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Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band,
will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will
necessarily be unequal and time varying, and (because of aberration) will have different values on up-
and down-links. In such unequal-armlength interferometers, laser-phase noise will be canceled by taking
linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately
time shifted by the light propagation times along the corresponding arms. This procedure, known as time-
delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time.
Here we propose a high-accuracy technique to estimate these time delays, and we study its use in the
context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique,
which relies on the TDI combinations themselves, as time-delay interferometric ranging (TDIR). For
every TDI combination, we show that, by minimizing the rms power in that combination (averaged over
integration times �104 s) with respect to the time-delay parameters, we obtain estimates of the time
delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows
the implementation of TDI without the use of dedicated interspacecraft ranging systems, with a potential
simplification of the LISA design. In this paper we define the TDIR procedure formally, and we
characterize its expected performance via simulations with the Synthetic LISA software package.
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The Laser Interferometer Space Antenna (LISA) [1] is a
planned NASA-ESA mission to detect and study gravita-
tional waves (GWs) in the 10�4–1 Hz band by exchanging
coherent laser beams between three widely separated
spacecraft. Each spacecraft contains two drag-free proof
masses, which provide freely falling references for the
GW-modulated relative spacecraft distances; these are
measured by comparing the phases of the incoming and
local lasers. It has been shown that the time series of the
phase differences can be combined, with suitable time
delays, to cancel the otherwise overwhelming laser-phase
noise, while preserving a GW response. This technique is
known as time-delay interferometry (TDI; see [2,3] and
references therein).

In the case of a stationary LISA spacecraft array, it was
estimated [4] that the time delays need to be known with an
accuracy of about 100 ns if the various TDI combinations
are to work effectively, suppressing the residual laser-
phase fluctuations to a level below the secondary noises
(such as the proof-mass and optical-path noises). For an
array of spacecraft in relative motion along realistic solar
orbits, more complicated (second-generation) TDI combi-
nations are needed; these require an even more accurate
knowledge of the time delays [5]. The most direct imple-
mentation of TDI consists in triggering the phase measure-
ments at the correct delayed times (within the required
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accuracy), as suggested in Ref. [4]. This approach requires
the real-time, onboard knowledge of the light-travel times
between pairs of spacecraft, which determine the TDI time
delays. Although the triggering approach is feasible in
principle, it complicates the design of the optical phase
meter system, and it requires an independent onboard
ranging capability. Recently, it was pointed out [6] that
the phase measurements at the specific times needed by the
TDI algorithm can be computed in postprocessing with the
required accuracy, by the fractional-delay interpolation
(FDI) [6,7] of regularly sampled data (with a sampling
rate of 10 Hz for a GW measurement band extending to
1 Hz).

In this communication, we show that FDI allows
the implementation of a numerical variational procedure
to determine the TDI time delays from the phase-
difference measurements themselves, eliminating the
need for an independent onboard ranging capability.
Since this variational procedure relies on the TDI combi-
nations, we refer to it as time-delay interferometric ranging
(TDIR).

Conventional spacecraft ranging is based on the mea-
surement of either one-way or two-way delay times. In
one-way ranging, two or more tones are coherently modu-
lated onto the transmitted carrier; the phases of these tones
are measured at the receiver, differenced, and divided by
the spanned bandwidth to yield the group delay and hence
the time delay (up to an ambiguity of c divided by the
spanned bandwidth of the ranging tones). In two-way
ranging, a known ranging code is modulated on the trans-
mitted carrier, which is transponded by a distant spacecraft
back to the originator; the received signal is then cross
-1  2005 The American Physical Society
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correlated with the ranging code to determine the two-way
time of flight.

