
PHYSICAL REVIEW D 71, 035008 (2005)
New supersymmetry mass reconstruction method at the CERN LHC

K. Kawagoe,1 M. M. Nojiri,2 and G. Polesello3

1Department of Physics, Kobe University, Kobe 657-8501, Japan
2YITP, Kyoto University, Kyoto 606-8502, Japan

3CERN, CH-1211 Geneva 23, Switzerland, and INFN, Sezione di Pavia, Via Bassi 6, 27100 Pavia, Italy
(Received 21 October 2004; published 11 February 2005)
1550-7998=20
We propose a new mass reconstruction technique for SUSY processes at the LHC. The idea is to
completely solve the kinematics of the SUSY cascade decay by using the assumption that the selected
events satisfy the same mass shell conditions of the sparticles involved in the cascade decay. Using this
technique, we study the measurement of the mass of the bottom squarks in the cascade decay of the gluino.
Based on the final state including two high pT leptons and two b-jets, we investigate different possible
approaches to the mass reconstruction of the gluino and the two bottom squarks. In particular, we evaluate
the performance of different algorithms in discriminating two bottom squark states with a mass difference
as low as 5%.
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I. INTRODUCTION

Supersymmetry is one of the most attractive models
beyond the standard model (SM) of elementary particle
physics. The superpartners of SM particles (sparticles)
might have masses of the order of the TeV, and experiments
at the Large Hadron Collider (LHC) should be able to
detect such particles up to masses of 2–3 TeV [1,2].

The pattern of the sparticle mass spectrum depends on
the SUSY-breaking mechanism, which might depend on
gravity, space-time structure, or unknown interactions. The
unraveling of such a mechanism through the determination
of the sparticles’ masses is therefore one of the most
important physics targets of future collider experiments.

The potential of the LHC for SUSY mass determination
has been studied in detail in the past decade. The most
promising method involves the study of the end points in
the distributions of invariant masses among the visible
sparticle decay products. Information on the masses in-
volved in the cascade decay can be extracted from the end
point values if the decay distributions are dominated by a
single cascade decay chain. Studies based on the end points
are documented in [1–7].

In this paper we explore a new method for reconstructing
SUSY events. This method does not rely only on events
near the end point. Instead, one kinematically solves the
neutralino momenta and masses of heavier sparticles using
measured jet and lepton momenta and optionally a few
mass inputs.

We concentrate in this paper on the measurement of the
mass of the bottom squarks (sbottoms) through the cascade
decay:

~g ! ~bb2 ! ~�0
2b1b2 !

~‘b1b2‘2 ! ~�0
1b1b2‘1‘2: (1)

We address this decay, rather than the equivalent cascade
involving a generic ~qL for various reasons. First of all, the
physics of the third generation squarks and leptons is
particularly important in disentangling the pattern of
SUSY breaking. In the minimal supergravity (mSUGRA)
05=71(3)=035008(15)$23.00 035008
model, ~bL is lighter than ~bR due to the renormalization
group equation (RGE) running generated by the top
Yukawa coupling. The mass of the lighter sbottom state
~b1 is further reduced by the mixing of the left and right ~b
states. The sbottom sector is thus sensitive to fundamental
parameters of the theory such as the trilinear couplings and
tan� which are otherwise difficult to access at the LHC.
The third generation sparticle masses are also important
parameters for B and Higgs physics. Second, the chain in
Eq. (1) involves two b quarks, which can be tagged in the
detector. The problem of correctly identifying the jets
contributing to the interesting decay is thus made much
simpler. Finally, as we will discuss in detail below, both
sbottom states ~b1 and ~b2 yield the decay chain of Eq. (1).
The performance and the robustness of the reconstruction
algorithms can be benchmarked against the ability in dis-
entangling the two states.

Five sparticles are involved in the cascade decay Eq. (1);
therefore one can write five mass shell conditions among
the leptons and quarks in the final decay products.
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For a bb‘‘ event, the equations contain the 4 unknown
degrees of freedom of the ~�0

1 momentum. Each event
therefore describes a four-dimensional (4D) hypersurface
in the five-dimensional (5D) mass parameter space, and the
hypersurface differs event by event. From the purely
mathematical point of view, five events would be enough
to determine a discrete set of solutions for the masses of the
involved sparticles, and the probabilistic discussion of the
following could be easily developed in a 5D space. In order
to illustrate the method in a more transparent way, we will
develop the argument by assuming that the masses of ~�0

2,
~‘,
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TABLE I. Masses of the relevant sparticles for the three
studied points, in GeV.

tan� m~g m~b1�2�
m~�0

2
m~‘R

m~�0
1

10 595.2 491.9(524.6) 176.8 143.0 96.0
15 595.2 485.3(526.9) 177.9 143.0 96.5
20 595.2 478.7(531.2) 178.5 143.1 96.7
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and ~�0
1 are known. This is a reasonable assumption at the

LHC, where it has been shown that a detailed study of the
lepton-lepton system from the ~�0

2 decay can be used to
precisely constrain these masses [8]. In this case, each
event corresponds to a different line in the �m~g; m~b� plane;
therefore two events are enough to solve the gluino and
sbottom masses altogether.

We call this technique the ‘‘mass relation method,’’
because here one uses the fact that sparticle masses are
common for all events which go through the same cascade
decay chain. Note that the events need not be close to the
end point of the decay distribution in order to be relevant to
the mass determination. This means that one can use the
mass relation method even if the number of signal events is
small.

The purpose of this paper is to explore in detail the
implications of the mass relation method which is only
sketched for signal events in [9]. In that report a measure-
ment of the gluino and sbottom masses was obtained from
the peak of the distribution of the solutions for all possible
event pairs, assuming that the ~�0

2,
~‘, and ~�0

1 masses are
known. In this paper we extend the previous analysis to
take SUSY backgrounds into account in the distributions.

