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First-order electroweak phase transition in the standard model with a low cutoff
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We study the possibility of a first-order electroweak phase transition due to a dimension-six operator in
the effective Higgs potential. In contrast with previous attempts to make the electroweak phase transition
strongly first-order as required by electroweak baryogenesis, we do not rely on large one-loop thermally
generated cubic Higgs interactions. Instead, we augment the standard model effective theory with a
dimension-six Higgs operator. This addition enables a strong first-order phase transition to develop even
with a Higgs boson mass well above the current direct limit of 114 GeV. The ’6 term can be generated for
instance by strong dynamics at the TeV scale or by integrating out heavy particles like an additional
singlet scalar field. We discuss conditions to comply with electroweak precision constraints, and point out
how future experimental measurements of the Higgs self-couplings could test the idea.
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1Up to an irrelevant constant, the potential is unchanged by the
parameter transformation: �! �� and v2 ! v2
1 �
4�2�=�3v2��. So, we can restrict ourselves to the case �> 0.
I. BARYOGENESIS AND THE STANDARD MODEL

The observed large baryon asymmetry requires natural
law to obey three principles: baryon number violation, C
and CP violation, and out-of-equilibrium dynamics [1]. In
the standard model (SM), baryon number violation can
occur through the electroweak sphaleron [2,3], which is a
nonperturbative saddle-point solution to the field equations
attainable at high temperatures. These solutions allow
transitions to topologically distinct SU�2� vacua with dif-
fering baryon number.
C is already violated in the SM as well as CP, as

evidenced in the Kaon and B-meson systems.
Nevertheless, it has been thought [4] that CP violation
from the Kobayashi-Maskawa phase is too suppressed to
play a dominant role in baryogenesis, although a recent
work [5] suggests a way to circumvent this common view.
We note also that higher dimensional operators could well
provide the desired CP violation [6].

In this paper, we focus on the last main challenge for the
viability of SM baryogenesis [7]: the requirement of out-
of-equilibrium dynamics. This would be present in the SM
if there were a strong first-order electroweak phase tran-
sition (EWPT). In this case, bubbles of the nonzero Higgs
field vacuum expectation value nucleate from the symmet-
ric vacuum and as they expand, particles in the plasma
interact with the phase interface in a CP-violating way.
The CP asymmetry is converted into a baryon asymmetry
by sphalerons in the symmetric phase in front of the bubble
wall [8]. One of the strongest constraints on electroweak
(EW) baryogenesis comes from the requirement that bary-
ons produced at the bubble wall are not washed out by
sphaleron processes after they enter the broken phase.

Imposing that sphaleron processes are sufficiently sup-
pressed in the broken phase at the critical temperature
leads to the constraint h’�Tc�i=Tc * 1. This bound is
05=71(3)=036001(5)$23.00 036001
very stable with respect to modifications of either the
particle physics or of the cosmological evolution as was
reviewed in [9]. In the SM, the EWPT is first order ifmH <
72 GeV [10], and to suppress sphaleron processes in the
broken phase would actually require mH & 35 GeV.
However, the current limit on the Higgs boson mass is
well above that atmH > 114 GeV [11], and the SM fails to
be an adequate theory for baryogenesis. As the hopes for a
SM solution to baryogenesis faded other ideas have been
pursued [12–14].

II. LOW-SCALE CUTOFF THEORY

In this work, we focus on a single Higgs doublet model
and we study how the dynamics of the EWPT can be
affected by modifying the SM Higgs self-interactions. In
contrast with previous approaches initiated by Ref. [15],
we do not rely on large cubic Higgs interactions. Instead,
we allow the possibility of a negative quartic coupling
while the stability of the potential is restored by higher
dimensional operators. We add a ’6 nonrenormalizable
operator to the SM potential, and show that it can induce
a strong first-order phase transition sufficient to drive
baryogenesis [16].