TDIR differs from these methods in that it uses the
unmodulated laser noises in a three-element array, which
are canceled in TDI combinations assembled with the
correct interspacecraft light-travel times. This means that
TDI can be used to estimate the light-travel times by
minimizing the laser-noise power in the TDI combinations
as a function of the postulated light-travel times: this
process defines TDIR. As an example of how TDIR works,
we shall here consider one of the second-generation TDI
combinations, the unequal-armlength Michelson combina-
tion X1 [3],

X1 � ���31 � �13;2̂� � ��21 � �12;3̂0 �;2̂02̂

� ��21 � �12;3̂0 �;3̂3̂02̂02̂ � ��31 � �13;2̂�;3̂3̂03̂3̂02̂02̂	

� ���21 � �13;3̂0 � � ��31 � �13;2̂�;3̂3̂0

� ��31 � �13;2̂�;2̂02̂ 3̂ 3̂0 ��21 � �12;3̂0 �;2̂02̂2̂02̂ 3̂ 3̂0 	: (1)

Here we use the notation of Ref. [3], where the �ij (for
spacecraft indices i, j � 1, 2, 3, i � j) are linear combi-
nations of the interspacecraft phase measurements sij and
of the interbench measurements 	ij made aboard the space-
craft,

�21 
 s21 �
1

2
�	32 � 	12	;3̂0 ;

�31 
 s31 �
1

2
�	21 � 	31	;

�12 
 s12 �
1

2
�	32 � 	12	;

�32 
 s32 �
1

2
�	13 � 	23	;1̂0 ;

�13 
 s13 �
1

2
�	21 � 	31	;2̂0 ;

�23 
 s23 �
1

2
�	13 � 	23	;

(2)

and where indices prefixed by a semicolon delay observ-
ables by the corresponding light-travel times Lk, in the
sequential order given (with the index k � 1 denoting the
light-travel time for the beam emitted from spacecraft 2
and received at spacecraft 3, and likewise indices
f2; 3; 10; 20; 30g 
 f3 ! 1; 1 ! 2; 3 ! 2; 1 ! 3; 2 ! 1g).

The main contributions to the phase measurements sij
and 	ij are given by

s31 � 13;2 �31 � �31; s21 � 12;30 �21 � �21;

	31 � 21 �31 ��31; 	21 � 31 �21 ��21

(3)

(and by cyclical permutations thereof), where the ij

denote the sum of laser-phase fluctuations and of optical-
bench motions (the former 3 to 4 orders of magnitude
larger than the latter), and where the �ij and the �ij denote
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the sum of all other fluctuations affecting the measure-
ments, such as the secondary-noise sources (proof mass
and optical path) and GWs.

The time-delay indices that appear in Eq. (3) represent
the actual delays caused by the physical propagation of the
laser signals across the LISA arms. By contrast, the hatted
delays of Eq. (1) need to be provided by the data analyst
(or, in the triggering approach, by the onboard ranging
subsystem) with the accuracy required for effective laser-
noise cancellation. The X1-based implementation of TDIR
works by minimizing the power in X1 with respect to the
hatted delays L̂k. Since the TDI combinations constructed
with the actual delays cancel laser-phase noise to a level
108 below the secondary noises [2], it follows that if we
neglect all nonlaser sources of phase noise (i.e., if we set
�ij � �ij � 0), the minimum of the power integral

I�0��L̂k� �
1

T

Z T

0
�X�0�

1 �L̂k�	
2dt (4)

will occur for L̂k � Lk (with k � 1; 2; 3; 10; 20; 30; here the
superscript (0) denotes laser-noise-only quantities). The
search for this minimum can be implemented in postpro-
cessing, using FDI [6] to generate the needed sij and 	ij
samples at the delayed times corresponding to any choice
of the L̂k.

In reality, the presence of non-laser-phase noises (pos-
sibly including GWs) will displace the location of the
minimum from Lk. Writing X1 � X�0�

1 � X�n�
1 (with X�n�

1
obtained by setting all ij � 0), the power integral be-
comes

I�n��L̂k� �
1

T

Z T

0
�X1�L̂k�	

2dt; (5)

or explicitly,

I�n��L̂k� � I�0��L̂k� �
1

T

Z T

0
�X�n�

1 	2dt�
2

T

�
Z T

0
X�n�
1 X�0�

1 �L̂k�dt: (6)