We note that ~b in Eq. (1) could be either ~b1 or ~b2. The
decay was studied in [7] by using the end point method,
where the possibility of distinguishing the two sbottom
states ~b1 and ~b2 was studied for a case where the mass
difference was approximately 5% of the sbottom mass. The
conclusion showed that even with very large integrated
luminosity the result is at best marginal, and crucially
depends on the ability of the experimenters to model to a
very high level of detail the response function of the
detector to b-jets. This is probably an inescapable conclu-
sion, given that the resolution in calorimetric measurement
is comparable to the mass splitting one wants to measure. It
is however worth studying alternative reconstruction meth-
ods which make better use of all the information available
for the selected events.

In a subsequent paper [10], a similar process is analyzed
by constructing an approximate event-likelihood function
for signal events, based on a Bayesian statistical approach.
In this paper we construct a different approximation for the
likelihood function. We apply this function to the analysis
of a simulated data set, and we study how well ~b1 and ~b2
can be reconstructed for a sample model point and its
variants.

This paper is organized as follows. In Sec. II, we in-
troduce the detailed SUSY models addressed in our study,
and briefly present the simulation procedure. We then solve
in Sec. III analytically the kinematics for the process
Eq. (1), arriving to a compact expression for the masses
of ~g and ~b as the function of b and ‘ momentum and
discuss the typical solutions. In Sec. V, we discuss the
event pair analysis on our sample SUSY model, where
m~g and m~b are computed from all event pairings in the
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selected samples. Gluino and sbottom masses consistent
with the input values are reconstructed, but we are also
forced to artificially select one of the multiple solutions
obtained from solving for the masses the coupled quadratic
equations for each event pair. In Sec. VI, we therefore
define an approximate likelihood function built using all
the events in the sample, and we describe an analysis based
on this function. The masses reconstructed from the like-
lihood analysis are in agreement with the input values and
the method automatically takes care of the issue of mul-
tiple solutions without artificial selection. We also study
the possibility to reconstruct the ~b2 in our sample model.
Section VII is devoted to discussions and comments. We
especially discuss the theoretical relevance of being able to
perform detailed measurements in the third generation
squark sector.
II. MODEL POINTS AND SIMULATIONS

We choose for this study the model point SPS1a as
defined in Ref. [11] and its variants. SPS1a has a significant
production cross section for the chain of Eq. (1), and has
already been the subject of detailed LHC studies [7]. The
model is defined in the mSUGRA scenario by the parame-
ters tan� � 10, m � 100 GeV, M � 250 GeV, A0 �
�100 GeV, and �> 0. In order to evaluate the perform-
ance of the analysis for different values of the splitting of
the two sbottom states, we also study the points where
tan� � 15 and 20, keeping other GUT scale parameters
the same as those for SPS1a. For the additional points, the
~g, ~�0

2, ~�
0
1, and ~‘ masses are almost the same as for SPS1a,

while m~b1
is reduced because the left-right mixing of ~b

increases proportionally to � tan�.
The masses and decay branching ratios are calculated

with the ISASUSY code [12]. See Table I for the list of
relevant masses. The m~b1

changes by 3% from tan� � 10

to tan� � 20. We will see later that such a difference in the
~b1 masses should be measurable at the LHC if systematic
effects are kept under control.

Another drastic effect in Table II is the decrease of
Br�~�0

2 !
~‘‘� (‘ � e;�). This is because the decay width

for ~�0
2 ! ~�� increases as the ~� mixing angle increases. For

tan� � 20, the branching ratio into the bb‘‘ mode is
reduced by a factor of 5 yielding a rather small number
of accepted events.

We also list in Table II the decay branching ratios
relevant to the decay chain of interest. The ratio of the
-2



TABLE II. Branching fractions for the decays used in the
analysis, in percent.

tan� Br�~g ! ~b1�2�� Br�~b1�2� ! ~�0
2� Br�~�0

2 !
~‘�

10 8:9�4:9� � 2 35.8(16.7) 3:16� 4
15 9:8�4:6� � 2 37.8(15.9) 1:26� 4
20 10:8�4:1� � 2 38.9(13.2) 0:61� 4
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decay branching ratios R~b � Br�~g ! ~b2 ! ~�0
2�=Br�~g !

~b1 ! ~�0
2� varies from 0.26 to 0.14 when tan� changes

from 10 to 20. This tan� dependence comes from the
reduction of the ~b1 mass and the increase of the left-right
mixing angle of ~b, �, defined as ~b1 � cos�~bL � sin�~bR,
from � � 0:49 ( tan� � 10) to 0.61 ( tan� � 20).
Explicitly,
(i) �
�~g ! ~b1� increases as m~b1
is reduced.
(ii) �
�~b2 ! ~�0
2� increases as � increases. However,

��~b2 ! ~��
1 � and ��~b2 ! ~t1� also increase; there-

fore Br�~b2 ! ~�0
2� stays more or less the same.
(iii) m
~b1
is reduced and ��~b1 ! ~t1W� is kinematically

suppressed as tan� increases.

The branching ratio in principle provides important infor-
mation for determining the mixing angle � but one needs to
know the relevant sparticle mass spectrum to utilize it.

Note that the ratio R~b is small and the mass splitting
between ~b1 and ~b2 is within 10% over the parameters we
study. The ~b1 therefore gives significant background to the
~b2 search at the LHC. Nevertheless, a hint for the decay of
~g ! ~b2 might still be observable in the bb‘‘ distribution,
given an excellent control of the detector response to
b-jets, as we will see in Sec. VI.

The SUSY events are generated using the HERWIG 6.4
[13,14] event generator. The produced events are passed
through the ATLFAST [15] detector simulator, which pa-
rametrizes the response of the ATLAS detector. In particu-
lar, we use the parametrization for b-tagging efficiency
corresponding to the expected high luminosity perform-
ance of the ATLAS detector. While the performance is a
function of the pT of the jets, a typical performance figure
is �b � 0:5 for the b tagging efficiency for a rejection of
100 on light quark jets.

For each point we have generated 1:5� 107 events
which approximately correspond to an integrated luminos-
ity of 300 fb�1.