The most general potential of degree six can be written,
up to a cosmological constant term irrelevant to our calcu-
lation, as1
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where � is the SM electroweak Higgs doublet. At zero
temperature the CP-even scalar state can be expanded in
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FIG. 1 (color online). Contours of constant Tc from 0 to
240 GeV. The shaded (blue) region satisfies the bounds of
Eq. (5). Above it, the EWPT is second order and the critical
temperature is no more given by Eq. (3) but instead by T2

c �
�2�2m2

H � 3v4
0�=4c�

2.
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FIG. 2 (color online). Contours of constant vc=Tc from 1 to
1. The shaded (blue) region satisfies the bounds of Eq. (5).
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terms of its zero-temperature vacuum expectation value
h’i � v0 ’ 246 GeV and the physical Higgs boson H:
� � ’=

���
2

p
� �H � v0�=

���
2

p
.

At zero temperature we can minimize Eq. (1) to find � �
m2
H=�2v

2
0� and v � v0 in terms of physical parameters mH

and v0. It can be checked that ’ � v0 is the global mini-
mum of the potential as long as m2

H > v
4
0=�

2.
We approximate finite temperature effects by adding a

thermal mass to the potential V�’; T� � cT2’2=2 �
V�’; 0�, where c is generated by the quadratic terms,
T2m2

i , in the high-T expansion of the one-loop thermal
potential

c �
1

16

�
4y2
t � 3g2 � g02 � 4

m2
H

v2
0

� 12
v2

0

�2

�
; (2)

g and g0 are the SU�2�L and U�1�Y gauge couplings, and yt
is the top Yukawa coupling. The T2m2

i terms also generate
a T-dependent contribution to the Higgs quartic coupling
of the form T2’4=�4�2�. In the following, we have dis-
carded this contribution to keep our analytical study sim-
ple. We have checked that it does not alter our results by
more than a few percent in the physically interesting region
where a strongly first-order EWPT occurs. There is also a
cubic Higgs interaction induced by finite temperature ef-
fects (crucial in supersymmetric baryogenesis) but it has a
smaller role in our discussion, and should tend to make the
EWPT slightly stronger first-order. While perturbation
theory is expected to break down at high temperature, its
validity has been confirmed by lattice calculations [17] in
the regime where the EWPT is strongly first-order, in the
SM as well as in its supersymmetric extension. We there-
fore expect that the value of h’�Tc�i=Tc given by our naive
tree level analysis is not too different from its actual value.

The critical temperature Tc at which the minimum at
’ � 0 is degenerate with that at ’ � 0 is

T2
c �

�4m4
H � 2�2m2

Hv
4
0 � 3v8

0

16c�2v4
0

: (3)

The vacuum expectation value of the Higgs field at the
critical temperature in terms of mH, � and v0 is

h’2�Tc�i � v2
c �

3

2
v2

0 �
m2
H�2

2v2
0

: (4)

We can see from Eqs. (3) and (4) that for any given mH
there is an upper bound on � to make sure that the phase
transition is first order (i.e., v2

c > 0), and there is a lower
bound on � to make sure that the T � 0 minimum at ’ �

0 is a global minimum (i.e., T2
c > 0). These two combine to

give the important equation
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where mc � v0

������������������������������������������
�4y2

t � 3g2 � g02�=8
p

� 200 GeV. Note
that the coefficient c in the thermal mass is positive if

and only if �>
���
3

p
v2

0=
����������������������
m2
H � 2m2

c

q
. At mH � mc and

� � v2
0=mc, the critical temperature is not uniquely de-

fined but this is an artifact of our approximations. Around
that point higher order terms in the thermal potential will
resolve the singularity. These higher order terms will, in
particular, give corrections to the bounds (5) delineating
the first-order phase transition region.

