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We study the implications for the minimal supersymmetric standard model (MSSM) of the absence of a
direct discovery of a Higgs boson at LEP. First we exhibit 15 physically different ways in which one or
more Higgs bosons lighter than the LEP limit could still exist. For each of these cases—as well as the case
that the lightest Higgs eigenstate is at, or slightly above, the current LEP limit—we provide explicit
sample configurations of the Higgs sector as well as the soft supersymmetry breaking Lagrangian
parameters necessary to generate these outcomes. We argue that all of the cases seem fine-tuned, with
the least fine-tuned outcome being that with mh ’ 115 GeV. Seeking to minimize this tuning we
investigate ways in which the ‘‘maximal-mixing’’ scenario with large top-quark trilinear A-term can be
obtained from simple string-inspired supergravity models. We find these obvious approaches lead to heavy
gauginos and/or problematic low-energy phenomenology with minimal improvement in fine-tuning.
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The Minimal Supersymmetric Standard Model (MSSM)
is defined as the simplest supersymmetric extension of the
Standard Model (SM). Every SM particle has a superpart-
ner, the basic Lagrangian is supersymmetric, and the gauge
group is the same SU�3� � SU�2� � U�1� as that of the
SM. The full supersymmetry is softly broken by certain
dimension two and three operators. There is considerable
indirect evidence that this theory is likely to be part of the
description of nature. If it is, we expect a Higgs boson with
mass less than about 130 GeV to exist, and superpartners
must be found with masses not too much larger than those
of the W, Z and top-quark [1]. While the Higgs boson mass
can be as heavy as 130 GeV in the MSSM, it has been
known for some time that most naive models imply a
lighter state, usually below about 110 GeV, when including
the constraint that the indirect arguments for supersymme-
try are valid without fine-tuning [2].

While it is not impossible that perhaps LEP has seen a
Higgs boson with mh ’ 115 GeV, the data collected up
through center-of-mass energy of 209 GeV [3] yields no
unambiguous signal for such a light Higgs eigenstate. One
obvious explanation for this fact is that the lightest Higgs
boson is heavier than 115 GeV. Another is that one or more
eigenstates are lighter than the kinematic cutoff but that
they do not couple significantly to the Z-boson. Thus it is
natural to ask whether the Higgs sector of the MSSM could
be such that LEP would not have found a signal because of
reduced Higgs cross sections or reduced branching ratios in
some part of the general MSSM parameter space. Using the
reported LEP limits on the cross section � branching ratio
for Higgs eigenstates as a guide, it is possible to find 15
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logically distinct ways in which this could indeed have
been the case at LEP. Together with the possibility that the
lightest Higgs boson is at 115 GeV, and the possibility that
it is much larger in mass, there are 17 distinct configura-
tions of the MSSM Higgs sector consistent with the LEP
results. These cases are summarized in Table I of Section II
below, with an explicit example configuration for each case
given in Table II. The results in Table I are not the outcome
of a complete parameter scan, but instead represent a
general classification of logical possibilities for the
MSSM Higgs sector. All of our example points are allowed
by other data. All satisfy the constraints for electroweak
symmetry breaking, though sometimes in unconventional
ways. All of the example configurations are detectable at
the Fermilab Tevatron collider with sufficient luminosity.
If the MSSM is the correct description of nature just above
the electroweak scale then one of these 17 cases is the true
Higgs sector of the MSSM.

In Section I we review the data collected at LEP, with
particular attention paid to what is strictly measured and
how these measurements are converted into limits on Higgs
eigenstate masses. As mentioned above, there is no clear
indication for the presence of Higgs bosons in the LEP
data. Nevertheless there are three distinct cases where an
excess of observed events in a particular channel resulted
in an experimental bound on the cross section � branching
ratio that was weaker than the expected limit at the 2�
level [6–9]. In these ‘‘excess regions’’ care must be taken
in extracting a mass bound on the possible Higgs eigen-
states involved. Using these regions as a guide we classify
the possible consistent Higgs configurations in Section II.
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TABLE II. Example Higgs configuration for each entry of Table I. A particular point contained in the allowed ranges shown in
Table I is displayed in greater detail for all 17 possible Higgs sector configurations. Note the relatively light charged Higgs masses for
the majority of these models, placing them within the physics reach of Run II at the Tevatron.

No. mh mA mH C2h C2A C2H Br�h ! b �b� mH� tan	 
 �A


1 97.4 88.9 115.3 0.206 0.036 0.758 0.94 119.0 6.0 �1700 135
2 97.6 92.8 115.4 0.213 0.001 0.786 0.94 121.0 8.0 �1500 130
3 98.0 101.2 114.9 0.227 0.000 0.773 0.93 128.0 10.0 �500 180
4 97.8 126.8 114.3 0.193 0.000 0.807 0.98 117.0 11.0 �2000 180
5 90.7 96.8 115.0 0.008 0.000 0.992 0.98 129.5 32.0 2000 0
6 98.5 89.2 117.7 0.236 0.002 0.762 0.94 121.0 7.0 �1600 130
7 103.9 93.9 115.2 0.041 0.008 0.951 0.97 121.0 13.0 �1500 160
8 94.4 98.0 114.4 0.042 0.000 0.958 0.94 126.8 39.5 �569 180
9 93.1 118.4 115.0 0.014 0.000 0.986 0.98 123.0 12.0 �1700 180
10 114.5 686.3 687.6 1.000 0.000 0.000 0.80 692.8 25.0 530 0
11 98.2 101.5 118.2 0.212 0.000 0.788 0.90 129.0 14.0 500 0
12 98.0 93.1 119.3 0.237 0.013 0.750 0.93 123.0 7.0 �1700 125
13 88.0 99.7 118.2 0.041 0.000 0.959 0.99 118.0 19.0 �2000 180
14 81.5 32.1 139.0 0.666 0.009 0.325 0.03 115.0 2.5 2000 0
15 110.7 493.7 501.0 0.999 0.000 0.001 0.30 500.0 2.1 200 0
16 100.3 104.1 115.9 0.068 0.000 0.932 0.94 131.6 39.5 �722 180
17 116.8 819.7 820.8 1.000 0.000 0.000 0.83 828.4 25.0 730 0

TABLE I. Possible explanations consistent with LEP Higgs search results. Ranges of neutral and charged Higgs masses consistent
with background only hypotheses as well as one, two or three ‘‘fluctuation’’ hypotheses are listed. The column headed by
‘‘Fluctuations’’ indicates what fluctuations might have appeared for a given model. Qualitative tan	 and Higgs coupling ranges
for each individual parameter space is given. All ranges should be understood as indicative of the allowed region at the roughly 10%
accuracy level: fine scans of the parameter space have not been performed. For Higgs state ’i the ZZ’i coupling is �g2MZ= cos�W�Ci,
approximate values are given in the table. The column marked � indicates a nontrivial phase �
At

is needed. When there is nontrivial
phase, mA is understood as the mass of the neutral Higgs with smallest CZZHi

coupling. The column 
 indicates the presence of a large

 term. The column marked U indicates this scenario is compatible with a unified SUSY breaking scenario such as mSUGRA. We
believe all other such scenarios effectively reduce to one of these.

No. mh mA mH mH� Fluctuations tan	 C2h C2H U 
 �

1 98 89 115 112–123 98,115,187 6–12 0.2 0.8 Y Y
2 98 <mh 115 106–127 98,115 4–13 0.2 0.8 Y Y
3 98 � mh 115 121–136 98,115 5–50 0.2 0.8
4 98 115–130 115 112–124 98,115 10–24 0.2 0.8 Y
5 70–91 96–116 115 110–140 115,187 10–50 0.0 1.0 Y
6 98 89 >115 118–127 98,187 6–10 0.2 0.8 Y Y
7 82–110 <mh 115 	mA 115 7–50 0.0 1.0 Y Y
8 82–110 � mh 115 	mA 115c 5–50 0.0 1.0 Y
9 82–110 115–140 115 	mA 115 6–24 0.0 1.0 Y
10 115 mA � mH > 115 	mA 115c 3–50 1.0 0.0 Y
11 98 100–130 120–130 	mA 98 5–50 0.20 0.80
12 98 <98 120–130 106–128 98 4–13 0.20 0.80 Y Y
13 65–93 94–120 116–125 110–140 187 8–50 0.0 1.0 Y
14 80–100 25–40 133–154 109–130 Nonea 2–5 0.5–0.8 0.2–0.5 Y Y
15 111–114.4 mA � mH > 114:4 	mA Noneb 2.1–4 1.0 0.0
16 70–114.4 90–140 >114:4 	mA None 4–50 0.0 1.0 Y
17 >114:4 mA � mH > 114:4 	mA Nonec 4–50 1.0 0.0 Y

a Dominant decay is CP violating process H2 ! H1H1. This case was studied in Ref. [4]
bThe ‘‘invisible’’ decay h ! ~N1

~N1 and h ! b �b decays are comparable (i.e. Br�h ! ~N1
~N1� ranges from 30% to 60%).

c These scenarios were studied in Ref. [5].
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In that section we provide a general description of each of
the 17 logically distinct cases as well as a concrete example
configuration to illustrate each case.

With these 17 cases in hand it is natural to then ask
whether any of them are less fine-tuned than the others, and
thus might be more likely to point to a particular under-
lying theory. To address this issue it is necessary to con-
struct a soft supersymmetry breaking Lagrangian capable
of giving rise to each of the 17 possible configurations.
Since not all 105 parameters of the MSSM are relevant for
determining the Higgs sector of the theory, there is some
inevitable arbitrariness in this construction. It is for this
reason that LEP results are often interpreted in the light of
certain ‘‘benchmark’’ models to reduce this arbitrariness.
We have chosen to work in a less restrictive environment
and provide candidate soft Lagrangian parameters at both
the electroweak scale and the high-energy (in this case
GUT) scale in Section III. Interestingly, only four of the
17 cases can be obtained from a model such as minimal
supergravity (mSUGRA) with a universal gaugino mass,
universal scalar mass and universal soft trilinear coupling
at the GUT scale. This includes the cases where the lightest
Higgs boson is at, or much larger than, 115 GeV. Despite
the 15 distinct ways the Higgs could have been lighter than
115 GeV and escaped detection, the most natural conclu-
sion within the MSSM is still that the Higgs is at, or just
slightly above, 115 GeV in mass. This conclusion is arrived
at in Section III through a variety of means: investigating
the low energy parameter space, examining the high energy
soft Lagrangian as well as a fine-tuning analysis using the
sensitivity parameters of Barbieri and Giudice [10].

Achieving such a large Higgs mass in the MSSM will
necessitate at least some level of uncomfortable tuning
because the tree-level Higgs mass is bounded by MZ and
thus the one-loop corrections have to supply about �m2

h ’

�70 GeV�2 when added in quadrature. This tuning is most
mitigated in the so-called ‘‘maximal-mixing’’ regime,
which implies a very large soft trilinear coupling involving
the stop and where the gluino can be made as light as
possible. While widely used as a benchmark case in low-
energy studies of the Higgs sector of SUSY models, such a
regime does not seem to be a robust outcome of any of the
standard SUSY breaking/transmission models typically
considered in the literature. We study the general improve-
ment in fine-tuning when maximal-mixing in the stop
sector is obtained in Section IV. In Section V we focus
on string-based models and look at ways to engineer such
large mixing in the stop sector. We find that the most
obvious ways to approach maximal-mixing result in either
heavy gauginos or a problematic low energy phenomenol-
ogy. Thus explaining the LEP result without excessive
tuning in these simple models seems difficult. We conclude
with some speculation on how extending these string-based
models in theoretically well-motivated directions could
alleviate the problem.
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I. OVERVIEW OF THE LEP RESULTS

In order to appreciate the theoretical implication of the
LEP Higgs search on high-energy models it is necessary to
understand the way in which data is collected and inter-
preted by the LEP experimental collaborations. This, in
turn, requires a brief review of the salient features of the
Higgs sector in the MSSM. In this section we aim to
provide sufficient background to motivate the classification
scheme for low-energy models adopted in Section II.