The following cuts are applied in order to select signal
events:
(i) M
eff > 600 GeV and Emiss
T > 0:2Meff , where Emiss

T
is the missing transverse energy and Meff is the
035008-3
scalar sum of the missing transverse energy and the
transverse momenta of the four hardest jets;
(ii) a
t least three jets with pT1 > 150 GeV, pT2 >
100 GeV, and pT3 > 50 GeV;
(iii) e
xactly two b-tagged jets with pT > 50 GeV;

(iv) e
xactly two opposite-sign isolated same-flavor

(OSSF) leptons with pT‘1 > 20 GeV, pT‘2 >
10 GeV, with an invariant mass 40 GeV<m‘‘ <
78 GeV.
The isolation criterion consists of requiring a transverse
energy deposition in the calorimeters smaller than 10 GeV
in a ��;�� cone of radius 0:2 around the lepton direction,
where � is the pseudorapidity of the lepton and � is the
angle in the plane transverse to the beam. A detailed
discussion of the standard model backgrounds after these
cuts is given in [7]. The authors show that the standard
model background is negligible in comparison to the
SUSY background, consisting of SUSY events not includ-
ing the decay chain of Eq. (1).

In order to perform the reconstruction, we need to
identify the position of each of the two b-jets and of each
of the two leptons in the decay chain. In the following
analysis, we assume that the b-jet with larger pT originates
from the ~b decay. The assignment is optimal for SPS1a,
because m~b �m~�0

2
	 m~g �m~b. At the same time, one can

fix the lepton assignment so that the higher (lower) pT

lepton ‘high (‘low) comes from ~‘ to increase the probability
of picking up the correct lepton assignment. If we roughly
know the masses of ~‘, ~�0

1, and ~�0
2, it is easy to determine

which assignment is optimal [8]. For the likelihood analy-
sis on SPS1a, we use ‘high as ‘1 in Eq. (1).
III. SOLUTIONS OF THE DECAY KINEMATICS

A. Formula for the decay kinematics

It is straightforward to solve the decay process in Eq. (1).
We first note that the ~b cascade decay can be written as a
function of momenta of b1, ‘1, and ‘2, because the four
mass shell conditions can be used to eliminate the un-
known ~�0

1 four momentum.
To systematically solve the system, we expand the ~�0

1
momentum with the observed momenta of b1, ‘1, and ‘2:

~p ~�0
1
� a~p‘1 � b~p‘2 � c~pb1 : (3)

The expansion is possible if ~p‘1 , ~p‘2 , and ~pb1 are indepen-
dent from one another. The three on-shell conditions may
then be rewritten as
M
a
b
c

0
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FIG. 1. The distribution of m~g �m~b calculated using (a) parton-level b momentum and using the approximate relation Eq. (8) and
(b) by solving Eq. (2). For (a) m‘‘ > 65 GeV is required. For (b), the two m~b solutions for the input gluino mass of m~g � 595 GeV are
plotted in a two-dimensional plane, for both correct and wrong lepton assignment.

1Note that when some of the momenta are parallel, M cannot
be inverted. We ignore the possibility, because experimentally
we always require the isolation of leptons from jets.
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where

M �

~p‘1 
 ~p‘1 ~p‘1 
 ~p‘2 ~p‘1 
 ~pb1
~p‘1 
 ~p‘2 ~p‘2 
 ~p‘2 ~p‘2 
 ~pb1
~p‘1 
 ~pb1 ~p‘2 
 ~pb1 ~pb1 
 ~pb1

0
B@

1
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The three parameters, a, b, and c are solved as functions
of E~�0

1
if detM � 0. By using the on-shell condition of ~�0

1,
we obtain a quadratic equation in E~�0

1
:

A33

�E~�0
1

m~�0
1

�
2
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m2
~b
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1
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m2
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1
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where Aij � �xi�
TM�1�xj� � $ij�i� 2�=m2

~�0
1

and the defi-

nition of x1 is given in the appendix.
As the ~b decay kinematics are solved, we now use the

on-shell condition of ~g ! ~bb2 to obtain

Q11m4
~g � 2Q12m2

~gm
2
~b
�Q22m4

~b
� 2Q1m2

~g �

2Q2m2
~b
�Q � 0: (7)

The Q’s are functions of the momenta of the leptons and b
quarks, m~�0

2
, m~�0

1
, and m~‘. The expressions for the Q’s are

shown in the appendix.
Mathematically, when there are two independent events,

we have two independent equations of the form Eq. (7).
The equation is quadratic for m2

~g and m2
~b

and can be
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analytically solved.1 There are up to four solutions for an
event pair, and one of them must coincide with the true
solution.
IV. END POINT ANALYSIS AND MASS
RELATION METHOD

The decay chain ~g ! ~bb2 ! ~�0
2b1b2 !

~‘b1b2‘2 !
~�0
1b1b2‘1‘2 has already been studied in detail in

Refs. [7,16], using the end point method shown in
Ref. [1]. In this method, the masses of the ~�0

1 and ~�0
2 are

assumed to be known from the study of the kinematic
edges in the ~qL decay. For events near the edge of the
m‘‘ distribution, the ~�0

1 is essentially at rest, and the
momentum of the ~�0

2 can be approximated with the relation

p ~�0
2
’

�
1�

m~�0
1

m‘‘

�
p‘‘: (8)

This formula is correct only at the end point of the three-
body decay ~�0

2 ! �0
1‘‘, but is nevertheless approximately

correct near the edge of ~�0
2 !

~‘‘ ! ‘‘~�0
1 at SPS1a. The

sbottom mass can then be calculated by building the in-
variant mass of the approximate ~�0

2 obtained by using
Eq. (8) with the leading b-jet in the event. The parton-level
result is shown in Fig. 1(a), where we plot the difference
between the reconstructed gluino mass and the recon-
structed sbottom mass, to minimize the smearing intro-
-4



FIG. 2. The gluino mass distributions for tan� � 10 (left), tan� � 15 (center), and tan� � 20 (right) with the event pair analysis.
The open, gray, and dark histograms in the top figures are for OSSF� OSSF, OSSF� OSOF, and OSOF� OSOF event pairs,
respectively. The open histograms in the bottom figures show the mass distributions after background subtraction. The contributions of
~b2 are shown by dark histograms.

