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Consistency of present day lattice QCD simulations with dynamical (‘‘sea’’) staggered fermions
requires that the determinant of the staggered-fermion Dirac operator, det�D�, be equal to
det4�Drg�det�T � where Drg is a local one-flavor lattice Dirac operator, and T is a local operator
containing only excitations with masses of the order of the cutoff. Using renormalization-group (RG)
block transformations I show that, in the limit of infinitely many RG steps, the required decomposition
exists for the free staggered operator in the ‘‘flavor representation.’’ The resulting one-flavor Dirac
operator Drg satisfies the Ginsparg-Wilson relation in the massless case. I discuss the generalization of this
result to the interacting theory.
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I. INTRODUCTION

Lattice QCD simulations with dynamical (‘‘sea’’) stag-
gered fermions [1] are providing predictions for hadronic
observables with unprecedented accuracy [2]. In these
numerical calculations, it is crucial that all sources of error
be under systematic control. This raises the question of
the validity of the ‘‘fourth-root trick’’ used in these
simulations.

Let me briefly explain the problem (more details may be
found, e.g., in Ref. [3]). In four dimensions, the staggered
Dirac operator D is a one-component lattice operator
which, in the free-field case, has 16 poles in the Brillouin
zone. These poles combine into four Dirac fermions (with
a total of 16 degrees of freedom) in the continuum limit.
To account for three dynamical quarks—up, down and
strange—the Boltzmann weight used for generating the
dynamical configurations involves the factor1

det 1=4�D�mu��det
1=4�D�md��det

1=4�D�ms��: (1)

Taking the fourth root of each staggered-fermion determi-
nant ensures that the lattice theory describes three (and not
twelve) quarks in the continuum limit. While the fourth-
root trick is necessary in practice in order to reach the
desired continuum theory, it is not obvious that this trick is
consistent. The question is whether the gauge-field con-
figurations generated with this Boltzmann weight corre-
spond to a local lattice theory. If one could show that
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, mu � md in the simulations. Note also that the
rrespond to a ‘‘hybrid’’ and/or partially quenched

the sea and the valence quarks may differ in their
ell as in the details of the discretization used for
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det�D� is equal to the fourth power of the determinant of
some local one-flavor lattice Dirac operator,2 this would
provide a positive answer.

In fact, a far weaker condition is sufficient to guarantee
locality, and, hence, consistency.3 Suppose one can show
that

det�D� � det4�Drg�det�T �: (2)

HereDrg is a local one-flavor lattice Dirac operator, and T
is a local operator containing only excitations with masses
of the order of the cutoff. We may now write det�T � �
exp�� Seff�U��. Since T contains only excitations with
cutoff masses, we expect that the effective action Seff�U� is
local; trivially, the same is true for �1=4�Seff�U�. By
Eq. (2), the fourth-root trick then amounts to using dy-
namical fermions with the local Dirac operator Drg, to-
gether with the modification of the gauge-field action by
�1=4�Seff�U�.

4

The natural framework to realize relation (2) is through
renormalization-group (RG) block transformations. After
introducing the relevant concepts in Sec. II, the free
staggered-fermion operator is dealt with in Sec. III, which
constitutes the main part of this work. Using the ‘‘flavor
representation’’ of staggered fermions [5] it is shown that
the decomposition (2) is realized in the limit of infinitely
many RG-blocking steps. Central to this discussion is a
theorem on the locality of RG-blocked Wilson fermions
proved in Ref. [6]; only a trivial amendment is needed in
2In this paper, a local operator means an operator whose kernel
decays exponentially with the separation jx� yj, with a decay
rate which is O�1� in lattice units. A similar notion of locality
applies to the effective action Seff�U� discussed below Eq. (2).