A. What is measured at LEP

There are three neutral Higgs states in the MSSM. If
there are no CP violating phases then these neutral Higgs
mass eigenstates are also CP eigenstates: two of them are
CP-even and one is CP-odd. If Higgs bosons are produced
at LEP then the relevant process will be e
e� ! Z� !
�iZ or e
e� ! Z� ! �i�j, where �i represents any of
the three neutral Higgs mass eigenstates. It is therefore
convenient to define the following Higgs/Z-boson cou-
plings

ZZ�i:
g2mZ

cos�W
Ci and Z�i�j:

g2
2 cos�W

Cij: (1)

Since the Standard Model Higgs boson has the coupling
ZZHSM:g2mZ= cos�W , the Ci’s are to be interpreted as
ratios of the true couplings to those of the SM. When CP
is conserved we may use h, H and A to denote the lighter
CP-even, heavier CP-even and CP-odd Higgs states, re-
spectively. In this CP-conserving case only Ch, CH, ChA
and CHA are nonzero and we have the relations

jChj
2 
 jCHj

2  1; ChA  CH: (2)

The Ci can be related to the Higgs mixing angle � and the
ratio of the vacuum expectation value (vev)s of the up-type
to down-type Higgs field defined by tan	  vu=vd. For
example, in the CP-conserving case the one independent
variable can be written as Ch  sin�	� ��. In addition to
the proportionality factor Cij, when a CP-even Higgs bo-
son is produced in association with the CP-odd state there
is a kinematic p-wave suppression factor �� such that
��e
e� ! A�i� / ���SM where

�� 
�3=2A�i

�1=2Z�i
�12m2

Z=s
 �Z�i
�
;

�ij 
1� �mi 
mj�

2=s

1� �mi �mj�
2=s

:

(3)

All of these proportionality factors are model-dependent,
as are the masses of the various Higgs eigenstates.

Once produced, Higgs eigenstates are identified through
their decay products. In most of the MSSM parameter
space the three neutral Higgs eigenstates decay predomi-
nantly into the heaviest accessible fermion—typically ei-
ther a b; �b or "
; "� pair. In some areas of parameter space
decays into other quark/antiquark pairs are important, par-
-3
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ticularly to charm quarks. In still other regions of the
MSSM parameter space a heavy Higgs eigenstate may
decay into lighter eigenstates (though only in the presence
of CP violation) and/or decay into light neutralinos which
can escape the detector. We shall refer to the latter case as
an ‘‘invisible decay,’’ though such event signatures can be
and have been analyzed at LEP.

In both production processes Z�i and �i�j, a crucial
element in reconstructing the event as one involving a
Higgs eigenstate is the reconstruction of the associated
partner—whether it be a Z-boson or another Higgs eigen-
state. Thus the most important category of event signature
is a four-jet event, with both the Higgs eigenstate and the
associated production partner decaying into quark/anti-
quark pairs. To reduce the background from processes
such as e
e� ! ZZ;W
W� b-tagging is typically used
to require that at least one pair of jets arise from a b; �b pair.
As the Higgs states tend to decay to b quarks more fre-
quently than Standard Model gauge bosons, this data set
will tend to have a larger proportion of Higgs events.

Thus we might crudely think of classifying events at
LEP in terms of a set of topologies. Some of these top-
ologies, such as b �b‘
‘� (with ‘� either an electron or a
muon) , are more likely to come from the process e
e� !
Z�i than from e
e� ! �i�j. Others, such as b �b"
"�,
may fit quite well with either production mechanism. To
account for this ambiguity, each event that passes the initial
cuts is assigned a measure of its ‘‘signal-like’’ properties
under the hypothesis of the process e
e� ! Z�i and the
process e
e� ! �i�j. An event where the invariant mass
of a lepton pair closely matches the Z-boson mass, for
example, will then be more ‘‘signal-like’’ under the former
hypothesis than under the latter. This weight is a function
not only of the experimentally reconstructed Higgs mass
for the state �i but also of the true Higgs mass m�i

for that
state. Thus asking whether a given event ‘‘looks like a
Higgs event’’ is complicated by the need to ask this ques-
tion only in the context of a given hypothesis about how
this Higgs state was created and what its true mass is.
Equally challenging is asking the question of how many
events of a given topology LEP should have seen for a
given Higgs mass. What’s more, the likelihood that a
particular event represents a signal is model-dependent,
and will vary depending on whether we assume CP is
conserved in the Higgs sector, or whether we assume a
certain hierarchy of Higgs masses among the eigenstates.1

It is therefore more useful to think of a limit on the
production cross section � branching ratio for the process
e
e� ! Z�i and the process e
e� ! �i�j as a function
of the Higgs eigenstate masses involved, bearing in mind
that this limit will contain some residual model depen-
dence. Since the Standard model production rate is known
1For a fuller description of this issue of how events are
assigned a statistical meaning, see [11].
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for a given Higgs mass m�i
, we can normalize the limit to

this quantity (and the known Z-boson branching ratios) to
obtain the parameter $2 reported by LEP

$2Z�i
 C2iBr��i ! f �f�=Br�HSM ! f �f� (4)

$2A�i
 C2Ai ��Br�A ! f �f�Br��i ! f �f�: (5)

For each of the two production mechanisms, and each of
the final state signatures, the effective number of events
observed at LEP can be translated into a limit on the
effective coupling $2 for a given Higgs mass m�i

.
Deciding whether a given point in the MSSM parameter

space is ‘‘ruled out’’ by the LEP data is then more involved
than simply calculating the masses of the Higgs eigen-
states. Of key importance is the expected limit on $2 for
a particular channel. This is the bound that would be placed
if all observed events that received some nonzero weight as
‘‘signal’’ events were in fact merely Standard Model back-
ground events. While the actual bound obtained by the LEP
collaborations is consistent with this expected bound, there
are three distinct excesses where the experimentally ob-
tained bound was weaker than the expectation by approxi-
mately 2� [6–9]. The most celebrated of these is in the
channel e
e� ! Zh which shows an excess around mh ’
115 GeV. The two others occur in the channel e
e� ! Zh
with mh ’ 98 GeV and in the channel e
e� ! Ah with
mh 
mA  187 GeV. Any MSSM model that yields a
Higgs configuration near one of these areas is governed
by constraints from LEP that are quite different from those
that yield a Higgs sector far from these areas.

B. How are mass limits obtained at LEP

The relative couplings given by the Ci in (1) are func-
tions of the Higgs mass spectrum. Thus, limits on the
effective couplings $2 can be translated into limits on these
masses. The Higgs mass spectrum, in the CP-conserving
limit, is determined at tree level by just two input parame-
ters at the electroweak scale. These could be two eigenstate
masses such as mh and mA, or two angles such as the Higgs
mixing angle � and the ratio of Higgs vevs given by tan	,
or some combination of the two. Note that these electro-
weak scale inputs are derived quantities and are not fun-
damental from the high-energy, underlying theory point of
view.

At the loop level the Higgs mass spectrum requires
several more inputs from the soft supersymmetry-breaking
Lagrangian. Among these are the running squark masses
for the third-generation left-handed doublet m2eQ3

 m2
~tL


m2
~bL

and the right-handed third-generation singlets m2
~tR

and

m2
~bR

, the trilinear scalar couplings associated with the top

quark Yukawa At and bottom quark Yukawa Ab, and the
(supersymmetric) Higgs bilinear coupling 
. At the next
order the gluino mass is also important, not only in deter-
-4
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mining the Higgs mass spectrum but also for its contribu-
tion to the bottom quark Yukawa coupling which deter-
mines the Higgs branching fraction to b; �b pairs. If we
allow for CP violation in the Higgs sector we will also
involve the relative phase between 
 and At, which affects
the masses of the various Higgs states as well as their
couplings to the Z-boson.
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In the presence of a CP violating phase (for example,
the relative phase �A
 between the 
 parameter and
the soft supersymmetry breaking trilinear coupling of
the top squark) the mass matrix for the neutral Higgs
states is a 3� 3 matrix. In the basis fRe�hd� �
vd;Re�hu� � vu; sin	Im�hd� 
 cos	Im�hu�g this is
given by
M2 

m2
Zcos

2	
 em2
Asin

2	
 e�#11 �� em2
A 
m2

Z� sin	 cos	
 e�#12 re�#
�� em2

A 
m2
Z� sin	 cos	
 e�#12 m2

Zsin
2	
 em2

Acos
2	
 e�#22 se�#

re�# se�# em2
A 
 e�#

0
BB@

1
CCA (6)
2In this name the ‘‘mixing’’ refers to mixing in the stop sector,
though the ‘‘maximal’’ refers to the Higgs mass.
where e�  3�2t =16*2 [12]. The mass em2
A is proportional to

the tree level value m2
A of the CP-conserving case and

reduces to it in the limit of �A
 ! 0. We have chosen to
use the pair mA and tan	 as our tree level input variables
for the moment. The quantities #ij represent radiative
corrections to the tree level values of the CP-even subsec-
tor. Explicit expressions for these quantities can be found
in [13–16]. The quantity # represents radiative corrections
that are only present in the case of CP violation. Its value,
as well as the dimensionless proportionality factors r and s,
can be found in [12].

When we neglect the left-right entries of the squark mass
matrix (which is the case of ‘‘minimal-mixing’’), we have
the following leading radiative corrections

#11  2
�
�b

�t

	
2
m2

b ln
m2
~b1
m2
~b2

m4
b

; #22  2m2
t ln

m2
~t1
m2
~t2

m4
t

r#  0; s# 
sin�A


sin	
j
jjAtjm2

t

�m2
~t2
�m2

~t1
�
ln
m2
~t2

m2
~t1

(7)

and #12  0. Note that the sizes of #11 and #22 are quite
different: even in the large tan	 regime, where �t 	 �b, the
ratio #22=#11 ’ 400. Given that the one-loop correction
#22 from the stop sector has a typical size on the order of
30 GeV, it follows that the one-loop correction #11 from
the scalar bottom sector has a typical size #11 	 0:1 GeV
and is therefore negligible.

A particularly simple form for the above matrix which is
often assumed is obtained under the assumptions that (i)
there is no CP violation (ii) the tree level off-diagonal
entries in (6) can be ignored and that (iii) mA sin	 �
mZ cos	. Then the approximate mass eigenvalues are

m2
A, m2

H  m2
Asin

2	 and m2
h  m2

Zsin
2	
m2

Acos
2	
e�m2

t ln��m
2
~t1
m2
~t2
�=m4

t �. A more useful approximation to
the lightest CP-even Higgs mass is obtained when the
stop left-right mixing is restored. In this case the appro-
priate expression in the large tan	 limit is m2

h ’ m2
Z 
 �2h

where

�2h 
3g2m4

t

8*2m2
W



ln
�m~t1m~t2

m2
t

	

 X2t

�
1�

X2t
12

	�
: (8)
The additional contributions from the second term in (8)
are maximized for particular values of the stop mixing
parameter Xt � �At �
 cot	�=MSUSY. This property has
been used to define the so-called ‘‘mh0-max’’ scenario [17]
which generates the maximum possible Higgs mass for a
given value of tan	 and typical stop mass. We will refer to
this regime by its more common (though misleading) name
of the ‘‘maximal-mixing’’ scenario.2 The specific point
defined in [17] is given by the following combination of
parameters:8>><
>>:

m~tL  m~bL
 m~tR  m~bR

� MSUSY  1 TeV

  �200 GeV; Xt � �At �
 cot	�=MSUSY  2

M2  200 GeV; M~g  800 GeV; Ab  At

9>>=
>>;
(9)

and the value of tan	 restricted to lie in the range 0:4<
tan	 < 50. Within this paradigm, the constraints on the
various $2 can be translated into the limits displayed in
Fig. 1 for the �mh0 ; mA� plane [3]. The 95% exclusion
contour is represented by the dashed line in Fig. 1: combi-
nations of mh and mA above and to the left of this line
would require a coupling $2 for some process excluded at
the 95% confidence level. In other words, within the con-
text of the ‘‘mh0-max’’ scenario these combinations would
have produced too many signal-like events at LEP. The
utility of the mh0-max scenario is that the limits on the
Standard Model-like Higgs eigenstate of the MSSM are the
most conservative possible. It must be remembered, how-
ever, that the limits, the confidence level regions and the
theoretically excluded areas will all change if the mh0-max
scenario is replaced with a different interpretive paradigm.

