�1� � �1, and K�1� � 0.

With the use of �5�de ^ de ^ de ^ de� � 4!edr=r4 and
�5�edr ^ de ^ de ^ de� � 3!de=r2, the Bogomolny
bound Eq. (11) (with a plus sign) becomes

KU � �
1

+2 �1� K2�
dK
d+

;

dU
d+

�
1

+4 �1� K2�2;

+ � ar;

a �

�
2g2

3
H0

	
1=3

:

(15)

In this case U increases as + so that U�1� � 1. A solution
in the case �DA� � �5�F ^ F� is obtained by replacing U
by �U. We note that the two equations in (15) can be
041701
combined to yield

d
d+

�
1� K2

+2K

dK
d+

	
�

�1� K2�2

+4 � 0; (16)

or equivalently, in terms of s � ln+ and f�s� � K2,

f00 �

�
3�

f0

f�1� f�

�
f0 � 2f�1� f� � 0: (17)

The Eq. (16) with the boundary conditions K�0� � 1 and
K�1� � 0 is scale invariant, i.e., if K�+� is a solution, so is
K�.+� with arbitrary . > 0. However, U�+� changes,
under this transformation, to .�3U�.+� in (15) so that
the boundary condition U�1� � 1 is fulfilled only with a
unique value for ..

The behavior of the solution near the origin is given by

K � 1� b+2 �
5

14
b2+4 �    ;

U � 4b2+
�
1�

4

7
b+2 �

20

63
b2+4 �   

�
:

(18)

The value of the parameter b needs to be determined such
that U�1� � 1 is satisfied. The behavior of the solution at a
space infinity + � 1 is given by

K � K0e
�+3=3;

U � 1�
1

3+3 :
(19)

Note that F � �4g��1de ^ de and DA� � H0+�4ed+.
A solution is obtained numerically. We adopted the

shooting method to solve Eq. (15) from + � 0 to + � 1.
Precisely tuning the value of b in (18), we find a solution
with the boundary conditions U�1� � 1 and K�1� � 0. It
is found that b � 0:494 and K0 � 1:2. The solution is
displayed in Fig. 1.

The energy, (6), of the solution is given by
R
TrDA�F2

in the � ! 0 limit. The insertion of (14) leads, with the aid
of the identities Tredr�de�4 � �4  4!=r4�d�volume� and
Tr�de�5 � 0, to
-3
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E �
Z

d5x
H0

16g2

4  4!

r4

�
�1� K2�2

dU
dr

� 4
dK
dr

UK�1� K2�

�

�
16'2

g2 H0	�1� K2�2U
10

�
16'2

g2 H0: (20)

The same result follows from E � �16'2H0=g2�Q as
Q � 1.

As Dirac showed, a monopole configuration in U�1�
gauge theory in four dimensions necessarily has a Dirac
string, or a singular point in gauge potentials on the space
infinity S2. Quantization of Dirac strings, or monopole
charges, corresponds to nontrivial mapping around the
singular point, or the hole, on S2, namely '1	U�1�
. The
configuration of a ’t Hooft-Polyakov monopole in the
SO�3� gauge theory is regular everywhere and the mono-
pole charge is related to the winding number of the Higgs
fields, which breaks SO�3� to U�1�. This fact is summa-
rized in the exact sequence in the homotopy group

Kerf'1	U�1�
 ! '1	SO�3�
g ’ '2�S2�: (21)

In our case SO�5� gauge symmetry is broken to SO�4� by
the Higgs fields �a. A monopole in SO�4� gauge theory in
six dimensions accompanies a singularity in gauge poten-
tials on the space infinity S4. Quantization of monopole
charges is associated with '3	SO�4�
. The singularity is
lifted by embedding SO�4� into SO�5�, and the monopole
charge is reduced to the winding number '4�S4� of the
Higgs fields. The relation is summarized in

Kerf'3	SO�4�
 ! '3	SO�5�
g ’ '4�S
4�: (22)

Thus we observe that generalized monopoles in SO�5�
gauge theory in six dimensions described in the present

HIRONOBU KIHARA, YUTAKA HOSOTANI, AND MUNETO
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paper are completely parallel to ’t Hooft-Polyakov mono-
poles in four dimensions.

As another interesting aspect, the generalized monopole
solution presented in this paper may realize the electric-
magnetic duality in the M-theory of strings. The 3-form
Kalb-Ramond fields C defined in (9) couple to 2-branes in
11 dimensions. Dual of the field strength dC is the 7-form
field strength so that the generalized monopole can be
regarded as a source to the corresponding 6-form Kalb-
Ramond fields, namely, a 5-brane in 11 dimensional space-
time. A similar argument applies to 2- and 4-branes in ten
dimensions.

In this paper we have shown that there exists a regular,
spherically symmetric monopole solution in the six-
dimensional SO�5� gauge theory with the action quartic
in field strengths. This is the first example of particlelike
solitons in space dimensions bigger than four. The energy
in the � ! 0 limit is given by the monopole charge asso-
ciated with the Abelian Kalb-Ramond 3-form fields. The
connection between SO�5� gauge fields and the Kalb-
Ramond fields is given by the generalized ’t Hooft tensors
G and C. The solution is stable. Physical consequences of
these generalized monopoles are yet to be investigated.
They affect the evolution of the universe at the very early
stage, should there exist extra dimensions. Their role for
the compactification of extra dimensions and their relation
to extended objects in the matrix models need to be clari-
fied. Generalization of solutions to multimonopole states is
also awaited. We hope to come back to these points in
future publications.
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