Figures 1 and 2 plot contours of constant Tc and vc=Tc,
respectively, in the � vs mH plane. These results are
encouraging and motivate a full one-loop computation of
the thermal potential embedded in a complete baryogene-
sis scenario. Such an analysis is underway.
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III. SPHALERON SOLUTION

We compute the sphaleron solution of this effective field
theory, Eq. (1), by starting with the ansatz [3]

Wa
i �

adxi � �
2i
g
f���dU�U��1;  �

v0���
2

p h���U
0
1

� �
;

where � � gv0r and

U �
1

r
z x� iy

�x� iy z

� �

and, as usual, v0 ’ 246 GeV. We compute only the SU�2�
sphaleron as corrections from U�1�Y are expected to be
small [3,18]. The functions f and h are solutions to two
coupled nonlinear differential equations (a prime denotes a
derivative with respect to �):

�2f00 � 2f�1 � f��1 � 2f� �
�2

4
h2�1 � f�;

��2h0�0 � 2h�1 � f�2 �
�2�h3 � h�

g2

�
��

3v2
0�h

2 � 1�

4�2

�

subject to the boundary conditions f�0� � h�0� � 0 and
f�1� � h�1� � 1. To solve these differential equations it
is necessary to first expand the solutions about their asymp-
totic values as �! 0 and �! 1 and then implement a
shooting method.

After obtaining the sphaleron solution we compute the
sphaleron energy at T � 0 (shown in Fig. 3) according to
the equation

Esph�
4%v0

g

Z 1

0
d�

�
4f02�

8

�2f
2�1�f�2�

1

2
�2h02

�h2�1�f�2�
�

4g2�
2�h2�1�2�

v2
0

8g2�2�
2�h2�1�3

�
:

(6)

It differs from the SM value by the last term, which tends to
FIG. 3. Sphaleron energy at zero temperature in units of
4%v0=g � 4:75 TeV.
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make the sphaleron energy slightly smaller (by only a few
percent). An analogous conclusion was also reached in the
minimal supersymmetric standard model [19].

The sphaleron energy is a crucial quantity for EW baryo-
genesis as the rate of baryon number violation in the
broken phase at Tc is proportional to e�Esph�Tc�=Tc [20].
Esph�Tc� is approximately given by Eq. (6) where v0 is
replaced by vc, and this is how requiring that sphaleron
processes be frozen leads to the bound vc=Tc * 1.
Knowing whether the right-hand side of this inequality is
1 or 1.5 is crucial in deriving the resulting bound on the
Higgs mass, and this depends, among other things, on the
precise sphaleron energy. The fact that Esph is larger than
the cutoff scale for a first-order phase transition is not
inconsistent with the calculation of the rate of baryon
number violation at Tc. Indeed, Esph is large because the
sphaleron is an extended object, but its local energy density
is always smaller than the cutoff scale. While a large
amount of energy has to be pumped into the thermal bath
to build a sphaleron configuration, this does not involve
any local physics beyond the cutoff scale.

IV. PRECISION ELECTROWEAK CONSTRAINTS

The theory we have presented above is the SM with a
low-scale cutoff. It is minimal in that no new particles have
been introduced to achieve the desired out-of-equilibrium
first-order phase transition needed for baryogenesis.
However, this does not mean that the phenomenology of
this model is indistinguishable from that of the SM.

The nonrenormalizable operators of this theory can sig-
nificantly affect observables. If the only additional terms
are those given by Eq. (1), there would be no phenomeno-
logical constraints on this scenario to worry about.
However, a low-scale cutoff for other dimension-six op-
erators can be problematic for precision electroweak ob-
servables [21]. As an example, let us consider the
following four dimension-six operators suppressed by the
cutoff scale �:

�L �
'�

�2 ��
yD)��2 �

'W
�2 �D*W

a
)+�

2 �
'B
�2 �@*B)+�

2

�
'F
�2 �+)./PL) �e./PL+e: (7)

The most sensitive precision electroweak observables are
sin20eff

W , mW , �l � ��Z! l�l��, and �Z. The percent
shifts to these observables �Oi � fsin20eff

W ;mW�GeV�;
�l�MeV�;�Z�GeV�g induced by �L are

%
�

�O

O

�
i
�

8:57 6:19 �1:47 4:29
�4:31 �0:55 �0:55 �0:65
�7:20 1:69 0:93 �3:61
�7:90 1:00 1:08 �3:93

0
BBB@

1
CCCA

~'�

~'W
~'B
~'F

0
BBB@

1
CCCA

where ~'i � 'i�1 TeV�2=�2. We can compare the experi-
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FIG. 4. Contours of constant )=)SM � 1 in the � vs mH
plane. The dashed lines delimit the allowed region defined in
Eq. (5).