II. LOW-ENERGY CLASSIFICATION

We have learned from the preceding section that one can
identify three distinct 2� excesses in the LEP data consis-
tent with the hypothesis that one or more Higgs eigenstates
is produced. These correspond to the production of a
(mostly) CP-even eigenstate of mass 98 GeV and/or
-5
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FIG. 1 (color online). Distribution of confidence level in the
�mh;mA� plane for the m0

h-max scenario [3]. The unshaded area
marked <1� the observed number of events shows a deficit or is
less than 1� above the background prediction for this scenario.
Similarly, the shaded region marked >1� and the two lighter-
shaded regions marked >2� showed an excess of observed
events above the Standard Model background over 1� and 2�,
respectively. The 95% confidence level exclusion contour is
given by the dashed line—points to the left of this line are
excluded. We have highlighted two areas of particular interest:
one centered around mh  114 GeV (A) and one centered
around mh  98 GeV (B).
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115 GeV, as well as the production of two Higgs eigen-
states with one being (mostly) CP-odd. By ‘‘mostly’’ we
mean that in the presence of CP violating effects in the
Higgs sector the wavefunction for the state in question is
dominated by the component with the appropriate CP
quantum number. We will see below that some interpreta-
tions of these excesses will require a degree of CP
violation.

For the remainder of this section we will refer to these as
2� ‘‘fluctuations,’’ given that some or all of these excesses
may be simply the result of fluctuations in the background
rate. Logically speaking, one can divide the MSSM pa-
rameter space into classes capable of producing one, two or
three such fluctuations—as well as a much larger class that
would give rise to no excess events at all. Given that
properly applying the LEP constraints on Higgs masses
depends on whether those masses fall near one of these
excess regions, we believe this is a useful system for
classifying possible MSSM models.

In all we find 17 physically distinct scenarios compatible
with the LEP results. In 15 cases the lightest Higgs mass is
kinematically accessible at LEP II, but no signal is pro-
duced due to a reduction in the production cross section
and/or branching ratios to bottom quarks. In addition there
is the case where the lightest Higgs eigenstate is indeed
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Standard Model-like with a mass mh  115 GeV (No. 10)
and the case where it is heavier than about 115 GeV (No.
17). These different configurations are summarized in
Table I.

As mentioned in the previous section, the low-energy
parameter space that determines the properties of the Higgs
sector relevant for the LEP search is large. We have not
attempted a complete scan of this space so the ranges we
present for each case in mass values and tan	 should be
regarded as representative. For investigating the Higgs
sector at low energies we use the FORTRAN code
CPSUPERH [18] which uses an effective potential method
for computing Higgs mass eigenvalues and couplings. To
keep the survey manageable we scanned over the low-
energy quantities tan	, mH� , At  Ab, m2

Q3
, m2

U3
 m2

D3
,


 and the relative phase between At and the mu parameter
in generating Table I. For the case where the lightest Higgs
eigenstate decays into neutralinos (No. 15) we included the
gaugino mass variables M1 and M2 in the scan.

Note that the ranges presented in the table do not assume
any particular model for the soft Lagrangian at either the
low or high scale, such as the maximal-mixing scenario.
We will discuss possible implications for the soft
supersymmetry-breaking Lagrangian in Section III. For
the remainder of this section, however, we will discuss
some general features of the entries in Table I and inves-
tigate in further detail some specific points representing
cases with three, two, one and zero excesses.

Let us begin with a description of the various quantities
in Table I. After giving the entry number we provide the
neutral Higgs mass spectrum. When CP is conserved we
call the states by the usual names h, H and A; one can show
here that mh is always less than max�MZ;mA�, even allow-
ing one-loop corrections for mh, so any model with mA and
MZ < mh requires a nontrivial phase. This conclusion does
not include loop effects for mA, so one can have mA a few
GeV less than mh for certain parameters if tan	 is large.
The reader should keep in mind that in the CP violating
cases the mass eigenstates are not CP eigenstates. The
column headed � has a Y if a nontrivial phase (not zero
or *) plays a role for a given model. Because the one-loop
top/stop radiative correction to the Higgs potential is rather
large, a large phase (specifically the relative phase of 
 and
At) can enter, and lead to a relative phase between the
Higgs vevs at the minimum of the potential. This phase is
physical and cannot be rotated away. It leads to mixing
between the mass eigenstates, and affects the production
rates and decay branching ratios [4,19–22].

The fourth column is the charged Higgs mass and it
can be schematically written as m2

H�  m2
W 
m2

A 


loop corrections. For some rows, the charged Higgs mass
is almost fixed and we give the numerical value in the table
for these cases. For the remaining cases where there is a
range for the mH� we merely indicate mH� 	mA since it
does not differ from mA significantly. In most cases the
-6
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FIG. 2 (color online). Schematic Distribution of the 17 cases in
Table II. The example points in Table II are plotted in the
�mh;mA� plane. Three points (Nos. 10, 15 and 17) involve
pseudoscalar masses outside of the region shown. We have
overlaid the ‘‘theoretically disallowed’’ region (light shading)
and 95% exclusion contour from Fig. 1 for the special case of the
CP-conserving m0

h-max scenario [3]. These contours are shown
for reference purposes only: the bounds derived for the m0

h-max
scenario need not apply to the 17 specific points we investigate.
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charged Higgs mass mH� is less than the top quark mass, so
the decay t ! b
H� is allowed. Existing data from D0
excludes mH� below about 125 GeV for tan	 larger than
about 50 with mild model dependence, so no model is fully
excluded— though parts of the parameter range of some
models are probably excluded by nonobservation of H�.
With more and better data from Run II the H� of most of
these models could be observed or excluded [23]. These
small values for mH� can also exceed limits from Br�b !
s.�, but using light chargino and gluino contributions
provides significant flexibility. However, cases 8 and 16
exceed the limits on Br�b ! s.� by more than a factor of 2
and are thus likely to be excluded, though we should note
that this is based on using a unified mSUGRA model for
these cases and may not hold when departures from uni-
versality are entertained.

The list of possible excesses that can be obtained with a
particular scenario, the allowed range in tan	 and the
Higgs ZZHi couplings follow. Again, in CP violating cases
Ch is the coupling of the lighter of the mostly CP-even
neutral Higgs states while CH is the coupling of the heavier
such state. We have limited the range of tan	 surveyed to a
maximum value of tan	 � 50. For each point in the low
energy parameter space the production cross section rela-
tive to the Standard Model Higgs can be computed from
the couplings Ch and CH. Decay widths for Higgs decays
to bottom, charm and tau are computed to determine
Br�h ! b �b�. From these the variable $2 can be determined
for comparison to the LEP bounds. As LEP reports bounds
in the limit where mh ’ mA we can take the parameter � ’
1.

The column marked ‘‘U’’ indicates a low-energy sce-
nario that can be reached by a point in the mSUGRA
parameter space at high energies. We will have more to
say about this column in Section III. The column headed by

 has a Y if 
 is very large, say well above several hundred
GeV. This is particularly relevant because of the question
of fine-tuning needed to obtain electroweak symmetry
breaking. Such a large value of 
 is necessary in some
cases because of the need to enhance the bottom Yukawa
coupling, and thus enhance the branching ratio of h ! b �b.
This can be seen from the following

mb  yb

���
2

p
MW cos	

g
�1
 #b�

#b �
2�s

3*
M~g
 tan	I�M~b1

;M~b2
;M~g�



�t

4*
At
 tan	I�M~t1 ;M~t2 ;M
�;

(10)

where we keep only the leading terms in tan	, though in
the actual analysis we employed the complete expression
[24–26]. Here I�a; b; c� is a loop integral and g is the SU�2�
gauge coupling. It is clear that once the relative sign
between At, M~g and 
 is chosen, the large value of 
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can make #b more negative and consequently enhance yb
for a fixed input bottom quark mass.

We next give a detailed description of the Higgs sector
for an example point that gives rise to three, two, one or no
excesses at LEP, respectively. Sample low-energy configu-
rations for all models are summarized in Table II and
plotted schematically in Fig. 2.

A sample point in the parameter space of Entry No. 1 has
mh ’ 98 GeV, mH  115 GeV and mh 
mA 
187 GeV. Its parameters are tan	  6, 
  �1700,
mH�  119, At  370, Ab  400, �
  135o, M1 

100, M2  200, M3  600 and m ~Q3
 m~bR

 m~tR 

500, with all parameters in GeV. This gives for the masses
of the three mass eigenstates m1  88:9, m2  97:4, and
m3  115:3 GeV, with C2i respectively of 0.036, 0.206,
and 0.758. All three states have Br�’i ! b �b� � 0:94.
These give about 2� fluctuations at 98 GeV and
115 GeV. Since mA � MZ the Zh and Ah channels add to
give an apparent 187 GeV fluctuation.

Entry No. 5 is designed to fit mH  115 GeV and mh 

mA  187 GeV. In this case one needs a large 
 value to
fit the 187 GeV fluctuation. This is because if the Higgs
decay is like the SM Higgs decay, then the branching ratio
to b; �b pairs at this mass region is about 80% and $2ZAh will
-7



TABLE III. Soft term values at the GUT scale for models
which can be obtained from the minimal supergravity paradigm.
All masses are given in GeV.

Unified Models
Entry 8 10 16 17

M1=2 450 300 560 350
A0 0 �750 0 �1300
m2
0 �450�2 �500�2 �300�2 �500�2


 �761 533 �962 730

3For a comparison of SUSPECT with other publicly available
computer codes, and their accompanying uncertainties, see [28].
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be too small to explain the fluctuation. To satisfy the
criteria for the 187 GeV fluctuation we need to enhance
the branching ratio to b; �b which tends to require a large 
.
All scanned points have $2ZAh < 0:90. Our sample point has
Br�A ! b �b�Br�h ! b �b�  0:935 with parameters tan	 
32, 
  2000, mH�  130, At  1750, Ab  1000, M1 
300, M2  300, M3  �1000, m ~Q3

 m~bR
 1000 and

m~tR  1380 with all masses in GeV. The masses of the
three mass eigenstates are mh  90:7, mA  96:8 and
mH  115:0 GeV, with C2i respectively of 0.008, 0 and
0.992. All three states have Br�’i ! b �b� � 0:98 which
yields an apparent 2� fluctuation at 115 GeVand 187 GeV.

Entry No. 8 has mH  115 GeV with the other neutral
Higgs states having smaller masses. Its parameters are
tan	  39:48, 
  �569, mH�  126:8, At  �832,
Ab  �926, M1  179, M2  344, M3  1117, m ~Q3



926, m~bR
 902 and m~tR  857, with all masses in GeV.

The masses of the three mass eigenstates are then mh 
94:4, mA  98:0 and mH  114:4 GeV, with C2i respec-
tively of 0.042, 0 and 0.958. All three states have Br�’i !
b �b� � 0:94 which yields an apparent 2� fluctuation at
115 GeV.

Entry No. 15 has no 2� fluctuation at LEP and a lightest
Higgs boson mass below 115 GeV. Its parameters are
tan	  2:1, 
  200, mH�  500 At  Ab  4000,
M1  55, M2  250, M3  700 and m ~Q3

 m~bR
 m~tR 

2000, with all masses in GeV. The masses of the three mass
eigenstates are mh  111, mA  494 and mH  501 GeV,
with C2i respectively of 0.999, 0 and 0.001. The branching
ratios of the lightest state are Br�h ! b �b�  0:3 and
Br�h ! ~N1

~N1�  0:621, where ~N1 is the stable lightest
superpartner and is a good candidate for the cold dark
matter of the universe. In the case presented here, m ~N1



43:5 GeV.

III. IMPLICATIONS FOR SOFT
SUPERSYMMETRY BREAKING

It would be very nice if one or more of the cases
described in Section II pointed clearly to a simple high-
scale model which we could then study and perhaps mo-
tivate. Unfortunately, this does not seem to occur. The first
obstacle is the fact that the Higgs sector values given in
Tables I and II above do not completely specify the MSSM
soft Lagrangian at the electroweak scale. Thus, translating
these values to a high energy boundary condition scale
)UV through renormalization group (RG) evolution will
involve some arbitrariness—for example, in choosing the
low-energy values of slepton and second-generation squark
masses.

In some instances, such as entry No. 8 described above,
the necessary low scale values could be obtained from a
unified mSUGRA model at the high scale. In order to
determine how many of the low-energy scenarios of
Table I could be similarly obtained, we performed a scan
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over the five parameters of the minimal supergravity model
at the scale )UV  )GUT  1:9� 1016—unified scalar
mass m0, unified gaugino mass m1=2, unified trilinear cou-
pling A0, tan	 and the sign of the 
-parameter. These
parameters were evolved to the electroweak scale )EW 
mZ using the code SUSPECT with fermion masses and gauge
coupling set to their default values [27], and the resulting
Higgs sector compared with the 17 cases in Table I.3 Only
four of these possibilities were found to be obtainable from
such a unified model at the high-energy scale, and these
models are marked by a ‘‘Y’’ in the appropriate column of
Table I.