2Note the selections are rather phenomenological and they
may introduce some bias to the reconstructed sparticle masses.
We find, however, the obtained peak positions are consistent with
the input masses in this study.
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duced by the approximation of Eq. (8). The ~b1 peak is
reconstructed correctly. The bump on the left originates
from the events from ~g ! ~b2, and is centered on the
position m~g �m~b2

� 70:6 GeV. Even at parton level,
with no experimental smearing the bump is not well sepa-
rated from the ~b1 peak at 103 GeV.

Unlike the relation Eq. (8), the formula Eq. (7) is exact.
For each event we have in this case two possible lepton
assignments, and for each lepton assignment, given an
input value for the gluino mass, two solutions for the
sbottom mass from the quadratic equation Eq. (7). We
show in Fig. 1 the smaller solution versus the larger one
of Eq. (7) for both of the lepton assignments. For the gluino
mass the nominal value is assumed. Unlike in Fig. 1(a) the
two peaks from ~b1 and ~b2 are clearly separated in the plot.
Furthermore the number of the available events for the
mass fit are now increased by a factor of 2 compared to
the end point analysis because there are no constraints on
the value of m‘‘ when using Eq. (7).

The advantage of switching to the exact solution for the
event kinematics is clearly demonstrated by the plots. In
order to evaluate if the heavier sbottom state will be
detectable, we need to perform the study taking into ac-
count the smearing induced by the fact that b-jets rather
than partons are measured in the detector.
035008
V. EVENT PAIR ANALYSIS

As discussed in Sec. III, each event can be represented as
a quadratic equation in the m2

~g, m2
~b

variables. By taking two
events, we have a system of two equations in two un-
knowns which can be solved analytically. This yields up
to four values for the squark and gluino masses. In the
following, we start from the selected bb‘‘ events, and we
build all the possible event pairs. In order to minimize the
combinatorial backgrounds, we use the pairings which
satisfy the following conditions:2
(i) E
-5
quation (7) has a solution for only one of the two
possible lepton assignments.
(ii) F
or the selected lepton assignment the resulting
quartic equation in m2

~g has only two solutions, and
the difference of the gluino masses for the two
solutions is more than 100 GeV. The smaller gluino
mass solution is chosen.
The m~g distributions for the OSSF� OSSF event pairs
are shown in the histograms on the upper line of Fig. 2. A
significant SUSY background, also shown in Fig. 2, is still



TABLE III. Fit results of the gluino and sbottom masses in the
event pair analysis, in GeV.

tan� � 10 tan� � 15 tan� � 20

m~g 591.9 593.1 585.1
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present in the sample. This background can be estimated
from the data themselves by using the bb‘‘ events with an
opposite-sign opposite flavor (OSOF) lepton pair (i.e.,
‘‘ � e���). For this purpose we produce mass distribu-
tions for the three types of event pairs:
m~g �m~b 98.9 105.1 111.6
(1) tw
FIG. 3.
and gra
after ba
o OSSF lepton events (OSSF� OSSF),

(2) a
n OSSF lepton event and an OSOF lepton event

(OSSF� OSOF),

(3) tw
o OSOF lepton events (OSOF� OSOF).
The background-subtracted distribution can then be ob-
tained as the combination of the three distributions:
OSSF� OSSF� OSSF� OSOF� OSOF� OSOF.

The total number of event pairs is of course much larger
than the number of events. Because of the selection criteria
imposed to minimize the combinatorial backgrounds, some
of the events are not used at all to make event pairs, while
events which are used at least once are used O(10) times on
average. The three histograms show peaks corresponding
to the input value for the gluino mass even before the
background subtraction. The gray and dark histograms
show the OSSF� OSOF and OSOF� OSOF distribu-
tions, respectively. The distributions after the background
subtraction are shown in the histograms on the lower line
of Fig. 2. The peak position and its error obtained by a
Gaussian fit to the distribution are listed in Table III. We
also show in the histogram the gluino mass distribution for
event pairs where at least one of the events comes from ~b2
The m~b distributions for tan� � 10 (left), 15 (center), and
y histograms in the top figures show the distributions of OSS
ckground subtraction are shown in the bottom figures, where
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decay. The ~b2 contribution is significantly smaller com-
pared with the distribution of ~b1 pair and does not affect the
gluino mass fit. One can also look into the distribution of
m~g �m~b, estimating the value of this observable by per-
forming a Gaussian fit on the observed peak. The result of
the fit is also shown in Table III.

The statistical error of the gluino mass measurement can
be evaluated by performing the analysis on a set of statis-
tically independent experiments. To perform the evaluation
within a reasonable CPU budget, we generated a set of
events where the ~b1 is forced to decay with 100% branch-
ing ratio into the desired decay chain, for the SPS1a point
( tan� � 10). The generated statistics corresponds to 30
experiments with an integrated luminosity of 300 fb�1

each. By performing the analysis on the 30 experiments,
we find that the spread for the measured gluino mass is
1.6 GeV for the benchmark integrated luminosity of
300 fb�1. By construction, the presence of the combinato-
rial background is not considered in the error analysis. No
20 (right) with a fixed gluino mass (m~g � 595 GeV). The open
F and OSOF lepton events, respectively. The mass distributions
the contribution of the ~b2 events are shown by the gray regions.

-6



TABLE IV. Fit results in GeVof the sbottom mass with a fixed
gluino mass (m~g � 595 GeV).

tan� � 10 tan� � 15 tan� � 20

m~b (true) 491 485.3 478.8
m~b (min) 492:1� 1:2 487:7� 2:2 474:3� 2:4
m~b (max) 504:5� 1:0 502:9� 1:7 495:1� 2:4
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large degradation of the resolution is expected once this
effect is correctly taken into account.

Once the gluino mass is fixed by the analysis shown
above, Eq. (7) can be solved for each event for the sbottom
mass, giving as input the central measured value for the
gluino mass. Following this procedure, in Fig. 3, we plot
the distribution of the smaller sbottom mass solution m~b
(min) for both OSSF (signal) and OSOF (background)
lepton pair events (top histograms). We show in the bottom
line the mass distributions after the background subtrac-
tion, where the gray regions show the contribution of ~b2.
The peak positions are evaluated from a Gaussian fit, and
listed in Table IV. Note that the total number of signal ~b1
events is smaller by factor of 4 for tan� � 20 compared
with tan� � 10, but the mass peak is seen very clearly. The
m~b (min) peak and m~b (input) are in good agreement, in
contrast to the larger solution m~b (max).