Here we have written the non-laser-phase noise X�n�
1 as

independent of the delays L̂k: this holds true for a search
conducted sufficiently close to the true minimum, since the
ij are much larger than the �ij and �ij, and so are their
variations. The minimum of I�n��L̂k� can be displaced from
L̂k � Lk because the third term of Eq. (5) [the cross-
correlation integral of X�n�

1 and X�0�
1 �L̂k�] can be negative

and offset a concurrent increase in I�0��L̂k�. The achievable
time-delay accuracies will depend on the level of the
residual laser noise, the levels of the secondary noises in
X1, and the integration time T [8]. We expect the armlength
errors to be determined by the interplay of the first and
third terms in Eq. (6). By equating the variance from the
imperfect cancellation of the laser with the estimation-
error variance of the cross term in Eq. (6), we can roughly
estimate how well the time delays will be determined with
-2
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TDIR: �Lk � ��X�n�
1
=� _X�0�

1
�

���������
�=T

p
, where �X�n�

1
and � _X�0�

1
are

the root mean squares of the secondary noises and of the
time derivative of the laser noise in X1, and � is the
temporal width of the secondary-noise autocorrelation
function. For nominal LISA noises and T ’ 10 000 s, we
thus expect �Lk of 30 ns or better to be achievable.

An analogous technique was proposed by Gürsel and
Tinto [9] for the problem of determining the parameters of
a GW burst observed in coincidence by a network of
ground-based GW interferometers. In that case, a phase-
closure condition was imposed on a family of linear com-
binations of the responses of three GW detectors. A GW
burst would produce a zero response in the particular
phase-closed combination corresponding to the source’s
position in the sky; the position could then be estimated
by implementing a least-squares minimization procedure.
In that case as well as for TDIR, the least-squares minimi-
zation procedure can be shown to be optimal if the sec-
ondary noises have Gaussian distribution.

We test TDIR for a realistic model of the LISA orbits
and instruments by performing simulations with the
Synthetic LISA software package [10]. Because the present
version of Synthetic LISA works in terms of frequencies
rather than phases, we perform an analog of the procedure
outlined above where all the phase variables are replaced
by the corresponding fractional-frequency fluctuations. We
generate a number of chunks of contiguous data for the sij
and 	ij measurements, sampled at intervals of 0.25 s, and
containing pseudorandom laser, proof-mass, and optical-
path noises at the nominal level set by the LISA prephase A
specification [1,10]. We consider chunk durations of 8192,
16 384, and 32 768 s.

The 18 noise processes (corresponding to the six lasers,
proof masses, and optical paths) are assumed to be uncor-
related, Gaussian, and stationary, with (respectively) white,
f�2, and f2 power spectral densities, band limited at 1 Hz.
The frequency-fluctuation measurements contain also the
responses due to GWs from two circular binaries with
fGW ’ 1 and 3 mHz, located, respectively, at the vernal
equinox and at ecliptic latitude 45� and longitude 120�.
The strength of the two sources is adjusted to yield an
optimal signal-to-noise ratio of �500 over a year (for X1),
guaranteeing that there will be times of the year when each
source will be clearly visible above the noise in an obser-
vation time �10 000 s.

We put the three LISA spacecraft on realistic trajecto-
ries, modeled as eccentric, inclined solar orbits with angu-
lar velocity � � 2�=yr, average radius R=c ’ 499 s, and
eccentricity e ’ 9:6� 10�3 [11]. The resulting time and
direction dependence [2] of the light-travel times is then
[10,11]

Lk�t��L�
1

32
�eL�sin�3�t�3�0��

�
15

32
�eL����RL�

�
�sin��t��k�; (7)
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where the plus (minus) refers to unprimed (primed) indi-
ces. In Eq. (7), L=c ’ 16:68 s is the average light-travel
time, and

��1; �2; �3� �

�
�0; �0 �

4�
3

; �0 �
2�
3

�
; (8)

with �0 an arbitrary constant (set to 0 in our simulations)
giving the phase of the spacecraft motion around the guid-
ing center of the LISA array. The starting times of the
chunks are spread across a year to sample the time depen-
dence of the Lk and the directionality of the GW responses.