The fact that so few entries can be obtained from
mSUGRA can be understood as follows. In general the
value of the pseudoscalar mass mA and the coupling of the
lightest CP-even Higgs to the Z-boson are related: small
values of mA in unified models tends to require very large
tan	 which also tends to imply Ch ’ 0. For cases in the
table where tan	 is restricted to be significantly below
tan	  50 but yet C2h � 0 we find no entries obtainable
from mSUGRA. In addition, cases where the 
 term must
be large yet the pseudoscalar mass is small are not common
in mSUGRA. This leaves only entries Nos. 8, 10, 16 and 17
in Table I. For these models the values of the relevant
parameters in the soft Lagrangian (and the value of the

-parameter) are given in Table III at the input scale )GUT

and at the electroweak scale in Table IV below.
For the remaining cases, where a unified description at

the high-scale is nonexistent, we are forced to make some
arbitrary choices for the undetermined soft Lagrangian
parameters in order to reconstruct the high-energy
Lagrangian. It is common practice when working with
low-energy soft parameters to choose all squark masses
to be degenerate for simplicity – compare, for example,
the defined values of the squark masses in the ‘‘mh0-max’’
scenario of (9). Of course such an outcome at the electro-
weak scale would require a very special initial condition at
the high energy scale—a fact not often appreciated in low-
energy analyses. Nevertheless, fitting the Higgs sectors in
Table II to a low-energy soft supersymmetry-breaking
Lagrangian is a far easier task when the squarks are taken
-8



TABLE IV. Soft term values at the electroweak (Z-mass) scale
for models which can be obtained from the minimal supergravity
paradigm. All masses are given in GeV.

Unified Models
Entry 8 10 16 17

tan	 39.5 25 39.5 25
M1 179 125 237 146
M2 344 233 452 273
M3 1117 695 1449 812
At �832 �795 �1079 �1078
Ab �926 �1364 �1199 �1919
A" �43 �809 �61 �1312
m2

Q3
�926�2 �652�2 �1160�2 �674�2

m2
U3

�857�2 �491�2 �1076�2 �444�2

m2
D3

�902�2 �734�2 �1118�2 �784�2

m2
L3

�519�2 �513�2 �491�2 �505�2

m2
E3

�413�2 �453�2 �329�2 �403�2

m2
Q1;2

�1129�2 �811�2 �1375�2 �898�2

m2
U1;2

�1094�2 �791�2 �1325�2 �872�2

m2
D1;2

�1089�2 �788�2 �1319�2 �869�2

m2
L1;2

�549�2 �541�2 �508�2 �555�2

m2
E1;2

�482�2 �513�2 �376�2 �518�2

m2
Hu

��659�2 ��533�2 ��841�2 ��734�2

m2
Hd

��569�2 �375�2 ��739�2 �211�2


 �569 530 �722 730
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to be degenerate at the electroweak scale, so we will adopt
that procedure here when possible. Our choices for low-
energy values are given in Table V while the translated
values at the GUT-scale are displayed in Table VI.

Naturally, entries such as Nos. 8 and 16 which can be
identified with a point in the mSUGRA parameter space
have a simple appearance at the high scale. By contrast,
those models which have no mapping to a unified-mass
model show no discernible pattern in the soft Lagrangian.
While some small degree of improvement may be possible
by varying those parameters left unspecified at the low
TABLE V. Soft-term values at the electroweak (Z-mass) scale for
paradigm. All masses are given in GeV.

Nonunive
Entry 1 2 3 4 5 6

tan	 6 8 10 11 32 7
M1 100 100 120 300 300 100
M2 200 200 240 300 300 200
M3 600 600 700 1000 �1000 600

At 370 430 440 500 1750 500
Ab 400 430 440 �500 1000 400
A" 0 0 0 0 0 0

m2
~f

�500�2 �500�2 �500�2 �500�2 �1000�2 �500�2 �

m2
Hu

��1689�2 ��1491�2 ��501�2 ��1982�2 ��1990�2 ��1590�2 �

m2
Hd

��1679�2 ��1480�2 ��493�2 ��1947�2 ��1612�2 ��1579�2 �


 �1700 �1500 �500 �2000 2000 �1600 �
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scale by the Higgs sector, we have found no instances
where the patterns of severe hierarchies and negative scalar
mass-squareds can be alleviated. Note that these nonun-
iversal cases are particularly perverse in that both charge
and color symmetries are radiatively restored in these
models as the parameters are evolved towards the electro-
weak scale.

Even allowing for the possibility that some of the high-
scale values in Table VI which appear similar can, in fact,
be made to unify with the appropriate adjustment of low-
scale values, we are still confronted with a large number of
unrelated parameters in the soft Lagrangian. Most models
of supersymmetry-breaking (such as mSUGRA) are
studied for their simplicity; they tend to involve very few
free parameters. The traditional models of minimal gravity,
minimal gauge and minimal anomaly mediation, as studied
in the Snowmass Points and Slopes [29,30] have too few
parameters to possibly describe these nonuniversal cases
even when all three are combined in arbitrary amounts.
Nor do string-based models generally provide sufficient
flexibility, whether they be heterotic based [31] or inter-
secting brane constructions such as Type-IIB orientifold
models [32]. While having sufficient free parameters in the
model is, strictly speaking, neither necessary nor sufficient
to potentially generate one of the entries in Table I, we feel
it is a good indication of the theoretical challenge faced by
models that cannot come from mSUGRA or other simple
benchmark models. This is particularly true when the
number of free parameters within, say, the scalar sector
and the number of hierarchies in the soft Lagrangian are
considered.

That many of the entries in Table I imply high scale soft
supersymmetry breaking patterns with such unattractive
features (and no discernible theoretical structure) can be
considered one element of the fine-tuning in such cases. It
is not an automatic corollary, however, that the models that
admit a unified explanation are necessarily less fine-tuned.
In Table VII we also provide two additional quantitative
models which can not be obtained from the minimal supergravity

rsal Models
7 9 11 12 13 14 15

13 12 14 7 19 2.5 2.1
100 300 120 100 300 200 55
200 300 240 200 300 200 250
600 1000 700 600 1000 1000 700

550 600 600 600 1750 1000 4000
500 500 600 500 1000 10000 4000
0 0 0 0 0 0 0

500�2 �500�2 �800�2 �600�2 �800�2 �500�2 �2000�2

�1492�2 ��1685�2 ��491�2 ��1690�2 ��1962�2 ��1952�2 �392�2

�1473�2 ��1227�2 ��510�2 ��1682�2 ��1991�2 ��1774�2 �403�2

1500 �1700 500 �1700 �2000 2000 200
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TABLE VI. Soft term values at the GUT scale for models which can not be obtained from the minimal supergravity paradigm. All
masses are given in GeV.

Nonuniversal Models
Entry 1 2 3 4 5 6 7 9 11 12 13 14 15

M1 242 242 291 726 726 242 242 726 291 242 726 484 133
M2 243 243 292 365 365 243 243 365 292 243 365 243 304
M3 210 210 245 349 -349 210 210 349 245 210 349 349 245

At 3156 3292 3595 4654 4157 3573 3662 5004 4135 3931 9028 9476 33 453
Ab 1564 1612 1798 1345 798 1614 1746 2418 2049 1758 3509 12514 9728
A" 171 174 212 314 402 173 186 330 226 173 388 215 186

m2
Q3

��593�2 �196�2 �935�2 ��788�2 �1322�2 �314�2 �558�2 �399�2 �1422�2 �666�2 �2589�2 �2614�2 �12962�2

m2
U3

��781�2 �414�2 �1396�2 ��821�2 �2176�2 �540�2 �851�2 �1003�2 �1956�2 �933�2 �3822�2 �3777�2 �18234�2

m2
D3

��196�2 ��197�2 ��355�2 ��757�2 �160�2 ��197�2 ��213�2 ��768�2 �540�2 �268�2 ��409�2 ��710�2 �1908�2

m2
L3

�470�2 �470�2 �454�2 �403�2 �1058�2 �470�2 �472�2 �490�2 �771�2 �575�2 �816�2 �505�2 �1989�2

m2
E3

�487�2 �487�2 �486�2 �419�2 �715�2 �486�2 �484�2 �146�2 �794�2 �589�2 �582�2 �359�2 �1999�2

m2
Q1;2

��246�2 ��246�2 ��417�2 ��772�2 �291�2 ��246�2 ��247�2 ��789�2 �465�2 �223�2 ��494�2 ��758�2 �1890�2

m2
U1;2

��179�2 ��179�2 ��371�2 ��755�2 �676�2 ��179�2 ��174�2 ��683�2 �500�2 �279�2 ��167�2 ��699�2 �1902�2

m2
D1;2

��182�2 ��183�2 ��366�2 ��733�2 �273�2 ��183�2 ��185�2 ��767�2 �507�2 �277�2 ��472�2 ��750�2 �1902�2

m2
L1;2

�470�2 �470�2 �454�2 �404�2 �1058�2 �470�2 �472�2 �490�2 �771�2 �575�2 �816�2 �505�2 �1989�2

m2
E1;2

�487�2 �487�2 �486�2 �419�2 �715�2 �487�2 �484�2 �147�2 �794�2 �589�2 �582�2 �359�2 �1999�2

m2
Hu

��1937�2 ��1398�2 �1684�2 ��2008�2 �902�2 ��1441�2 ��1062�2 ��1809�2 �2254�2 ��1304�2 �4073�2 �4271�2 �22213�2

m2
Hd

��1690�2 ��1493�2 ��525�2 ��1983�2 ��1597�2 ��1591�2 ��1488�2 ��1231�2 ��503�2 ��1693�2 ��1934�2 ��1747�2 �390�2
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measures of the fine-tuning in these 17 cases. The numbers
�Z and �A are the sensitivities of mZ and mA, respectively,
to small changes in the values of the independent high-

scale values ai; i.e. � 
���������������P
��i�

2
q

where �i 

j�ai=m�#m=#aij [10].
In order to treat unified and nonunified models equally

we have used the average scalar mass squared, gaugino
mass and trilinear coupling as free variables in computing
these sensitivities, as well as the value of the bilinear B-
term (in lieu of tan	) and the 
-parameter at the GUT-
scale for a total of five ai for each model. For example, to
TABLE VII. Measures of fine-tuning with respect to high-
scale parameters in Tables III and VI. The two entries are the
sensitivities of the Z-mass and pseudoscalar mass to small
changes in the input Lagrangian parameters. For example, the
entries for model one imply that a 1% shift in high-scale
parameters leads to a 956% shift in the value of m2

A.

Entry �Z �A Entry �Z �A

1 1007 956 10 83.4 1.4
2 733 731 11 451 186
3 363 135 12 956 931
4 1250 632 13 2258 837
5 1117 6.3 14 3065 6.8
6 848 829 15 45573 367
7 700 718 16 196 138
8 119 94.2 17 158 1.8
9 930 4.7
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calculate the �m1=2
for the nonuniversal models each gau-

gino mass was varied simultaneously by a certain percent-
age (in this case 1%). The RGEs were then solved with
these three new gaugino mass input parameters and the
new Z-boson mass computed at the electroweak scale.
From this ��mZ�=mZ can be determined. The value of
��m1=2�=m1=2 is then given by the average of the three
individual perturbations divided by the average of the three
original values of the gaugino masses.

As far as we can see, all models with mA 	mh, or
equivalently CH 	 1 are significantly fine-tuned. This is
not clear from the low-scale parameters, but seems to
emerge when one examines the high-scale models that
give rise to small mA. Models which require specifying
multiple soft parameters quite precisely also imply addi-
tional tuning costs relative to the mSUGRA models. This
should be seen as evidence of the difficulty in finding areas
of the low-energy parameter space capable of producing
many of the entries in Table I. While the fine-tuning
‘‘price’’ of the LEP results for the MSSM has been often
discussed [33], it is apparent from Table VII that the least
fine-tuned result continues to be the case with mh ’
115 GeV.

IV. FOCUS ON MAXIMAL MIXING

It may not seem surprising that the least-tuned interpre-
tation of the LEP Higgs search is that the lightest Higgs
eigenstate is Standard Model-like and very near the current
limit of mh � 114 GeV, as this is the hypothesis that is so
-10
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often taken when studying the constraints on the MSSM
parameter space in the literature. It is perhaps more sur-
prising that the cases with mA 	mh 	mZ are so much
more sensitive to initial conditions, given that the magni-
tude of tuning in a given model is commonly associated
with the importance of radiative corrections to Higgs mass
eigenvalues. Yet radiative corrections are crucial in all 17
of the possible MSSM configurations—a fact that should
give us pause in its own right.