GROJEAN, SERVANT, AND WELLS PHYSICAL REVIEW D 71, 036001 (2005)
mental values of the observables [11] with the dimension-
six operator shifts induced by the cutoff scale �. The
��yD)��2 operator appears to have the most substantial
effect on the precision electroweak observables. This op-
erator is a pure isospin breaking operator and is equivalent
to a positive shift in the T parameter in the Peskin-
Takeuchi framework (T ’ �7:8~'�).

Barring some nontrivial cancellations of multiple 'i
contributions to the precision electroweak observables, it
appears that '� & 10�2 is necessary if � & 1 TeV.
Therefore, if this framework is to be viable there must be
a small hierarchy between the 1=�2 coefficient of Eq. (1)
and the 'i=�2 coefficients of Eq. (7). In the absence of a
UV completion of the theory, this little hierarchy of high-
dimensional operators remains unexplained. We note in
passing that the operators can have substantially different
conformal weights if the theory at the cutoff is a strongly
coupled theory where each field gets large anomalous
dimensions. Perhaps this distinguishing property of the
operators is a key to the needed hierarchy.

As a concrete example of a possible perturbative origin
of the nonrenormalizable Higgs self-interaction, we note
that a j�j6 term can be generated by decoupling a massive
degree of freedom. For instance, in a manner similar to
Ref. [14] we can consider a scalar singlet s coupled to the
Higgs via

�V �
1

2
m2
s 2

s �m s�y� �
1

2
a 2

s�
y�: (8)

Assuming that the mass of the singlet is higher than the
weak scale, integrating out this scalar degree of freedom
gives rise to the additional Higgs interactions:

Vnew � �
m2

2m2
s
j�j4 �

am2

2m4
s
j�j6 �O

�
a2m4j�j8

m6
s

�
: (9)

We assume that m and ms are of the same order to be able
to neglect the higher-order terms in the expansion.
Therefore, if the mass scale in the singlet sector is around
a TeVa 6 term as well as a negative 4 term are generated
in the Higgs potential. Meanwhile, the custodial invariant
interactions of Eq. (8) will not lead to any of the dangerous
operators Eq. (7).
V. HIGGS SELF-COUPLINGS AS TEST

Future colliders have the opportunity to test this idea
directly by experimentally probing the Higgs potential.
When a low-scale cutoff theory alters the Higgs potential
with nonrenormalizable operators, those same operators
will contribute to a shift in the Higgs self-couplings.
Expanding around the potential minimum at zero tempera-
ture we can find the physical Higgs boson self-couplings
(L � m2

HH
2=2 �)H3=3! � 4H4=4! � � � � )
036001
) � 3
m2
H

v0
� 6

v3
0

�2 ; 4 � 3
m2
H

v2
0

� 36
v2

0

�2 : (10)

The SM couplings are recovered as � ! 1. In Fig. 4 we
plot contours of )=)SM � 1 in the � vs mH plane.

No experiment to date has meaningful bounds on theH3

coupling. It is estimated that for a Higgs mass in the range
needed for the first-order phase transition presented above,
a measurement of the H3 coupling could be done to within
a factor of 1 at the LHC at

���
s

p
� 14 TeV with 300 fb�1

integrated luminosity [22]. This constraint or measurement
would be an interesting one for our scenario since a devia-
tion by more than a factor of unity is possible.

In the more distant future, a linear collider at
���
s

p
�

500 GeV and 1 ab�1 of integrated luminosity should be
able to measure the coupling to within about 20% [23], and
a higher energy linear collider, such as compact e�e�

linear collider with
���
s

p
� 3 TeV and 5 ab�1 integrated

luminosity, should be able to measure the self-coupling
to within a few percent [24]. A few percent measurement
may also be possible at the very large hadron collider at���
s

p
� 200 TeV with 300 fb�1 integrated luminosity [22].
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