3This observation was recently made in Ref. [4].
4Locality of det1=4�T � in the free theory is addressed in

Sec. III.
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order to generalize the theorem to the flavor representation
of staggered fermions. The limiting operator is constructed
explicitly. (For Wilson fermions, see Ref. [7]. See also
Ref. [8] for an RG treatment of staggered fermions within
the one-component formalism.) Like any fixed-point op-
erator [9], the limiting operator satisfies the Ginsparg-
Wilson (GW) relation [10,11]. Section IV contains a dis-
cussion of some of the issues (both theoretical and prac-
tical) that arise in the interacting theory.
II. RENORMALIZATION-GROUP
TRANSFORMATIONS

We first consider a general setup, following Refs. [6,12].
Starting from a bilinear fermion action with Dirac operator
D0, an RG blocking is introduced via the identities

Z �
Z
d d exp�� D0 � (3a)

�
Z
d d d�d� exp��  D0 

� ����  Qy����Q �� (3b)

�
Z
d d d�d�d�d� exp��  D0 � ��1��

� ���  Qy��� ����Q �� (3c)

� det�1�G1�
Z
d�d� exp���D1��: (3d)

Here  ; live on the ‘‘fine’’ lattice with spacing a0,
whereas �; � (and the auxiliary field �;�) live on the
‘‘coarse’’ lattice with spacing a1 equal to an integer mul-
tiple of a0. In this paper we set a1 � 2a0. The RG-blocking
kernel Q is a rectangular matrix satisfying

QQy � cI; (4)

where I is the identity matrix on the coarse lattice.
Explicitly,

G1 � 
1 � �D0 � �QyQ��1; (5a)

D1 � �� �2QG1Qy; (5b)

D�1
1 � ��1 �QD�1

0 Qy: (5c)

Equations (5a) and (5b) are obtained by integrating over
 ; in Eq. (3b), and Eq. (5c) by first integrating over  ; 
and then over �;� in Eq. (3c). Iterating the blocking
transformation we have


j � �Dj�1 � �Q�j�yQ�j���1; (6a)

Dj � �� �2Q�j�
jQ�j�y; (6b)

D�1
j � ��1 �Q�j�D�1

j�1Q
�j�y; (6c)

where Q�j� denotes the blocking kernel from the �j� 1�th
lattice (with spacing 2j�1a0) to the jth lattice (with spacing
2ja0). We may also go directly from the finest to the
coarsest lattice:
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Gn � �D0 � �nQ
y
nQn�

�1; (7a)

Dn � �n � �2
nQnGnQ

y
n ; �n � �

1� c
1� cn

; (7b)

D�1
n � ��1

n �QnD�1
0 Qy

n ; (7c)

where Qn � Q�n�Q�n�1� � � �Q�1�. Equation (7c) follows by
iterating Eq. (6c) while using Eq. (4). The other equations
follow by noting that the product of n blocking transfor-
mations can also be represented as a single ‘‘big’’ blocking
transformation as in Eq. (3), provided we let �; � live on
the coarsest lattice, and we make the replacements �!
�n, Q! Qn. Hence each relation in Eq. (7) must match
the corresponding one in Eq. (5).

III. FREE STAGGERED FERMIONS

We now turn to free staggered fermions. In the flavor
representation [5] the staggered Dirac operator has four-
component spin and flavor indices, and is given explicitly
by

D0 � a�1
X
�

���� 
 I�r� � ��5 
 �5�������m; (8)

where a is the lattice spacing, r�f�x� � �f�x� �̂� �
f�x� �̂��=2, and ��f�x� � �2f�x� � f�x� �̂� � f�x�
�̂��=2. The usual Dirac matrices are ��, while the ��
constitute another set of Dirac matrices acting on the flavor
index. [Taken together, ��� 
 I� and ��5 
 ��� form a
representation of the eight-dimensional Dirac algebra.]
For m � 0, D0 is anti-Hermitian. Going to momentum
space one has D�1

0 � ��1Dy
0 where

D0 � a�1
X
�

���� 
 I�i sin�p�a�

� ��5 
 �5����1� cos�p�a����m;

� � Dy
0D0

� a�2
X
�

�sin2�p�a� � �1� cos�p�a��2��m2:

(9)

We will apply n block transformations to the Dirac
operator (8). We set m � 0, hence we may write

D�1
0 �D�1

0 �p;a�

��
X
�

�i���
I�A
0
��p;a����5
�5���B

0
��p;a��:

(10)

We will hold fixed the lattice spacing obtained in the nth
step. We thus set 2na0 � 1, or a0 � 2�n. The blocking
kernel Q�j� is defined as follows. We label the sites of the
�j� 1�th lattice by four integers l � �l1; l2; l3; l4�, l� 2 Z.
A site l0 � �l01; l