Even the most ‘‘favored’’ possibility of mh ’ 115 GeV
tends to require some superpartner masses heavier that one
might naively expect, in order to obtain the �75 GeV�2

radiative correction. In the standard mSUGRA-based
studies [34,35] one typically needs here either squarks or
gluinos in excess of 1 TeV in mass at the low-energy scale,
with the latter being a much more serious problem for fine-
tuning than the former [36,37]. Most of these studies
assume vanishing trilinear A-terms, however. The degree
of tuning can be reduced substantially if the so-called ‘‘-
maximal-mixing’’ scenario can be engineered [17]. In this
case, the need for large superpartner masses is
mitigated by maximizing the loop correction to the lightest
Higgs boson mass from the m2

LR entry of the stop mass
matrix. In models whose scalar sector is well approximated
by an overall universal scalar mass m0, this tends to occur
when At ’ �2m0 at the GUT scale [38]. In models with
small departures from universality this relation remains
approximately correct.

To get a sense of how much the fine-tuning in the MSSM
Higgs sector can be reduced when maximal mixing is
achieved, consider the sole constraint on the MSSM
parameter space involving a known, measured quantity

m2
Z

2
 �
2�EW� 


m2
HD

�EW� � tan2	m2
HU

�EW�

tan2	� 1
; (11)

where the parameters 
, m2
HD

and m2
HU

are meant to be
evaluated at the electroweak scale. Through the renormal-
ization group equations these low-scale values can be
translated into the high-scale input values of the entire
soft supersymmetry-breaking Lagrangian [36,39]

m2
Z

2


X
i

Cim2
i �UV� 


X
ij

Cijmi�UV�mj�UV�: (12)

For example, the leading terms in the sum (12) for tan	 
10 are found to be [37]

m2
Z  �1:89
2 
 5:58M2

3 � 0:38M2
2 � 0:003M2

1

� 1:20m2
HU

� 0:04m2
HD


 0:82m2
Q3


 0:66m2
U3


 0:19A2t � 0:65AtM3 
 0:42M2M3 
 � � � (13)

where all soft terms are understood to be evaluated at the
input (GUT) scale in (13).

If we were to specialize to the case of minimal super-
gravity where gaugino and scalar masses are unified to the
values m1=2 and m0, respectively, then the above equation
035006
would simplify to

m2
Z ’ �1:9
2 
 5:8m2

1=2 
 0:3m2
0 
 0:2A2t � 0:8Atm1=2:

(14)

Note the sizable coefficient for the gaugino mass term,
especially in comparison to the relatively small coefficient
in front of the scalar mass term. The bulk of these coef-
ficients are coming from the gluino mass and the squark
masses, respectively, as can be seen from the original
expression (13). The size of the coefficients in (14) would
seem to suggest that the result mZ  91 GeV would be a
‘‘reasonable’’ outcome if the typical size of a soft term was
on the order of tens of GeV. But direct searches for super-
partners puts the typical size of these soft terms at O�mZ�
or higher. And, as stated above, the requirement of a
sufficiently large radiative correction to the Higgs mass
pushes at least some of these parameters to even larger
values. This is the essence of the MSSM fine-tuning
problem.

The coefficients in (14) are related to the sensitivity
parameters �i introduced in the previous section.
However, we are more concerned with the cancellations
implied by (14) required to achieve mZ  91 GeV than
with the sensitivity of this outcome to small changes in the
masses themselves. In particular, the crux of the fine-
tuning problem of the MSSM Higgs sector is that a super-
symmetric parameter in the superpotential – the

-parameter—must cancel to a high degree of accuracy
the large contributions to the Z-boson mass coming from
the soft supersymmetry-breaking Lagrangian. We are thus
led to define a different variable to measure this degree of
tuning.

For any given theory of supersymmetry breaking and
transmission to the observable sector, each of the quantities
on the right-hand side of (12) will be determined. In
general, however, the value of the 
-parameter at the input
scale will not be— the question of its origin typically
requiring some additional model input, such as a singlet
which can couple to a Higgs bilinear or the inclusion of a
Giudice-Masiero term in the Kähler potential. This will be
the case, for example, in the string-inspired models we will
consider in the next section. We thus introduce the variable
4 defined schematically by

4 �
1

jc
jm2
Z

f�m2
i ;Ma; Ai�; (15)

where c
 is the coefficient of the 
2 term in (12) and the
function f�m2

i ;Ma; Ai� represents the terms in the summa-
tion involving the soft Lagrangian parameters. This pa-
rameter 4 represents the tuning on 
2 at the high-energy
scale (in units of the Z-boson mass) necessary to cancel the
contribution from the soft supersymmetry-breaking sector.
That is, the ratio �
=mZ�

2 would need to be tuned to
roughly one part in 4 to achieve the observed value of
the Z-boson mass. This parameter is very similar to the
-11
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quantity - introduced by Chan, Chattopadhyay and Nath
to quantify cancellation in the MSSM Higgs sector [40].

Armed with this variable we can safely compare differ-
ent theories—and different points within the parameter
space of a single theory— to determine the degree of
cancellation required to achieve the correct Z-boson
mass. For example, in Fig. 3 we investigate the tuning
implications of a 115 GeV Higgs mass within the minimal
supergravity scenario with A0  0. The contour of constant
Higgs mass has the familiar form of being concave toward
the origin. We have overlaid the contours of constant Xt
(determined at the electroweak scale), defined in a manner
similar to that of [11] by

Xt �
At �
 cot	��������������mt1mt2
p ; (16)

where m2
t1 and m2

t2 are the values of the lighter and heavier
stop mass eigenvalues, respectively. As anticipated, the
case where A0  0 at the GUT scale does not give rise to
the maximal-mixing scenario Xt ’ �2 at the electroweak
scale.

To get a sense of the fine-tuning burden on the

-parameter in this space we have drawn representative
contours of constant tuning 4. Along the contour where
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FIG. 3 (color online). Fine-tuning plot for mSUGRA with
A0  0 and tan	  10. The most efficient (least fine-tuned)
point in the parameter space consistent with mh  115 GeV
and all observational constraints is the intersection of the
Higgs mass contour (heavy solid line) and the contour of
constant tuning 4  95 (dashed line). This point intersects the
contour of constant gluino mass (dotted line) for m~g 

750 GeV. For comparison we have included contours of constant
Xt evaluated at the electroweak scale. The shaded region in the
lower right is ruled out by having a stau LSP.
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mh  115 GeV, the least fine-tuned point is the point of
intersection with the contour 4  95 at the far left edge of
the plot. This intersection occurs at a gluino mass of
750 GeV and the contour m~g  750 GeV is given by the
dotted line in Fig. 3. Note that the most ‘‘efficient’’ combi-
nation of soft terms for achieving mh  115 GeV occurs
for the smallest possible (unified) gaugino mass allowed by
LEP bounds on chargino masses, with a large scalar mass.
This is consistent with the relative coefficients in (12).

As the value of the unified trilinear coupling A0 is varied,
the location of this optimal point will move in the
�m0; m1=2� plane, sweeping out a locus of optimal points.
For example in Fig. 4 we display the situation for A0 
�2m0 at the GUT scale, again for tan	  10. Note that the
optimal point has now moved to an interior solution with
moderate gaugino and scalar masses since the contour of
constant Higgs mass has developed a convex form. The
optimal point now occurs for 4  75 and a gluino mass of
800 GeV (represented by the dotted contour again). Here
the typical size of the mixing parameter Xt is larger than in
Fig. 3 with a value very near Xt  �2 at the optimal point,
as expected.
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FIG. 4 (color online). Fine-tuning plot for mSUGRA with
A0  �2m0 and tan	  10. The most efficient (least fine-tuned)
point in the parameter space consistent with mh  115 GeV and
all observational constraints is the point of tangency of the Higgs
mass contour (heavy solid line) and the contour of constant
tuning 4  75 (dashed line). This point intersects the contour
of constant gluino mass (dotted line) for m~g  800 GeV. For
comparison we have included contours of constant Xt evaluated
at the electroweak scale. The shaded region in the lower right is
ruled out by having a stau LSP and in the upper left by failure to
break electroweak symmetry.
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FIG. 5 (color online). Gluino mass plot for mSUGRA with
m0  500 GeV. The necessary gaugino mass m1=2 required to
achieve mh  112 GeV and mh  115 GeV is indicated as a
function of the GUT-scale value of A0=m0 for tan	  10. Note
the dramatic reduction in this mass, and the fine-tuning 4, when
Xt  �2:1 for A0 ’ �2m0. The shaded region along the bottom
of the plot is ruled out by direct search constraints on chargino
masses from LEP, while the darker shaded region in the lower
left corner has inconsistent electroweak symmetry breaking.

-3.0 -2.0 -1.0 0 +1.0 +2.0 +3.0

75

200

325

450

575

700

A/m 0

M
1/

2
(G

eV
)

X t = -2.1
X t = -1.0

X t = 0

ε = 68

ε = 105

ε = 150

112 G
eV11

5 
G

eV

FIG. 6 (color online). Gluino mass plot for mSUGRA with
m0  1000 GeV. Same plot as Fig. 5 but for m0  1000 GeV.
At these high values of the common scalar mass the value of
achieving the optimal Xt is even more profound. Again, the
shaded region in the lower center-of the plot is excluded by the
chargino mass constraint while the darker shaded regions in the
lower left and right yield inconsistent electroweak symmetry
breaking.
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The effect of the mixing parameter Xt is more dramati-
cally displayed in Figs. 5 and 6 for a universal scalar mass
of m0  500 GeV and 1000 GeV, respectively. The gau-
gino mass is now on the vertical axis and the ratio of A0 to
m0 at the GUT-scale on the horizontal axis. This translated
into a range of values for Xt at the electroweak scale, given
by the thin, solid contours in those plots. The dramatic
reduction of GUT-scale gaugino masses required to
achieve a given Higgs mass value is clearly evident at Xt 
�2:1, corresponding to A0 ’ �2m0. The choice of a par-
ticular sign for this relation is the result of our conventions
on defining the sign of the 
-parameter (conventions op-
posite to those of [22]). Clearly, the fine-tuning inherent in
a given model is reduced dramatically when the relation
A0 ’ �2m0 can be engineered, with important implica-
tions for the accessibility of superpartner masses at current
and future colliders.
V. MAXIMAL MIXING IN STRING SCENARIOS

This relation A0 ’ �2m0 is therefore an alluring goal for
high-energy models, though few well-motivated models
seem to naturally predict this relation. In the minimal
supergravity framework both trilinears and scalar masses
are taken as independent variables so no such relation is
predicted. In minimal gauge mediation the trilinear cou-
plings are negligible in relation to gaugino and scalar
masses [41]. While a relation between these two variables
is predicted in principle in anomaly mediation, they be-
come effectively free variables once a bulk scalar value is
added to the theory to compensate for the negative slepton
squared masses [42,43]. While other solutions to this prob-
lem exist, it is this early ‘‘minimal’’ version of the model
that was studied as part of the Snowmass Points and Slopes
[29]. Here we prefer to focus on supergravity-based sce-
narios of a string-theoretic origin with the hope that this
added structure will in general provide some understanding
of the relation between scalar masses and soft trilinear
couplings at the string or GUT scale.