The peak positions of the distributions of events origi-
nating from ~b2 decay are also consistent with ~b2 masses. It
is, however, evident from the plots that in the real experi-
ment it will not be possible to claim the presence of the
second peak. The existence of ~b2 can be established only
after understanding b-jet smearing and the ~b1 distribution
correctly.

VI. LIKELIHOOD ANALYSIS

The analysis shown in the previous section only uses the
events in pairs to evaluate the values of the squark and
gluino masses. A more efficient use of the available event
statistics can be achieved by using all of the events at the
same time and finding the �m~g; m~b� pair for which the
combined probability of all events is highest. We define
in this section an approximate likelihood function for
�m~g; m~b�, and we then apply it to detection of ~b2.

A. Construction of the likelihood function

From Eq. (7), each event is represented as a curve in the
�m~g; m~b� plane. The coefficients of the curve are a function
of the four momenta of the detected partons. The partons
are measured as jets in the detector, which smears the
parton according to a smearing function. It depends on
the detector performance and on the algorithms used to
cluster the energy deposition in the detector.

Because of these experimental effects, in a frequentist
approach, from the measured quadratic form for an event
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we can build a confidence belt in the �m~g; m~b� plane. This
should be built using a Neyman construction [17], from the
probability distribution for the measured values of
�m~g; m~b� as a function of the input values for the same
two variables. In order to build this function, the crucial
ingredient is the distribution of the measured b-jet mo-
menta as a function of the b-parton momenta. Evaluating
this distribution is outside the scope of this work, as it
requires a detailed simulation of the detector response,
which will need to be validated on real data using calibra-
tion samples of b-jets in the detector. Even assuming an
approximate form for the b-jet response, the proper
Neyman construction for each event is a very computing-
intensive calculation.

We recast equation Eq. (7) in the form

f�m~g; m~b; p1; p2� � 0;

where p1 and p2 are the momenta of the two b-jets. We
build an approximate probability density function accord-
ing to the formula

L�m~g; m~b� �
Z
dp0

1

Z
dp0

2��p
0
1jp1���p0

2jp2�

� $�f�m~g; m~b; p
0
1; p

0
2��; (9)

where ��p0jp� is the probability density, given a measured
value p of the b-jet momentum, that an experiment would
measure a momentum p0 for a jet coming from the frag-
mentation of the same parton.

In the equation we did not include the possibility of
lepton momentum mismeasurement, which has an almost
negligible effect, as compared to the smearing of
b-partons. As a further simplification, we assume that the
jet direction is not modified by the measurement and we
use for ��p0jp� a Gaussian distribution, with a width (
corresponding to the parametrized jet smearing used in the
fast simulation program:

(=E � 0:5=


















E�GeV�

p
� 0:03�j�j< 3:0�;

(=E � 1:0=


















E�GeV�

p
� 0:07�j�j> 3:0�:

(10)

The Gaussian smearing is not a very good approximation
for b-jets because in many cases the semileptonic decay of
the b-quark results in jets which contain an unmeasured
neutrino. The approximate function takes, however, into
account the dominant part of the jet smearing and can be
used to demonstrate the method. Note also that, in Eq. (9),
we define our L using ��p0

1jp1� where p1 is the measured
b-jet momentum. The function L would correspond to the
actual probability function only if the jet response were
Gaussian. A detailed experimental simulation will be
needed in order to assess the validity of the obtained results
in the real experimental situation.

We now show logL in the �m~g �m~b; m~g� plane for a few
events where the bb‘‘ events originate from the cascade
-7
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decay of Eq. (1) at SPS1a. We calculate L using the
following procedure. For each event in our sample, char-
acterized by a �p1; p2� pair of measured momenta for the
b-jets, we generate Monte Carlo events where the two
b-jets have momenta (p0

1, p
0
2), where p0

1 and p0
2 are ran-

domly generated according to the function ��p0
1jp1� �

��p0
2jp2�. Each generated event corresponds to a curve in

the �m~g; m~b� plane which satisfies the equation
f�m~g; m~b; p

0
1; p

0
2� � 0. We histogram the number of curves

that go through each bin of a 1� 1 GeV grid in the
�m~g; m~b� plane, for n Monte Carlo events, normalized by
dividing the bin contents by n. In the limit n ! 1, this
corresponds to
L�m~g;m~g �&m~g;m~b; m~b � &m~b�

�
Z
Dp0

1

Z
Dp0

2��p
0
1jp1���p

0
2jp2�

� ��p0
1; p

0
2; m~g; m~g � &m~g;m~b; m~b �&m~b�;

(11)
where ��p0
1; p

0
2; m~g; m~g �&m~g;m~b;m~b � &m~b� is 1 when

the solution of Eq. (7) for the two b-jet momenta p0
1 and p0

2
goes through �m~g; m~g � &m~g;m~b; m~b � &m~b� and other-
wise 0. We take n � 10 000 for our calculations.
(a)

(d)

FIG. 4. Likelihood distributions in the �m~g �m~b;m~g� plane for di
different possible distribution patterns on the plane.
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In Fig. 4, we plot

& logL � log�L�m~g; m~g � &m~g; m~b; m~b � &m~b� � c�

� log�L�min��; (12)

where c � 0:001 is a constant cutoff factor, which is
needed as for each event we generate only a finite number
of Monte Carlo experiments, and therefore some bins can
have zero hits. The shape of the probability density distri-
bution is different event by event, as it depends on the event
kinematics. For a few events, the density distribution is
parallel to the y axis, therefore it only has sensitivity to the
m~g �m~b difference, but little sensitivity to the absolute
value of the gluino mass. The size of the band with sig-
nificant probability is also different event by event, which
means that some events will have more weight in the
determination of the mass parameters.