0
2; l

0
3; l

0
4� of the jth lattice is identified with

the site 2l0 � �2l01; 2l
0
2; 2l

0
3; 2l

0
4� on the �j� 1�th lattice. The

blocking transformation assigns to a field variable on the
jth lattice its arithmetic mean over a 24 hypercube on the
-2
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�j� 1�th lattice. Explicitly, �Qf��l0� �
P
l!Q�l

0; l�f�l� �
2�4P

r��0;1f�2l
0 � r�. This definition implies c � 2�4 in

Eq. (4). Using Eq. (7c) we obtain

D�1
n �p� � ��1

n �
X
�

�i��� 
 I�An
��p�

� ��5 
 �5���Bn
��p��; (11a)

An
��p� �

X
k�n��

A0
��p� 2$k�n�; 2�n�jQn�p; k

�n��j2;

(11b)

Bn
��p� �

X
k�n��

B0
��p� 2$k�n�; 2�n�jQn�p; k

�n��j2;

(11c)

jQn�p; k�n��j2 �
Y
!

�
sin�p!=2�

2n sin��p! � 2$k�n�! �=2n�1�

�
2
; (11d)

where �$ � p� � $ and for each �, k�n�� �

�2n�1;�2n�1 � 1; . . . ; 2n�1 � 1. To arrive at Eq. (11d),
observe that we have set a � 1 for the coarse-lattice spac-
ing, so that a single-step blocking kernel is a mapping into
this lattice from a lattice with spacing equal to 1=2. For
each �, this kernel has the momentum representa-
tion �1=2�� exp�ip�=2� � 1� � exp�ip�=4� cos�p�=4� �
exp�ip�=4� sin�p�=2�=�2 sin�p�=4��. Equation (11d) fol-
lows by going ‘‘backwards’’ down to the fine lattice with
spacing a0 � 2�n.

The massless staggered operator satisfies fD0; ��5 

�5�g � 0, and therefore the staggered action is invariant
under a U�1� chiral symmetry.5 For the RG-blocked op-
erator we have Eq. (11a), which implies that D�1

n �x; y�
anticommutes with ��5 
 �5� except for x � y. In fact,

fDn; ��5 
 �5�g � 2��1
n Dn��5 
 �5�Dn; n � 1:

(12)

This is recognized as a generalization of the GW relation
[10]. Thus, after the first blocking transformation the U�1�
chiral symmetry gets modified to a Ginsparg-Wilson-
Lüscher (GWL) chiral symmetry [11].

For Wilson fermions, it was proved in Ref. [6] that the
RG-blocked operator

Dn�x� y� �
Z
BZ
dpeip�x�y�Dn�p�; (13)

is local. Here
R
BZ dp �

R
$
�$ d

4p=�2$�4 denotes the inte-
gration over the Brillouin zone of the coarse lattice. As
explained earlier, this means that Dn�x� y� decays expo-
5This symmetry correspond to the U�1�* symmetry of the one-
component formalism [13]. Note that the interpretation of this
symmetry in the continuum limit—axial, vector or some combi-
nation of them—depends in general on the choice of the
staggered mass term [14]. For the simple mass term of Eq. (8)
it is a chiral symmetry.
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nentially with jx� yj, and the decay rate isO�1� in units of
the coarse-lattice spacing. The bounds established in the
course of the proof are uniform in n, and hold for � � �̂
where �̂ > 0 is anO�1� constant whose actual value can be
worked out by keeping track of the details of the proof.

We now argue that the proof of locality continues to hold
if, at the starting point, we replace the Wilson operator by
the staggered Dirac operator (8). This amounts to replacing
the Wilson termW by a ‘‘skewed’’ Wilson termWst, where

W �
X
�

�1� cos�p�a��;

Wst �
X
�

��5 
 �5����1� cos�p�a��:
(14)

The proof requires lower and upper bounds on W as a
function of p�a. Introducing the vector-space norms
jx�j� � �

P
�jx�j

��1=� we observe that W � jWj � j1�
cos�p�a�j1. In the staggered case, we have the operator
norm jjWstjj

2 � WstW
y
st �

P
��1� cos�p�a��2, or equiv-

alently k Wst k� j1� cos�p�a�j2. Since the following
equivalence-of-norms inequalities hold in d dimensions

d�1=2jx�j2 � jx�j1 � d1=2jx�j2; (15)

it follows that every lower or upper bound on jWj entails a
corresponding bound on k Wst k , and vice versa. This
simple argument shows that, indeed, the proof given in
Ref. [6] generalizes to the RG-blocked staggered Dirac
operator in its flavor representation.