Separately for each chunk, we minimize I�n��L̂k�t�	
[Eq. (5)] starting from guesses for the L̂k affected by errors
�40 km=c, very much larger than typical accuracy of
radio tracking from Earth [12]. The minimization is carried
out using a Nelder-Mead simplex-based algorithm [13].
The effective cancellation of laser noise with TDI requires
modeling the time dependence of the travel times within
the chunks. In our simulations, we use two such models:
(1) A
-3
n orbital-dynamics model (ODM) given by
Eq. (7), with ceL, d�RL, and �̂0 taken as the inde-
pendent search parameters with respect to which I�n�

is minimized. We exclude L and � from the search
because the dependence of the Lk�t� on such an
extended parameter set is degenerate on time scales
�10 000 s.
(2) A
 linear model (LM) given by L̂k�t� � L̂0
k � L̂1

k�t�
t0� (with t0 set to the beginning of each chunk).
Because the expression for X1 does not contain the
travel times L1 and L10 , our independent search
parameters are the constants L̂0

k and L̂1
k for k �

2; 20; 3; 30 (eight numbers altogether).

Figures 1 and 2 show the results of our simulations. The
average travel-time errors �L displayed in Fig. 1 are
defined as �L � ��L2 � �L20 � �L3 ��L30 �=4, with

�Lk �

��������������������������������������������������������
1

T

Z t0�T

t0
�L̂k�t� � Lk�t��

2dt

s
: (9)

Because the noises have different realizations in each
chunk and because the local behavior of the Lk�t�
[Eq. (7)] changes along the year, the average error �L of
each chunk is a random variable. Its distribution is ap-
proximated by the histograms of Fig. 1, which refer to
populations of, respectively, 512 (for T � 8192 s), 256 (for
T � 16 384 s), and 128 (for T � 32 768 s) chunks (hence
the roughness of the curves).

It turns out that the linear model is not quite sufficient to
model the changes of the time delays during the chunk
lengths considered, since the minimum �L [computed by
least squares fitting the parameters L̂0

k and L̂1
k to the Lk�t�]

are in the range 0.25–2.60 m (for T � 8192 s), 1–10 m (for
T � 16 384 s), and 4–40 m (for T � 32 768 s). Thus, in
Figs. 1 and 2 we show results only for the linear model with
T � 8192 s. (The minimization of I�n� over the LM pa-
rameters is delicate, because for X1 the laser-noise resid-



FIG. 2. Spectra of frequency laser noise and GWs plus secondary
panel curves plot: (‘‘uncanceled laser’’) laser noise for one of the
(‘‘residual noise’’) residual laser noise in X1 at the beginning of TDIR
GWs plus secondary noises in X1; (‘‘X�0�

1 ’’) residual laser noise in X
durations of 8192 s (for the LM and ODM models), and 16 384 and
spectra computed separately for each chunk using triangle-windowe
256, and 128 chunks for T � 8192, 16 384, and 32 768 s, respective
laser noise is suppressed to levels several orders of magnitude below
typical laser-noise suppression factor with respect to secondary no
improves by a factor �2 for 8192-s ODM, and by factors of �

���
2

p
fo

binaries stand clearly above the noise at 1 and 3 mHz.

FIG. 1. Distribution of errors �L [see Eq. (9) and the main text
above it] in the determination of light-travel times, using
X1-based TDIR with chunk durations of 8192 s (for the LM
and ODM models), and 16 384 and 32 768 s (for the ODM model
only). As expected, the errors are lower for longer integration
times T; for the LM model, the larger errors are due to the
unmodeled curvature in the time dependence of the light-travel
times. The distributions shown correspond to samples of 512,
256, and 128 chunks for T � 8192, 16 384, and 32 768 s, re-
spectively, spread across a year.
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uals turn out to depend strongly on �L2, �L30 , and �L20 �
�L3, but only weakly on �L20 ��L3. In this case, the
Nelder-Mead algorithm can be made to return accurate

results by using the search parameters L̂0
2, L̂

0
30 ,

dL0
20 � L0

3,

and dL0
20 � L0

3, plus the corresponding L̂1
k parameters.)