For each event, one defines in this way curves of equal
probability in the �m~g; m~b� plane. By combining the prob-
abilities for different events, a region of maximum proba-
bility in the �m~g; m~b� plane is found, where the curves of
maximum probability for all events approximately cross.
Given the fact that the curves have different shapes for
different events, the region thus defined has a limited size,
for an adequate number of events. This region can be taken
as a measurement for m~g and m~b. We perform the combi-
nation as the product of L for all events, and we define
(b) (c)

(e) (f)

fferent SPS1a events. The events were selected in order to show
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logLcomb�m~g; m~b� �
X
events

logL�m~g; m~b�: (13)

As an estimator of the probability for a given �m~g; m~b� pair,
one can use

&�2�m~g; m~b� � & logL � logLmax � logLcomb�m~g; m~b�:

(14)

Given the approximations introduced this does not how-
ever correspond to the statistical definition of &�2.
FIG. 5. Contours of the likelihood function logLsub in the �m~g �
tan� � 20, respectively. The contours (b) and (d) are made without
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B. Event analysis

By following the procedure described in the previous
subsection, we can build the combined likelihood for all
the events defined as

logLcomb�m~g; m~g � &m~g; m~b; m~b � &m~b�

�
X
events

log�L�m~g; m~g � &m~g; m~b; m~b �&m~b� � c�:

(15)

As in Eq. (12) we have introduced a constant cutoff pa-
rameter c � 0:001 and the number of Monte Carlo experi-
m~b;m~g� plane: (a) and (b) for tan� � 10 and (c) and (d) for
~b2 contributions.

-9



FIG. 6. The likelihood as a function of m~g �m~b for tan� � 20: (a) for all events and (b) without ~b2 events.
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ments used to build the likelihood for each event n �
10 000.

As we can see in Fig. 2, there are significant back-
grounds from accidental leptons. The background subtrac-
tion must be carried out using events with OSOF lepton
pairs. The correct log likelihood function is schematically
expressed as

logLtotal�m~g;m~b; . . .� �
X
OSSF

logL�msig;mbg�

�
X
OSOF

L�mbg�; (16)

where msig express the parameters relevant to the signal
distribution, such as the masses of the sparticles involved in
the cascade decay, the decay branching ratios, and so on.
On the other hand mbg are all the other parameters relevant
to the OSSF and OSOF events. This is a rather complex
procedure which is out of the scope of this paper. Instead,
we take the difference of the functions for OSSF and OSOF
lepton pair events,

logLsub � logLOSSF � logLOSOF

�
X
OSSF

logL�
X
OSOF

logL: (17)

In the limit of infinite statistics, logLsub should be inde-
pendent from the contribution of accidental lepton pairs.
Therefore we use logLsub in this paper.

We plot the contours of the function logLsub in Fig. 5,
where plots (a) and (b) [(c) and (d)] are for tan� � 10
[ tan� � 20]. The distributions (a) and (c) are produced
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accepting all the events which pass the selections, whereas
distributions (b) and (d) are produced using an event sam-
ple where the events including a ~b2 decay have been
rejected.

In Figs. 5(a) and 5(c), the position of the peak for m~g �

m~b is roughly consistent with the input value. Unlike the
gluino and sbottom mass fits in the previous section, we
obtain the correct peak position without the need to artifi-
cially choose between multiple solutions. The likelihood
distribution can be used to determine the masses of ~g and ~b.
We restrict the likelihood distribution for 591 GeV<
m~g < 599 GeV (within 4 GeV from the input gluino
mass). We then fit the distribution around the peak assum-
ing a Gaussian distribution. The likelihood distribution
peaks at a gluino and sbottom mass difference of
99.5 GeV for tan� � 10, 104.2 GeV for tan� � 15, and
113.9 GeV for tan� � 20, where the input values are
103.3, 109.9, and 116.5 GeV, respectively. The fitted values
display shifts of about 4 GeV from the true value. We
ascribe this effect to our simplified modeling of the jet
smearing in building the likelihood function, which should
disappear once the detector response is properly taken into
account in the unfolding procedure.

By comparing the left side with the right side of Fig. 5,
we also observe a slight shift in the position of the maxima
of the distributions, showing that the distributions are
sensitive to the presence of ~b2 decays. The ~b2 contribution
however manifests itself in Figs. 5(a) and 5(c) only as a
flattening of the distribution aroundm~g �m~b � 70 GeV at
m~g � 595 GeV. No secondary peak can be observed be-
-10



FIG. 7. The contours of the likelihood function in the �m~g �m~b;m~g� plane after the cut given in Eq. (18): (a) and (b) are with and
without ~b2 events at tan� � 10, respectively, and (c) and (d) at tan� � 15.
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cause of the experimental smearing, and the fact that the
branching ratio into ~b2 is much smaller. In Fig. 6(a), we
show the distribution of logLsub as a function of m~g �m~b

at tan� � 20, restricting the gluino mass in the region
591 GeV<m~g < 599 GeV again. On the left of the peak
corresponding to the ~b1 mass, we see a small bump in the
distribution. This bump is not observed in the mass distri-
bution made without a ~b2 contribution [Fig. 6(b)]. In order
to claim the presence of a second component in the distri-
bution on the data, the ability to correctly reproduce the
likelihood distribution for ~b1 events would be needed. It is
035008
also difficult to extract a statistical significance for the ~b2
shoulder as our definition of the likelihood function is an
approximate one, and we did not treat the background
subtraction correctly as can be seen in Eq. (17).

In Fig. 3, it is rather hard to see the effect of ~b2 unlike in
Fig. 6. The apparent discrepancy probably comes from the
fact that the likelihood analysis is more sensitive to the
model parameters than simply solving Eq. (7) for a fixed
gluino mass. The likelihood analysis not only takes care of
the most plausible value of the sbottom mass for a fixed
gluino mass, but also includes possible statistical fluctua-
-11



FIG. 8. The likelihood as a function of m~g �m~b with the cut given in Eq. (18): (left) for tan� � 10 and (right) for tan� � 15. The
dashed lines show the distribution after removal of the ~b2 contributions.
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tions, which vary event by event as seen in Fig. 4. For
example, badly mismeasured events have less chance of
being consistent with the input gluino mass, providing a
natural cut for the event selection.