The key physical input that goes into the proof [6] is that
D�1

0 �p� and D�1
n �p� share the same singularity as p! 0,

namely, �i
P
���p�=p

2. Indeed, the singularity of

D�1
n �p� arises only from the k�n�� � 0 term on the right-

hand side of Eq. (11b). Factoring out this singularity by
writing D0�p� � Rn�p�Dn�p�, one can prove that the op-
erator Rn�p� is analytic in p� and that both Rn�p� and
R�1
n �p� are bounded. This is then used to prove that Dn�p�

and Gn�p� are analytic, and that Dn�p�, Gn�p� and G�1
n �p�

are bounded. Exponential localization of the corresponding
coordinate-space kernels follows from general theorems.

We will next show that, in the limit of infinitely many
RG steps,Dn becomes diagonal in flavor space. The flavor-
mixing part of D�1

n �p� is given by Eq. (11c), where ex-
plicitly

B0
��p�2$k�n�;2�n�

�
2sin2��p��2$k�n�� �=2n�1�

2n
P
!
�sin2��p!�2$k�n�! �=2n��4sin4��p!�2$k�n�! �=2n�1��

:

(16)

It is easy to see that jB0
��p� 2$k�n�; 2�n�j � c12

�n where
c1 � O�1�. Away from the singularity at p� 2$k�n� � 0
this is evident. For jp� 2$k�n�j � 2n, the same result
-3
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follows using sin�x� � x for x� 1. Thus, jB0
��p�

2$k�n�; 2�n�j � O�2�n�, uniformly in p and k�n�. In addi-
tion, jQn�p; k�n��j2 � c2

Q
!jp!j

2=jp! � 2$k�n�! j2 where
again c2 � O�1� [6]. Hence the k�n�� -summation converges,
and jBn

��p�j � O�2�n� for all p. Taking the limit n! 1

we conclude that Bn
��p� ! 0, uniformly in p.

The inverse fixed-point operator obtained in the limit
n! 1 can be expressed as

D�1
1 �p� � D�1

rg �p� 
 I �

 
��1
1 � i

X
�

��A
1
� �p�

!

 I;

(17)

where �1 � �15=16��, and A1
��p� � p�=p

2 for p� �

1. This shows that D1 is diagonal in flavor space and
satisfies the (standard) GW relation.6 Letting G1 �
limn!1Gn, Eqs. (3) and (17) imply

lim
n!1

det1=4�D0�a0 � 2�n�� � det�Drg�det
1=4�G�1

1 �: (18)

In view of the locality and boundedness properties estab-
lished above, the desired decomposition (2) is achieved in
this limit.

The essence of the RG blocking is that it distills the
long-distance dynamics, extracting it out of the underlying
short-distance theory. The long-distance dynamics is con-
tained in Drg which is manifestly diagonal in flavor space,
while all the flavor-mixing effects are contained in G�1

1 .
Since G�1

n is analytic in momentum space and has an O�1�
gap, its fourth root shares similar properties. Hence G�1=4

n

is local, and has only cutoff-mass excitations, uniformly in
n.

Let us elaborate on this last statement. Observing that �
has mass dimension equal to one, and focusing, e.g., on the
first blocking step, an RG transformation works by first
replacingD0 withG�1

1 � D0 � �QyQ [cf. Equation (3b)].
Now, the massless operator D0 has vanishingly small ei-
genvalues near p� � 0. The contribution from the block-
ing kernel, �QyQ, lifts these small eigenvalues and
generates an O��� � O�1� gap in the spectrum of G�1

1 .
We may define the fourth-root operator for any finite n via

Mn�~x; ~y� �
Z �n�

BZ
d~pei~p�~x�~y�Mn�~p�;

Mn�~p� � �Gn�~p�G
y
n �~p���1=8:

(19)