String-inspired models are identified by the presence of
certain gauge-singlet chiral superfields, moduli, whose
Planck-scale vacuum expectation values determine the
couplings of the low-energy four-dimensional theory.
Thus we imagine that the gauge and Yukawa couplings
of the observable sector are functions of these moduli fields
(which we will denote here collectively by ’n). In addition,
we expect the Kähler potential for observable sector matter
fields Zi to also be a function of these moduli and we will
define

K�Zi; Zi’n; ’n�  7i�’
n; ’n�jZij2 
O�jZij4�: (17)

The relation between the tree-level trilinear coupling
�A0�ijk and the tree-level scalar mass �m2

0�i at the boundary
condition scale is then determined by the functional de-
pendence of the various couplings on the moduli. For any
supergravity model we have the fundamental relations
-13
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FIG. 7 (color online). Fine-tuning plot for the dilaton domina-
tion scenario with tan	  10. The subset of points in the
mSUGRA plane that can be obtained from the dilaton domina-
tion scenario are given by the dashed line. An optimal scenario
for a 115 GeV Higgs mass would be the point labeled (A), but
the dilaton domination paradigm only allows us to be at point (B)
to satisfy this constraint. The difference in tuning parameter 4 is
given by the dark shaded region, bounded on the interior by 4 
84 and on the exterior by 4  100. The difference in gluino
masses is even more profound, represented by the light shaded
region bounded by m~g  875 GeV on the left and m~g 

1153 GeV on the right.
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�A0�ijk  hKnF
n � Fn@n ln�7i7j7k=Wijk�i

�m2
0�i  m2

3=2 � hFnF �m@n@ �m ln7ii
(18)

where Fn is the auxiliary field of the chiral superfield
associated with the modulus ’n, m3=2 is the gravitino
mass, Wijk is the (generally moduli dependent) Yukawa
coupling between observable sector fields and Kn 
@K=@’n. A summation over all moduli ’n which partici-
pate in communicating supersymmetry breaking via
hFni � 0 is implied in (18). For a fuller description of
soft terms in a general supergravity theory, as well as the
string models we will present below, the reader is referred
to the Appendix.

Neglecting possible D-term contributions to the scalar
potential, the value of the potential in the vacuum is given
by

hVi  hKn �nF
nF �ni � 3m2

3=2; (19)

where a summation over moduli is again implied and
Kn �n  @2K=@’n@’ �n. Requiring that this contribution to
the cosmological vacuum energy vanish leads to a relation
between the gravitino mass and the supersymmetry break-
ing scale governed by the various hFni. For the remainder
of this section we will investigate various string scenarios
using the general expressions in (17) and (18) to search for
cases where A0 ’ 2m0 can be obtained.

A. Naive dilaton domination

The simplest string-based scenario is the case of dilaton
domination. For the weakly-coupled heterotic string the
gauge couplings of the low-energy theory are determined
by the vacuum value of a single modulus field, the dilaton
S. This field does not participate in the Yukawa couplings
or the observable sector Kähler metric (17). By dilaton
domination we refer to a situation in which this is the only
modulus whose auxiliary field gets a nonvanishing vacuum
value. The tree level Kähler potential for the dilaton is
simply K�S; S�  � ln�S
 S� and thus the dilaton domi-
nation scenario is a natural realization of the special case

A20
�m2

0�i
 3

�
KsK �s

Ks�s

�
! 3: (20)

This string-inspired scenario has been studied at length
in the literature [44– 47]. It is a special case of the minimal
supergravity scenario with the following soft terms

Ma 
���
3

p �
g2a�UV�

g2STR

	
m3=2 A0  �

���
3

p
m3=2

m2
0  m2

3=2;

(21)

where we have chosen conventions such that gaugino
masses are positive. If we take the input string scale
)STR to be the same as the GUT-scale, neglecting the small
difference between these two scales [48] we arrive at the
famous relation among the soft terms m1=2�A0���
3

p
m0. As this model is a subclass of mSUGRA models
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we can study it in the same way we studied the general
cases of Section IV.

For example, in Fig. 7 we plot the same parameter space
as Figs. 3 and 4 for tan	  10. The dilaton domination
assumption requires the theory to lie on the locus of points
identified by the heavy dashed line, where Xt ’ 1:3 at the
electroweak scale. In this model, with A0  �

���
3

p
m0 the

optimal point that gives rise to mh  115 GeV is the point
labeled by (A) with tuning 4  84 and gluino mass m~g 

875 GeV (the inside contours of the heavy and light shaded
regions, respectively). The only way to achieve this Higgs
mass value in the dilaton domination scenario is to be at
point (B) with a slightly greater amount of fine-tuning 4 
100 but a much heavier gluino mass m~g  1153 GeV (the
outside contours of the heavy and light shaded regions,
respectively). While the optimal point cannot be reached,
the topology of the Higgs mass contour is what we expect
as we approach the maximal-mixing scenario, and this
represents a general improvement in the fine-tuning overall
in this model.

Nevertheless, the dilaton domination scenario moves
further from the optimal point as the Higgs mass constraint
increases. In Fig. 8 we present the analogous plot to Fig. 5,
-14
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FIG. 9 (color online). Parameter space for the dilaton domina-
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contour m~g  1150 GeV and below by the contour m~g 

975 GeV. Note that throughout the relevant parameter space of
this model Xt ’ �1:3 at the electroweak scale. The lighted
shaded region is ruled out by the requirement that the LSP be
neutral, while the darker shaded region has inconsistent electro-
weak symmetry breaking.
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contour for mh  115 GeV we have Xt ’ 1:3 and 4  100. The
dotted horizontal line is a gluino mass of m~g  1150GeV. For
lower Higgs masses the dilaton domination scenario moves
closer to the optimal point in the lower left corner where Xt ’
�2:2. The excluded shaded regions are the same as Fig. 5.

4It is not impossible for these weights to be zero or positive,
but this is an extremely rare outcome for models of the heterotic
string compactified on Abelian orbifolds such as the models we
have in mind in this section [49].
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with the restricted space of the dilaton domination para-
digm indicated by the dashed vertical line. At lower Higgs
mass values the necessary gluino mass is smaller, resulting
in less fine-tuning and the optimal value of Xt needed to
achieve the maximal-mixing scenario approaches the value
dictated by the soft-term constraints of this model. Some
marginal improvement in fine-tuning can, of course, be
obtained by increasing the value of tan	 beyond the value
studied in Figs. 7 and 8. For example, in Fig. 9 we display
the entire parameter space for this model, defined as it is by
tan	 and one overall mass scale, which we take to be the
scalar mass. For tan	  10 we see that mh  115 GeV
requires m~g  1150 GeV at the electroweak scale (the top
contour of the horizontal shaded region) as before. At the
maximal value of tan	 for this Higgs mass allowed by the
requirement of a neutral lightest supersymmetric particle
(LSP), specifically tan	  32, the gluino mass can be
lowered to 975 GeV (the bottom contour of the horizontal
shaded region).

So we conclude that the generic point in the parameter
space of this string-motivated scenario involves less can-
cellation in the relation (11) for a given Higgs mass than a
generic point in the full mSUGRA parameter space. But
the tuning is still sizable and the model requires a relatively
large gluino mass. This latter problem can be remedied by
invoking a different modulus field from the string theory to
035006
perform the role of transmitting the supersymmetry break-
ing from a hidden sector to the observable sector.

B. Nonuniversal modular weights

While the kinetic functions of observable sector matter
fields are typically not functions of the dilaton—at least in
the case of the weakly-coupled heterotic string— they
typically are functions of the so-called Kähler moduli TI

whose vacuum values determine the size of the compact
space. In what follows we will assume, for the sake of
simplicity, that observable sector quantities depend only on
a single overall modulus T. At the leading order the func-
tional dependence of the Kähler metric for the fields Zi on
this modulus is given by

7i  �T 
 T�ni (22)

where ni is referred to as the modular weight of the field Zi.
These weights depend on the sector of the string Hilbert
space from which the field arises and are typically negative
integers ni  �1;�2; etc.4
-15



5For simplicity we will only consider real vacuum values for
the Kähler modulus T.
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In the limit where only this overall Kähler modulus
breaks supersymmetry (i.e. only hFTi � 0) the scalar
masses take the tree-level form

�m2
0�i  �1
 ni�m2

3=2 (23)

where we have employed the second line of (18) and again
assumed vanishing vacuum energy at the minimum. Note
that in this Kähler modulus-dominated limit, when the
modular weight of a field takes the value ni  �1, then
the scalar mass vanishes at this order. For values ni 
�2;�3, etc., the scalar masses are imaginary at the input
scale. When the scalar mass vanishes at the tree-level we
must compute the one-loop correction to the tree-level
value in the supergravity theory. This calculation has
been performed [50,51] and the leading correction in this
limit is given by �m2

1�i  �m2
0�i 
 �m2

i with �m2
i 

.im
2
3=2.

In order to determine the trilinear A-terms in this frame-
work we must know the dependence of the Yukawa cou-
plings of the observable sector on the Kähler moduli. These
can be obtained from symmetry arguments inherited from
the underlying string theory and have been verified by
direct computation [52,53]. They involve the Dedekind
function

?�T�  e�*T=12
Y1
n1

�1� e�2*nT� (24)

in a particular combination determined by the modular
weights of the fields involved in the coupling

Wijk  �ijk�?�T��
�2�3
ni
nj
nk�: (25)

The Kähler potential for the (overall) modulus T is given
by K�T; T�  �3 ln�T 
 T� so that the two terms in the
first line of (18) combine to form

�A0�ijk  �3
 ni 
 nj 
 nk�hG2�t; �t�im3=2 (26)

where G2�t; �t� is the Eisenstein function

G2�t; �t� �
�
2
1

?�t�
d?�t�
dt



1

t
 �t

	
(27)

and t is the lowest component of the chiral superfield T.
The last quantity we need is the soft gaugino mass for

the three observable sector gauge groups. As mentioned
above, at the leading-order the gauge kinetic function for
all gauge groups in the weakly-coupled heterotic string is
simply the dilaton S. Therefore, in the Kähler modulus-
dominated regime the gaugino masses vanish at the
leading-order at the string scale. At the one-loop level
the corrections to the gaugino masses involve the Kähler
moduli and take the form [54]

Ma 
g2a
16*2m3=2�ba 
 kah�t
 �t�G2�t; �t�i� (28)

where
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ka  �GS 
 ba � 2
X
i

Ci
a�1
 ni�; (29)

ba is the beta-function coefficient for the group Ga with
ba  3Ca �

P
iC

i
a, and �GS is the coefficient of the Green-

Schwarz counterterm introduced to restore modular invari-
ance to the theory [55–57]. For the purposes of this section
it is only necessary to know that this parameter is calcu-
lable from the underlying orbifold compactification and is
a negative integer in the range �GS 2 �0;�90�. Details on
the origin of these expressions can be found in the
Appendix.

The appearance of new free parameters, such as �GS and
the various modular weights ni, as well as the modular
functions G2�t; �t� and �t
 �t�G2�t; �t�, would seem to indi-
cate a greater degree of freedom in relating the scalar
masses to the trilinear scalar couplings. Often in the litera-
ture this ‘‘moduli-dominated’’ regime is studied in the limit
where ni  �1 for all fields. This would be the case, for
example, if all observable sector matter were untwisted
states of the underlying string theory. This limit was re-
ferred to as the ‘‘O-II’’ model in [44]. In fact, explicit
surveys of semirealistic orbifold models [58] indicate
that at least some subset of MSSM fields must be given
by twisted-sector states for which ni  �2;�3; . . . . This
case was referred to as an ‘‘O-I’’ model in [44].

But when jnij> 1 in this modulus-dominated limit the
corresponding scalar mass squared is negative. We might
not consider this a troubling feature of the model if it is one
or more of the Higgs scalar masses that are imaginary at the
string scale. For example, if we consider the case nHu



�2; nQ3
 nU3

 �1, then the field Hu will have a nega-
tive squared mass of O�m2

3=2�, the top quark trilinear cou-
pling At will also be negative and of O�m3=2� while the
gaugino masses and squark masses will be smaller by
roughly an order of magnitude. Can such a set of boundary
conditions give rise to a reasonable low-energy spectrum of
soft terms? We surveyed the three cases �nHu

; nHd
� 

��2;�1�; ��1;�2�, and ��2;�2� but found only the last
case had any viable parameter space. This is hardly sur-
prising, since the first two cases give rise to large hyper-
charge D-term contributions to the RG evolution of scalar
quarks and leptons, causing at least some set of these fields
to develop negative squared masses at the electroweak
scale and thereby presumably triggering the spontaneous
breaking of color and electric charge. The viable parameter
space in the ��GS; hReTi� plane for the case �nHu

; nHd
� 

��2;�2� is given in Fig. 10.5 The large shaded region
labeled m2

A gives rises to an imaginary pseudoscalar mass
at the electroweak scale. In the upper right shaded region
labeled m2

~f
one of the third-generation running scalar

masses is imaginary at the low-energy scale. A representa-
tive slice of the remaining allowed parameter space, rep-
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FIG. 11 (color online). Fine-tuning plot for the moduli domi-
nation scenario with nHu

 nHu
 �2. Despite the relatively

large trilinear coupling At the low-energy soft Lagrangian for
this model is essentially a minimal-mixing scenario. The dotted
line represents the contour m~g  2400 GeV. Depending on the
value of the Green-Schwarz coefficient, the cancellation coeffi-
cient lies in the range 375 � 41200 for mh  115 GeV. The
shaded region at the bottom of the plot is ruled out by direct
search limits for gluinos and/or charginos.
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FIG. 10 (color online). Parameter space for the moduli domi-
nation scenario with nHu

 nHu
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shaded area marked m2
A has an imaginary pseudoscalar mass and

is ruled out. The shaded area in the upper right marked m2
~f

has an

imaginary running mass for one or more third-generation scalar
fermions. The shaded area in between these two regions is ruled
out as at least one physical mass eigenstate for the scalar
fermions is imaginary due to mixing effects. The region of the
parameter space examined in Fig. 11 is marked by the vertical
arrow at hReTi  2:8.
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resented by the vertical double-arrow in Fig. 10 is plotted
in Fig. 11.