A significant part of the background under the ~b2 is the
tail of the smeared probability distribution for events which
correctly reconstruct the ~b1 mass. One can therefore try to
remove from the distributions the events consistent with ~b1
in order to improve the signal to background ratio for ~b2.
To reduce the ~b1 events, an event is required to satisfy the
condition:

X
cut region

L<Lcut; (18)

where the sum is made for bins in a cut region in the �m~g �

m~b;m~g� plane. We choose the region as 550 GeV<m~g <
650 GeV, and m�min�<m~g �m~b < m�max�, which cor-
responds to the region around the ~b1 peak. We use the cut
value Lcut � 20. The relevant m�min� and m�max� values
are listed in Table V. The contours of logLsub after this cut
TABLE V. The peak positions (in GeV) at the smaller m~g �
m~b region in Fig. 8 for tan� � 10 and 15. The peak positions for
the signal ~b2 distribution are also shown.

m (min) m (max) All ~b2 only

tan� � 10 87 108 64:1� 0:2 62:7� 0:3
82 113 60:3� 0:3 60:2� 0:5

tan� � 15 94 115 61:1� 0:7 65:3� 0:4
89 120 62:7� 0:3 62:6� 0:6
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are shown in Fig. 7: (a) and (b) for tan� � 10 and (c) and
(d) for tan� � 15. The contours (b) and (d) are made
without the ~b2 contribution. By comparing the contours
with and without the ~b2 contribution, the presence of the ~b2
can clearly be observed in the plots. In Fig. 8, we again plot
the likelihood function as the function of m~g �m~b, for
550 GeV<m~g < 650 GeV. The distributions without the
~b2 contribution are also shown as dashed histograms. The
signal to background ratio is much improved with respect
to what is seen on the left side of Fig. 6, and it is about 1:1.
However, from an inspection of the mass distribution event
by event, the purity of the signal after the likelihood cut
does not appear significantly improved with respect to
Fig. 3. Moreover, the position of the peak corresponding
to ~b2 is dependent on the cuts applied. This is illustrated in
Table V, where the results of fits to the peak position are
shown for two different values of the applied cuts both for
the full sample and for the pure ~b2 signal. Even when only
considering the ~b2 signal, the peak position depends on the
cuts, albeit with a milder dependence than for the full
sample. It will therefore be problematic to extract a mass
measurement from Fig. 8, even assuming a priori the
existence of a ~b2 contribution.
VII. DISCUSSION

Supersymmetric models predict the existence of heavy
superpartners which decay subsequently into the lighter
superpartners. The lightest SUSY particle is stable and
neutral, and escapes detection. Therefore two undetected
particles will be present in each event. Moreover, the
-12
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partonic center of mass energy is unknown for hadron
collisions. As a result, the complete kinematic reconstruc-
tion of SUSY events at hadron colliders is problematic.

We propose a new analysis method to solve the decay
kinematics of this decay at the LHC, based on imposing the
on-shell condition on the momenta of the particles partic-
ipating in the cascade. The single cascade decay is solvable
if a decay chain consisting of at least four successive two-
body decays, involving five sparticles can be identified. In
this case each event defines the 4D hypersurface in the 5D
sparticle mass space. The potential of this method should
be compared to the method previously used for this analy-
sis based on the measurement of kinematic edges of in-
variant mass combinations of the detected decay particles.

The merits and demerits of the new method may be
summarized as follows:
(i) T
he cascade decay is solved based on the exact
formulas.
(ii) M
ass peaks would be reconstructed, as opposed to
the kinematic edges. This allows us to perform
measurements even if significant backgrounds exist
or statistics are small. Note that backgrounds will
not exhibit peaks corresponding to the signal
region.
(iii) I
n the case where sfermion masses are heavier than
gaugino masses, the cascade decays are expected to
be shorter, and one cannot therefore use this
method. The end point method provides mass in-
formation even in this case.
We note that, in case two decay chains can be simulta-
neously identified in the event, the method can be applied
to shorter decay chains, consisting of only three decays
each. In fact, in this case two additional constraints can be
applied by requiring that the sums of the transverse com-
ponents of the momenta of the two lightest neutralinos
equal the two components of the measured missing trans-
verse momentum.

Further on, if one sparticle cascade decay is solved by
the mass relation method, the candidate lightest supersym-
metric particle (LSP) momentum pT would be obtained.
We can then calculate the transverse momentum of the
other LSP p0

T as

p0
T � �pT � Pmiss: (19)

For the cascade decay to which the second LSP belongs,
only two components of the neutralino four momentum are
unknown, therefore a cascade decay with ndecay � 3 can be
solved.

To see the performance of the mass relation method, we
have studied in this paper the problem of measuring spar-
ticle masses in the cascade decay: ~g ! ~bb2 ! ~�0

2b1b2 !
~‘b1b2‘2 ! ~�0

1b1b2‘1‘2. We have performed a detailed
study for some benchmark SUSY model points including
backgrounds and a parametrized simulation of detector
effects. We performed the exercise in a simplified fashion,
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by fixing the masses of the three lighter particles to avoid
the practical complications in handling a large number of
parameters. Then each event becomes an allowed curve in
the gluino-sbottom mass plane, passing through the point
corresponding to the true gluino and sbottom masses. We
first addressed the mass reconstruction through the ‘‘event
pair analysis,’’ which determines the sparticle masses from
the distribution of the solutions of any event pairs in the
selected sample. The method reconstructs m~b1

correctly for
SPS1a where tan� is varied from 10 to 20. Note that the
signal branching ratio becomes a factor 4 smaller for
tan� � 20 with respect to tan� � 10, but the ~b1 peak is
still clearly observable. On the other hand, in order to
obtain the correct mass, one needs to artificially choose
among the multiple available solutions.

A more global approach requires the use of all available
events simultaneously. For this approach we constructed an
approximate likelihood function for the true gluino and
sbottom masses, taking into account the experimental
smearing in the measurement of the b-jets. When the
peak position of the likelihood distribution is used to
extract the mass, the ~b1 mass is measured without the
problem of the multiple solutions of the event pair analysis.