In this equation, ~x; ~y take values on the fine lattice, andR�n�
BZ d~p denotes the integration over the fine-lattice

Brillouin zone. The argument why Mn�~x; ~y� is local is
standard [6]. If we let one of the momentum components
become complex, the singularity closest to the real axis
will be at a distance which is O��n�. Deforming the con-
6The relevance of the GW relation for establishing consistency
of the fourth-root trick was recently pointed out in Ref. [15].
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tour of integration, this implies that Mn�~x; ~y� decays ex-
ponentially with j~x� ~yj, with a decay rate which is O��n�,
namely, O�1� in units of the coarse-lattice spacing.

It is interesting to compare this result to Ref. [4] which
attempts to find an operator N such that det�N � �

det1=4�D0�, without the help of RG transformations (see
also Ref. [16]). In this case, the gap is provided by the
physical mass, and the decay rate of the square-root kernel
needed in the construction is found to beO�

����������
m=a

p
�. Hence,

the limit m! 0 is problematic.
With the help of RG blocking, the small-distance scale

relevant for the fourth root is a0, the spacing of the original
fine lattice, and the relevant large-distance scale is a, the
spacing of the coarse lattice. In comparison, in Refs. [4,16]
the relevant short- and long-distances scales are a and 1=m,
respectively. The use of RG blocking effectively achieves
the replacements a! a0, 1=m! a. While the mathe-
matics is similar, the physical conclusion is different.
The ‘‘fourth-root’’ kernel Mn�~x; ~y� is long-ranged with
respect to the fine-lattice scale a0 (in analogy with
Refs. [4,16]); but the same kernel is short-ranged with
respect to the coarse-lattice scale. This is true uniformly
in n, hence also in the limit n! 1.

The RG analysis generalizes to the case that the mass
term is switched back on in Eq. (8).7 We find that Eq. (11a)
still holds, except that the explicit expressions for An

��p�,
Bn
��p� and ��1

n get modified [now ��1
n � ��1

n �p� be-
comes a nontrivial function of p)]. The proof of locality
generalizes to m � 0 for Wilson fermions [6], and the
same should be true for the flavor-representation staggered
fermions. Also, clearly B0

��p;m � 0� � B0
��p;m � 0�.

Therefore, for n! 1, Bn
��p� tends to zero as before.

The limiting operator Drg, defined by the first equality in
Eq. (17), is again diagonal in flavor space. Of course, for
m � 0, Drg will not satisfy the GW relation any more.
IV. INTERACTING STAGGERED FERMIONS

It is unlikely that rigorous theorems such as those of
Ref. [6] will ever be generalized to an interacting lattice
theory. Still, physical intuition suggests that similar state-
ments on locality and boundedness may hold true in an
interacting theory as well. In this section, I address some of
the issues that arise when dealing with an interacting
theory.

The question is what are the properties of an RG-
blocked lattice theory, when the initial interacting theory
involves one-component staggered fermions, and the
fourth-root trick is applied. In an interacting theory RG
transformations may be realized in numerous ways. A
common feature is that RG transformations naturally
7It is desirable (though not a necessary condition for ma� 1)
to choose the same relative sign for m and �, such that m�
�QyQ is a strictly positive operator.

-4
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give rise to a ‘‘two-cutoff’’ theory: the RG-blocked theory
living on a coarse lattice with spacing a is obtained after
applying n RG transformations to an initial theory defined
on a fine lattice with spacing a0 � a. For example, in the
context of ‘‘perfect action’’ one applies RG transforma-
tions to fermion and gauge fields alike, and the limit n!
1 (and a0 ! 0) is taken while keeping a fixed [9].

Here I will limit the discussion to a simpler framework,
where RG transformations are applied only to the fermion
variables. Among other things, this has the advantage that
some simple tests can be carried out on existing dynamical
configurations.

The first problem that must be tackled is that, as dis-
cussed below, the interacting theory is defined using one-
component staggered fermions for a reason [14,17]. In the
free-field case, there is a unitary operator Q0 that maps the
one-component staggered operator, defined on a lattice
with spacing a0, to the flavor-representation staggered
operator on a lattice with spacing a1 � 2a0 [5]. In the
interacting case, the mapping must preserve gauge invari-
ance but there is no unique, obvious way to define it.