Despite the fact that the top-quark trilinear coupling
(and indeed, all third-generation trilinear couplings) are
large relative to the typical squark and slepton mass, this
model flows in the infrared to a minimal-mixing scenario at
low energies. The typical size of Xt in Fig. 11 is �0:3 �
Xt � 0:3. The contours of constant Higgs mass nearly
track those of constant gluino mass:, for example, the
contour mh  115 GeV lies very near the contour m~g 

2400 GeV. As the value of �GS increases, the absolute
value of the gluino mass increases as well, allowing the
same value of mh for a lower overall scale of soft terms—
and hence a smaller amount of fine-tuning at the electro-
weak scale. Yet given the string/GUT-scale relation m2

Hu
	

�m2
3=2, the large mass scale necessary to ensure suffi-

ciently large gaugino masses puts enormous pressure on
the high-scale value of the 
 parameter to compensate the
large positive contribution to m2

Z in (13). Far from improv-
ing the situation of the generic mSUGRA model, this limit
in the string moduli space is as fine-tuned as the worst of
the models in Table VII.
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C. A model based on D-branes at intersections

The previous two string-based scenarios derived from
the weakly coupled heterotic string. It might be thought
that the inability to easily obtain the maximal-mixing
scenario in the Higgs sector is the result of the restrictive
nature of these models. The moduli sector of open string
models is far richer than the heterotic string, with more
fields appearing in each of the three functions relevant to
the low-energy supergravity Lagrangian: the observable
sector gauge kinetic functions, the Kähler metric for the
MSSM fields and the Yukawa couplings of the observable
sector superpotential.

For example, in orientifold compactifications of Type-I/
Type-IIB string theory—close relatives to the orbifold
compactification of the heterotic string studied above—
Kähler moduli now appear at the leading-order in gauge
kinetic functions, while the dilaton field can appear in the
Kähler potential for the MSSM fields [59,60]. The study of
four-dimensional effective supergravity Lagrangians rep-
resenting these theories is a subject of ongoing research.
Many of the early studies, such as [32], were ultimately
based on the well-known results of the weakly-coupled
heterotic string with duality symmetries invoked to map
those results to the open string theory in the case Type-I
and Type-IIB models. Not surprisingly, then, these effec-
tive Lagrangians share many of the same structures and
-17
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FIG. 12 (color online). Fine-tuning plot for the Type-IIB brane
model with universally stretched strings. The subspace of the
mSUGRA model with the soft terms given in (31) is denoted by
the labeled dashed line. The similarity of this plot to the dilaton-
dominated model of Fig. 7 is the result of our insistence upon
gauge coupling unification at the string scale. An optimal sce-
nario for a 115 GeV Higgs mass would be the point labeled (A),
but this brane model only allows us to be at point (B) to satisfy
this constraint. The difference in tuning parameter 4 is given by
the dark shaded region, bounded on the interior by 4  70 and
on the exterior by 4  90. The difference in gluino masses is
even more profound, represented by the light shaded region
bounded by m~g  750 GeV on the left and m~g  1050GeV on
the right.
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features of their heterotic counterparts. While it is now
possible to study in greater detail the full richness of open
string models, we prefer to restrict ourselves to a particu-
larly simple configuration which closely resembles the
models we studied above and leave a more complete
survey to future work.

Let us consider a particular configuration of Type-IIB
theory compactified on an orientifold with intersecting
D5-branes. The world volume of these extended objects
is six-dimensional and is assumed to span 4D Minkowski
space plus two of the six compact dimensions. The six-
dimensional compact space is assumed to factorize into
three compact torii, each with a radius dictated by the
vacuum value of an associated Kähler modulus TI. We
then associate each of the sets of D5 branes with a particu-
lar torus in the compact space spanned by its world volume
with associated modulus TI. As the gauge coupling on each
stack of D5 branes is determined by the vev of the asso-
ciated TI, we will assume, for the sake of simplicity, that
the inverse radii of all the compact torii are the same and
that all three moduli participate equally in supersymmetry
breaking. Then gaugino masses will be unified at the
boundary-condition scale as well: M1  M2  M3.

So far this is similar to the dilaton-dominated scenario of
the heterotic string theory. The novelty in this case is that
the MSSM matter content is represented by open strings
which can connect sets of 5-branes whose world volumes
span different complex compact dimensions. Fields repre-
sented by the massless modes of these strings will be
denoted by two subscripts. For example, a field Zi which
is the massless mode of a string that stretches from a set of
branes 5I to a nonparallel set 5J will be written Zi

IJ. For
these fields the Kähler potential is given by (17) where

7IJ
i 

1

2
�S
 S��1=2�TK 
 TK��1=2; (30)

and the particular Kähler modulus TK is identified by the
requirement that I � J � K � I [32]. The Kähler poten-
tial for the moduli fields continues to be given by the
leading-order form K  � ln�S
 S� �

P3
I1 ln�T

I 
 TI�.
Following [32] we take the Yukawa couplings of the ob-
servable sector to be independent of these moduli fields at
the leading-order. A particularly simple model is obtained
when all MSSM fields are represented by such stretched
strings—a case we will call the ‘‘universally stretched’’
regime. When the Kähler moduli have equal vacuum val-
ues (as we assumed above) and participate equally in
supersymmetry breaking, the soft terms for the model are

Ma

�
g2a�UV�

g2STR

	
m3=2 A0�

3

2
m3=2 m2

0
1

2
m2
3=2: (31)

To obtain (31) we once again used the assumption that the
scalar potential has vanishing vacuum value. Note that this
is a special case of the general mSUGRA paradigm, but in
this case A0  �3=

���
2

p
m3=2 and thus the universally
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stretched regime represents a potential improvement in
tuning over the dilaton-dominated limit.

Comparing the fine-tuning plot of this model in Fig. 12
with that of the dilaton domination model of Fig. 7 it is
clear that there is an improvement in the fine-tuning, but
that this improvement is small. The locus of points in the
mSUGRA parameter space that are consistent with (31) are
given by the labeled dashed line. The optimal point for
mh  115 GeV in Fig. 12 is in nearly the same location in
the �m1=2; m0� plane as in Fig. 7, with 4  70 and m~g 

750 GeV. But the contours of constant tuning parameter 4
have moved inwards towards the origin, reflecting the
increased value of Xt at the electroweak scale. As a result,
the required low-scale gluino mass at the point where the
dashed line and mh  115 GeV contour intersect is m~g 

1050 GeV with 4  90 there.
As in the dilaton-dominated case we conclude that tun-

ing in the electroweak sector is generally mitigated in the
universally stretched model relative to a generic point in
the mSUGRA parameter space due to the relation between
trilinear scalar couplings and scalar masses at the high
-18
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scale. Yet we are still left with uncomfortably heavy gau-
ginos (especially gluinos) and the constrained nature of the
paradigm will not allow us to reach the ‘‘optimal’’ point for
achieving mh  115 GeV while simultaneously ensuring
mZ  91 GeV.

D. More sophisticated models

So far we have chosen to look at three particularly
simple directions in the string moduli space. We have
done so in part to keep the level of technical detail
low—a beginning approach we feel is justified in a first
examination of the theoretical implication of the LEP
Higgs search. But there is also a reason of analytical
simplicity: the key variable in achieving the maximal
Higgs mass with the least cancellation in (11) is the value
of the stop mixing parameter Xt at the electroweak scale.
On the other hand, models of supersymmetry breaking and
transmission to the observable sector descended from
string theory give relations among soft terms at a very
high-energy scale. The two can be related in a straightfor-
ward manner (i.e. A0 ’ �2m0 at the GUT scale implies
Xt ’ �2 at the Z-mass) only in certain restrictive regimes,
such as a model with a high degree of universality among
soft scalar masses. Departures from the simplifying as-
sumptions made above will necessarily lead to nonuniver-
salities in the scalar sector and a much fuller analysis is
necessary to determine how readily Xt ’ �2 is achieved at
the low-scale. We do not wish to perform that analysis
here, but we do wish to comment on what types of models
might allow the freedom necessary to reach the maximal-
mixing scenario.

In subsections B and C we imagined scenarios in which
Kähler moduli dominate the supersymmetry-breaking in
the observable sector—moduli which appear in the tree-
level Kähler metric for matter fields. When we study top-
down models directly tied to the underlying string theory
we imagine this functional dependence to be that of (22)
with ni  �1;�2;�3 for weakly-coupled heterotic mod-
els on orbifolds or ni  0;�1=2;�1 for Type-I/IIB mod-
els on orientifolds. The restrictive nature of these choices
kept us from realizing a phenomenologically optimal sce-
nario. However, if it were possible to treat these modular
weights as arbitrary—even continuous parameters— it
would not be at all difficult to construct situations with
the desired properties. To what extent is such a treatment
justified?

As mentioned previously, the modular weights are re-
lated to what sector of the string Hilbert space each light
field arises from. Just below the string scale, when the four-
dimensional effective Lagrangian is first defined, these
weights are indeed constrained to the values mentioned
above. However, in the weakly-coupled heterotic string we
are compelled to make sure that our effective Lagrangian
respects modular invariance. This symmetry should con-
tinue to hold even after any anomalous U(1) factor is
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integrated out of the theory. Thus, fields which take vac-
uum values to cancel the anomalous U(1) FI term must be
removed from the theory in modular invariant (and U(1)
invariant) combinations. For example, if the field Y carries
anomalous U(1) charge qX

Y and acquires a vacuum value
hYi � 0, then the appropriate combination to integrate out
of the theory is [61,62]

he2q
X
YV

X
�T 
 T�nY jYj2i; (32)

where VX is the vector superfield representing the anoma-
lous U(1) and nY is the modular weight of the field Y.

The result of removing this combination of fields from
the theory is to shift the effective modular weight of the
remaining light fields, if those fields also carry an anoma-
lous U(1) charge. The amount of this shift is given by

ni ! �ni�
0  ni � qX

i �

�
nY

qX
Y

	
(33)

where qX
i is the anomalous U(1) charges of the light field in

question. Given the typical sizes of these charges [58] there
is every reason to expect that the resulting modular
weights, if modified at all, will take quite unorthodox
and generally nonintegral values. The question of whether
this effect will produce the desired relation between A-
terms and scalar masses—and indeed, whether it occurs at
all— is a model-dependent one.

Another way to generalize the above cases is to modify
the functional dependence of the Yukawa couplings and
Kähler metrics of the MSSM fields on the various string
moduli. For example, strongly coupled heterotic strings
bring the dilaton into play even at the tree level for these
quantities, while the Kähler moduli appear at the leading
order in gauge kinetic functions. Even in the weakly-
coupled case it is possible to introduce some nontrivial
dilaton dependence into A-terms and scalar masses if ob-
servable sector matter couples to the Green-Schwarz
anomaly-cancellation term [63]. If the GS counterterm
depends on the radii of the three compact torii via the
combination �TI 
 TI �

P
ijZ

I
i j
2�, where ZI

i is a matter
field which carries a modular weight under the modulus
TI, then even in the dilaton-dominated limit there is an
effect on the soft supersymmetry breaking terms due to the
kinetic mixing induced by the Green-Schwarz
counterterm.