Figure 2 shows the spectra of the residual laser noise at
the end of TDIR [i.e., of X�0�

1 at the minimum of I�n��L̂k�],
as compared with spectra of GWs and secondary noises
(i.e., of X�n�

1 ). The figure shows also the spectrum of
uncanceled laser noise in the sij measurements and the
spectrum of residual laser noise at the beginning of TDIR
(i.e., for L̂k affected by errors ’ 40 km). The spectra are
computed separately for each chunk using triangle-
windowed periodograms, and then averaged over the
chunk populations. The two GW sources stand clearly
above the secondary noises at 1 and 3 mHz. We see that
the TDI cancellation of laser noise with TDIR-determined
time delays is essentially complete, with the residual laser
noise several orders of magnitude below the secondary
noises. We conclude that for T � 10 000 s, with the nomi-
nal LISA noises, and even in the presence of very strong
GW signals, TDIR can easily reach the time-delay accu-
racy required for second-generation TDI. For frequencies
below 10 mHz, the residual laser-noise power decays as f6,
while the secondary noises decrease only as f2. We attrib-
noises before and after TDIR. Beginning from the top, the left-
sij measurements, before cancellation in the TDI observables;
minimization, with imposed armlength errors ’ 40 km; (‘‘X�n�

1 ’’)

1 at the end of TDIR minimization, as performed using chunk
32 768 s (for the ODM model only). We show averages of the

d periodograms; the averages are taken over populations of 512,
ly, spread across a year. In all cases, the initially overwhelming
the secondary noises: the cutout graph on the right shows that the
ise is �5� 103 for the worst case considered (8192-s LM); it
r each successive doubling of T. The GWs from the two circular
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ute the flattening near 0.1 mHz (which is insignificant with
respect to the LISA performance) to a combination of
leakage and aliasing in the numerical estimation of the
spectra and of real effects due to the first nonconstant terms
in the travel-time errors across the chunks.

Finally, we estimate the power in the Fourier bins con-
taining the simulated signals using two different time
series: in the first X1 was formed using perfectly known
time delays, in the second using the TDIR-determined time
delays. Analyzing the 32 768-s chunks at the times along
the simulated year where the signal amplitudes were maxi-
mum, we find that the signal powers in the two time series
agree to the numerical precision of the calculation (about a
part in 105).

In summary, we propose a method that uses TDI and
the intrinsic phase noise of the lasers in a three-element
array to determine the interspacecraft light-travel times.
This method, time-delay interferometric ranging, relies
on the fact that TDI nulls all the laser noises when the
time delays are chosen to match the travel times experi-
enced by the laser beams as they propagate along the sides
of the array. Simulations performed using the nominal
LISA noises indicate that, for integration times
�10 000 s, TDIR determines the time delays with accura-
cies sufficient to suppress the laser-phase fluctuations to a
level below the LISA secondary noises, while at the same
time preserving GW signals. Our simulations assume syn-
chronized clocks aboard the spacecraft, but we anticipate
041101
that TDIR may be extended to achieve synchronization, by
minimizing noise power also with respect to clock
parameters.

TDIR has the potential for simplifying the LISA design,
allowing the implementation of TDI without a separate
interspacecraft ranging subsystem. At the very least,
TDIR can supplement such a subsystem, allowing the
synthesis of TDI combinations during ranging dropouts
or glitches. TDIR may be applicable in other forthcoming
space science missions that rely on spacecraft formation
flying and on interspacecraft ranging measurements to
achieve their science objectives.

The TDIR technique presented in this paper was based
on the TDI combination X1. Since the accuracy in the
estimation of the time delays achievable by TDIR depends
on the magnitudes of the secondary noises entering the
specific TDI combination used, it is clear that it should be
possible to optimize the effectiveness of TDIR over the
space of TDI combinations [14]. We will investigate this
problem in a more extensive future article.
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