We also try to probe the presence of a ~b2 in our Monte
Carlo sample. The sbottom mass matrix is parametrized by
three parameters m~b1

, m~b2
, and the mixing angle �.

Successful extraction of the ~b2 would be an important
step to fully understand the nature of the third generation
sparticles. No clear result is achieved for ~b2, as the branch-
ing ratio into ~b2 is small for the parameters we have
chosen, and also the small difference between the two
sbottom states is comparable to the resolution in the ex-
perimental measurement of jet momenta. It is however
clear that, even with the small statistics available for the
case tan� � 20, a hint for the deviation from a single-mass
case can be seen in the distribution.

The physics output of our analysis is therefore the
possibility to extract information on the third generation
sector, even for rather small input statistics. The measure-
ment of the third generation sparticle masses is important
theoretically. In mSUGRA, the ~bL�R� masses are the same
as the other sparticle masses at the GUT scale but nonun-
iversality is induced by RGE running at the weak scale due
to the Yukawa coupling. In addition to that, the left-right
mixing of sbottom is induced by the F term of the super-
potential which is proportional to � tan�. The mass shift
around 20 GeV from tan� � 10 and tan� � 20 is due to
this mixing effect. Our method is sensitive to the tan�
dependence as it could yield a sensitivity to the mass
difference between the two states of the order of a few GeV.
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APPENDIX

As described in Sec. II, we have solved the cascade
decay in Eq. (1) by expanding the lightest neutralino
momentum by the momenta of l1, l2, and b1 as in Eq. (3):

~p ~�0
1
� a~p‘1 � b~p‘2 � c~pb1 :

The parameters �a; b; c� may be written as the function of
sparticle masses and the LSP energy as

a
b
c

0
@

1
A � M�1��x1�m2

~�0
1

� �x2�m2
~b
� �x3�m~�0

1
E~�0

1
�

� M�1X

m2
~�0
1

m2
~b

m~�0
1
E~�0

1

0
BB@

1
CCA; (A1)

where

X � �x1; x2; x3�;

�x1� �
1

2m2
~�0
1

�m2
~‘
�m2

~�0
1

�m2
~�0
2

�m2
~‘
� 2p‘1 
 p‘2

m2
~�0
2
�m2

b � 2pb1 
 �p‘1 � p‘2�

0
BBBB@

1
CCCCA;

�x2� �

0

0

�1=2

0
BB@

1
CCA; �x3� �

1

m~�0
1

E‘1

E‘2

Eb1

0
BB@

1
CCA:

(A2)

and M is defined already in Sec. II as

M �

~p‘1 
 ~p‘1 ~p‘1 
 ~p‘2 ~p‘1 
 ~pb1
~p‘1 
 ~p‘2 ~p‘2 
 ~p‘2 ~p‘2 
 ~pb1
~p‘1 
 ~pb1 ~p‘2 
 ~pb1 ~pb1 
 ~pb1

0
B@

1
CA:
035008
By using the on-shell condition of the neutralino mass

E2
~�0
1
� �a; b; c�M

a
b
c

0
@

1
A�m2

~�0
1
; (A3)

we obtain the following equation:

A33

�E~�0
1

m~�0
1

�
2
� 2

�
A13 �

m2
~b

m2
~�0
1

A23

��E~�0
1

m~�0
1

�
�

�
A11 � 2

m2
~b

m2
~�0
1

A12 �
m4

~b

m4
~�0
1

A22

�
� 0;

where Aij � �xi�
TM�1�xj� � $ij�i� 2�=m2

~�0
1
. The solu-

tion of E~�0
1

is expressed as

E~�0
1
�

m~�0
1

A33

�
�A13 �

m2
~b

m2
~�0
1

A23 �





D

p �
;

D �

�
A13 �

m2
~b

m2
~�0
1

A23

�
2

� A33

�
A11 � 2

m2
~b

m2
~�0
1

A12 �
m4

~b

m4
~�0
1

A22

�

�

�m2
~b

m2
~�0
1

�
2
�A2

23 � A33A22� � 2
�m2

~b

m2
~�0
1

�
�A13A23 � A33A12�

� �A2
13 � A11A33�: (A4)

When the sbottom comes from gluino decay, we can
further use the gluino mass shell condition:

m2
~g � 2pb2 
 p~�0

1
� 2pb2 
 �pb1 � p‘2 � p‘1� �m2

~b
�m2

b;

(A5)

where
pb2 
 p~�0
1
� E~�0

1
Eb2 � ~pb2 
 ~p~�0

1
� m2

~�0
1

F0 � F1m2
~b
� F2m2

~�0
1

� 




D

p

A33

�
;

F0 � �

�Eb2

m~�0
1

� �Kb2�
T 
 �x3�

��
A13

A33

�
� �Kb2�

T�x1�; F1 � �

�Eb2

m~�0
1

� �Kb2�
T 
 �x3�

��
A23

A33

�
� �Kb2�

T�x2�;

F2 � �

�Eb2

m~�0
1

� �Kb2�
T 
 �x3�

�
; �Kb2�

T � �~pb2 
 ~p‘1 ; ~pb2 
 ~p‘2 ; ~pb2 
 ~pb1�M
�1:

(A6)
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The equation involving the gluino and sbottom masses is of the form
Q11m4
~g � 2Q12m2

~gm
2
~b
�Q22m4

~b
� 2Q1m2

~g � 2Q2m2
~b
�Q � 0;
where
Q11 � 1; Q12 � �2F1 � 1;

Q22 � �2F1 � 1�2 � F2
2

A2
23 � A33A22

A2
33

;

Q1 � �2F0m2
~�0
1

� 2pb2 
 �pb1 � p‘1 � p‘2� �m2
b;

Q2 � Q12Q1 � F2
2m

2
~�0
1

A13A23 � A33A12

A2
33

;

Q � Q2
1 � F2

2m
4
~�0
1

A2
13 � A11A33

A2
33

:

(A7)
It should be noted that one can derive an equation of the form m4
I � C1m2

I � C2 � 0 for any particle I involved in the
cascade.
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