Finally, we might expand the space of possible outcomes
by considering models with a richer moduli spectrum to
begin with. The orbifold models that inspired the cases A
and B above were based on the Z3 orbifold, for which the
complex structure of the compact space is completely fixed
by the supersymmetry requirements. As such, it does not
have free parameters that would be represented in the low-
energy four-dimensional theory as complex structure mod-
uli. Such fields do appear, however, in the leading order
supergravity effective Lagrangian describing other orbi-
fold models of the heterotic string [49], as well as models
-19
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based on open string theories. For example, in the Type IIA
models the gauge kinetic functions depend on complex
structure moduli, with the Kähler moduli appearing only
at the loop level to cancel anomalies [64,65]. This is
analogous to the introduction of Kähler moduli into the
formula for the gaugino masses at the loop level in the
heterotic string by the presence of a Green-Schwarz coun-
terterm (c.f. Eq. (28) above). The open string model
studied in case C above was chosen for its extreme sim-
plicity, as a first departure from the confines of the weakly-
coupled heterotic case. But much more complicated struc-
tures are likely to appear in more realistic constructions. At
the loop level in Type-I/IIB models anomaly-cancellation
requirements introduce new twisted moduli into the gauge
kinetic functions: the ‘‘blowing-up’’ modes which parame-
trize the transition from the singular manifold represented
by the orientifold to the presumably more realistic smooth
manifold it is meant to approximate [66,67]. Thus in open
string models we might expect greater freedom to find
cases where A0 ’ �2m0 is a robust prediction. It would
be of great interest to search the (generally nonuniversal)
models based on orientifold compactification of Type-I/
Type II string theory for points where mZ  91 GeV ap-
pears as a natural outcome of the supersymmetry breaking
as the effective Lagrangians describing these models be-
come more realistic.
VI. CONCLUSION

We began this work asking the question, ‘‘Where do we
stand after LEP II?’’ Accepted wisdom following the lack
of a Higgs discovery at LEP has been that if the MSSM is
the correct description of nature just above the electroweak
scale then the lightest Higgs boson is at least 115 GeV in
mass and very Standard Model-like in its properties. It is
further generally accepted that this implies an uncomfort-
able level of fine-tuning in the underlying supersymmetric
Lagrangian, though precisely how much and how unset-
tling is a somewhat subjective matter. Is this post-LEP
conclusion inevitable?

To answer this we looked at the data to find all the
logically distinct ways that the MSSM can be a correct
description yet produce no Higgs discovery at LEP. In total
we found 17 such possibilities—representing the primary
purpose behind this work. The majority of these cases
involve Higgs bosons with masses below the 115 GeV
limit, though the parameter space for each of these models
are generally not of the same size. While all cases are
logically on an equal, a priori footing not all are equally
‘‘tuned.’’ When the issue of large cancellations between
soft Lagrangian parameters and the 
 parameter are in-
cluded in the comparison, the conventional wisdom of the
post-LEP electroweak sector is seen as the most ‘‘plau-
sible’’ outcome.

Given this hypothesis—based as it is on fine-tuning as a
tool—what are the LEP results telling us about high-scale
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theories? Can we follow our nose and light upon a pre-
ferred outcome? From the bottom-up approach it is quite
easy to engineer situations where the relation A0 ’ �2m0

arises at high energy scale. The difficulty is in finding such
a construction that is also motivated by an underlying
theory such as string theory. Starting here with some
simple top-down approaches it appears that this preferred
model is not yet obvious. So if we are committed to weak
scale supersymmetry as a low-energy effective Lagrangian
derived ultimately from some sort of string theory, then we
find ourselves at a fork in the road. Should nature really be
described by the minimal supersymmetric version of the
Standard Model then LEP may be suggesting a more
complicated string model than the simple ones we typically
study—or perhaps special points in the moduli space of
these theories. On the other hand, it may simply be that the
ultimate supersymmetric Standard Model is not mini-
mal—see, for example, Ref. [68]. This would not be
surprising as we often find precisely such extended theories
from top-down studies of string models.

If fine-tuning is really a worthwhile concept for the
theoretical physicist, then its utility lies in directing our
focus towards those theories that are most compatible with
nature when data is lacking or ambiguous. In this role the
LEP data can still serve a valuable purpose, despite the lack
of a Higgs discovery. Assuming that an appropriately
defined measure of fine-tuning is truly telling us something
about nature, then studies which probe well-defined depar-
tures from the minimal model can utilize the LEP data to
identify promising avenues for further research
APPENDIX

In this appendix we present the derivation of the soft
supersymmetry breaking terms at the tree level in string-
derived supergravity theories. We provide specific expres-
sions for modular invariant supergravity theories from
weakly-coupled heterotic strings, as well as expressions
for models based on orientifold compactification of Type-I/
Type-IIB open string theories. More details and loop cor-
rections to these expressions for the weakly-coupled het-
erotic string can be found in [51].

Of particular importance for the question of supersym-
metry breaking are the types of string moduli present in the
low-energy theory and their couplings to the observable
fields of the MSSM [55,69,70]. Gaugino masses will de-
pend on auxiliary fields related to moduli appearing in the
gauge kinetic function, while scalar masses, trilinear A-
terms and bilinear B-terms will depend on auxiliary fields
related to those moduli that appear in the superpotential
couplings and/or Kähler potential for the MSSM fields
[44,71]. The precise form of these soft terms can be
obtained by working out the component Lagrangian for
the observable sector by standard techniques [72,73].

We begin with the weakly-coupled heterotic string and
take the Kähler potential for the moduli fields to be given
-20
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by the leading-order result

K�S; S;TI; TI�  K�S
 S� �
X
I

ln�TI 
 TI�: (A1)

For the observable sector matter fields Zi with modular
weights nI

i , we will assume a diagonal Kähler metric given
by Ki �j  7i�Z

n��ij 
O�jZij2�, with

7i�Zn� 
Y
I

�TI 
 TI�n
I
i : (A2)

In the interests of simplicity we shall immediately assume
that the 3 Kähler moduli TI can be treated as equivalent so
that

K�S;T�K�S
S��3ln�T
T�; 7i�T
T�ni ; (A3)

where ni 
P

In
I
i . The tree-level gauge kinetic functions

fa�Z
n�, one for each gauge group Ga, are given in the weak

coupling regime by

f0a�Zn�  S: (A4)

Their vacuum expectation values give the associated gauge
couplings <Refa>  1=g2a.

The scalar potential, written in terms of auxiliary fields,
is given by the expression6

V  KIJF
IF �J �

1

3
MM; (A5)

with KIJ  @2K=@ZI@Z �J being the Kähler metric. Solving
the equations of motion for the auxiliary fields yields

FM  �eK=2KMN�WN 
 KNW�; (A6)

M  �3eKW; (A7)

with KMN being the inverse of the Kähler metric. Note that
these expressions are given in terms of reduced Planck
mass units where we have set MPL=

�������
8*

p
 1. The auxil-

iary field of the supergravity multiplet, M, is related to the
gravitino mass by

m3=2  �
1

3
<M>  <eK=2W > : (A8)

We will adopt the ansatz of Brignole et al. [44] in which
one assumes that the communication of supersymmetry-
breaking from the hidden sector to the observable sector
occurs through the agency of one of the moduli— in this
case either the dilaton S or the (universal) Kähler modulus
T—by the presence of a nonvanishing vacuum expectation
value of their auxiliary fields FS or FT . In principle both
types of moduli could participate in supersymmetry-
breaking, and so one might introduce a Goldstino angle �
to parameterize the degree to which one sector or the other
feels the supersymmetry-breaking.

If these are the only sectors with nonvanishing auxiliary
fields in the vacuum, then the further requirement that the
6We will assume vanishing D-terms in what follows.

035006
overall vacuum energy at the minimum of the potential
(A5) be zero allows us to immediately identify (up to
phases, which we will set to zero in what follows)7

FS  �
1���
3

p MK�1=2
s�s sin� 

���
3

p
m3=2�s
 �s� sin�;

FT  �
1���
3

p MK�1=2
t�t cos�  m3=2�t
 �t� cos�:

(A9)

The dilaton-dominated limit is then recovered for sin� ! 1
while cos� ! 1 is the (Kähler) moduli-dominated limit.

The soft supersymmetry breaking terms depend on the
moduli dependence of the observable sector superpotential
and this is, in turn, determined by modular invariance. The
diagonal modular transformations

T!
aT� ib
icT
d

; ad�bc1; a;b;c;d2Z; (A10)

leave the classical effective supergravity theory invariant.
A matter field Zi of modular weight ni transforms under
(A10) as

Zi ! �icT 
 d�niZi (A11)

while the Kähler potential of (A3) undergoes a Kähler
transformation under (A10) of K ! K 
 3�F 
 F�, with
F  ln�icT 
 d�. Therefore the classical symmetry will be
preserved provided the superpotential transforms as

W ! W�icT 
 d��3: (A12)

To ensure this transformation property the superpotential
of string-derived models has a moduli dependence of the
form

Wijk  wijk�?�T���2�3
ni
nj
nk�: (A13)

where Wijk  @3W�zN�=@zi@zj@zk. The function ?�T� is
the classical Dedekind eta function

?�T�  e�*T=12
Y1
n1

�1� e�2*nT� (A14)

and it has a well-defined transformation under (A10) given
by

?�T� ! �icT 
 d�1=2?�T�: (A15)

This symmetry is perturbatively valid to all orders in the
underlying theory, but is anomalous at the loop level in the
effective supergravity Lagrangian. To restore modular in-
variance the effective theory must contain a Green-
Schwarz counterterm. In the chiral multiplet formulation
we are using to describe the dilaton this amounts to a
modification of the dilaton Kähler potential from in (A1)
to read instead
7We will not distinguish with separate notation fields and their
vacuum expectation values in these expressions.
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K�S; S� ! K�S
 S� �GSVGS�: (A16)

The real vector superfield VGS required to restore modular
invariance is

VGS 
X
I

ln�TI 
 TI�; (A17)

though in the text mention is also made of the possibility
that this counterterm is generalized to include matter fields
so that

VGS 
X
I

ln�TI 
 TI� 

X
i

pi

X
I

�TI 
 TI�n
I
i jZij

2 (A18)

We are now in a position to give the tree level soft
supersymmetry reaking terms. The tree level gaugino
mass for canonically normalized gaugino fields is simply

M0
a 

g2a
2

Fn@nf0a: (A19)

We define our trilinear A-terms and scalar masses for
canonically normalized fields by

VA 
1

6

X
ijk

Aijke
K=2Wijkz

izjzk 
 h:c:


1

6

X
ijk

AijkeK=2�7i7j7k�
�1=2Wijkẑiẑjẑk 
 h:c:; (A20)

where ẑi  7�1=2
i zi is a normalized scalar field, and by

VM 
X
i

m2
i 7ijzij2 

X
i

m2
i jẑ

ij2: (A21)

With these conventions our tree level expressions are

�A0�ijk  hFn@n ln�7i7j7ke
�K=Wijk�i: (A22)

�m2
0�i 

�
MM
9

� FnF �m@n@ �m ln7i

�
: (A23)

If we specialize now to the case of (A9) with moduli
dependence given by (A3), (A4), and (25), then the tree-
level gaugino masses (A19), A-terms (A22) and scalar
masses (A23) become

M0
a

g2a
2
FS A0ijk�3
ni
nj
nk�G2�t; �t�FT�KsFS

�M0
i �
2

MM
9


ni
jFT j2

�t
 �t�2
: (A24)
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Here G2�t; �t� is the modified Eisenstein function

G2�t; �t� �


2H�t� 


1

t
 �t

�
(A25)

which vanishes at the self-dual points t  1 and t  ei*=6.
The correction to the gaugino masses at the one-loop level
are given by

M1
a 

g2a�
�

16*2



1

3
baM � b0

aKsF
S 
 kaG2�t; �t�F

T
�

(A26)

where we have defined the quantities

ka  �GS 
 ba � 2
X
i

Ci
a�1
 ni�; (A27)

b0
a  Ca �

X
i

Ci
a; ba  3Ca �

X
i

Ci
a: (A28)

The Kähler potential for the system of fields on
D5-branes is

K  � ln�S
 S� �
X
i

ln�Ti 
 Ti�


 7i�S; S;Ti; Ti�j�Z
i�JKj

2 
 . . . (A29)

where Zi
JK are chiral superfields arising from open strings

that start and end on two different sets of D5-branes. These
two sets of branes have world volumes that span the
compact directions associated with moduli TJ and TK,
respectively. The kinetic functions are given by 7i 

1
2 �

�S
 S��1=2�TI 
 TI��1=2 if I � J � K � I and 7i  0
otherwise.

If each of the 3 Kähler moduli contribute equally to the
scalar potential the tree-level soft masses for this case are
given by

Mi 
g2i �MX�

2
�Kti �ti�

�1=2m3=2 cos�

�m2
0�i  m2

3=2
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1

2
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�
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B422, 125 (1994); B436, 747E (1995).
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