We propose to deal with this problem by a single RG-
blocking step which keeps the number of fermionic de-
grees of freedom unchanged. Specifically, in Eq. (3) we
take  ; to be single-component fields, while �; � are four
flavors (or ‘‘tastes’’) of Dirac fields. D0 is now a covariant,
interacting one-component staggered operator. For the
blocking kernel we choose some covariant version of Q0,
denoted Q�0� below, defined in terms of the link variables
on the fine lattice. Equations (3) and (5) provide explicit
expressions for D1, which is the resulting staggered opera-
tor in the flavor representation, as well as for G1, whose
(inverse) determinant is picked up when performing this
nontrivial change of variables. [We will shortly return to
the role of det�G�1

1 �.] Using the natural embedding x! ~x
from the coarse lattice to the fine lattice [as described
above Eq. (11)], both D1 and G1 are gauge-covariant
functions of the link variables on the fine lattice.

Having thus constructed a ‘‘flavor representation’’ in the
interacting theory, we may apply n additional, ordinary RG
blocking transformations to the fermions. These block
transformations dilute the number of fermionic degrees
of freedom while maintaining gauge invariance, provided
that we keep choosing blocking kernels which are cova-
riant with respect to gauge transformations on the original
fine lattice. This is naturally realized if, for any point x0 and
any point y such that Q�j��x0; y� � 0 in the free theory, we
construct the covariant kernel Q�j��~x0; ~y� by summing over
Wilson lines that go from ~x0 to ~y on the original fine lattice.

An important question is what is the fate of the global
symmetries of the original, interacting one-component
staggered-fermion theory. As for the chiralU�1� symmetry,
we have seen that it becomes a GWL symmetry [Eq. (12)].
Now, it may be impossible to preserve manifest hypercubic
invariance in the construction of Q�j�, and the same is true
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for the staggered shift symmetry [14]. Since the original
one-component theory has exact hypercubic and shift sym-
metries, by Eq. (3d), any breaking of these symmetries
induced in the above-defined flavor representation by Dn
must be exactly compensated by det�G�1

n �. In other words,
the effective action Sneff � log�det�Gn�� should automati-
cally contain the local ‘‘counter-terms’’ needed to restore
exact invariance.

It is known that the attempt to construct an interacting
theory directly in the flavor representation gives rise to
induced cutoff-scale masses which, on top of that, violate
Lorentz invariance [17]. The interacting staggered theory
is defined in the one-component formalism because its
global symmetries, including, in particular, shift symmetry,
forbid these disastrous mass terms [14]. It is therefore
crucial that the cancellation mechanism proposed above
will indeed be operative when the flavor representation is
constructed though ‘‘RG blocking’’ from the one-
component theory. Interestingly, there exists a general
RG-blocking result which provides direct evidence that
the above cancellation mechanism indeed works as it
should. Introduce the ‘‘telescopic sum’’ [6]

D�1
0 � D�1

0 Qy
nDnQnD�1

0 �
Xn�1

j�0

D�1
0 �Qy

j DjQj

�Qy
j�1Dj�1Qj�1�D

�1
0

� SnD�1
n Sn �

Xn�1

j�0

Sj~
j�1Sj; (20)

where we have set Q0 � I and where

Sj � D�1
0 Qy

j Dj; Sj � DjQjD�1
0 ; (21)

and
~
 j�1 � D�1

j �D�1
j Q�j�1�yDj�1Q�j�1�D�1

j � 
j�1:

(22)

The equality ~
j�1 � 
j�1 follows by substituting Eq. (6c)
for Dj�1 and reexpanding as a geometric series.

Consider now an interacting staggered-fermion theory
with light or massless quarks. Let us examine the long-
distance behavior of the various kernels in Eq. (20). In
Ref. [6] it is proved that, in the free theory, Sj, Sj and 
j all
have ranges which are O�1� in units of the coarse-lattice
spacing. We expect the same to hold in the interacting case.
Because the original kernel D�1

0 �~x; ~y� is long-ranged in
physical units, the only way for Eq. (20) to hold is if
D�1
n �~x; ~y� is long-ranged too.
The physical interpretation of Eq. (20) is not completely

straightforward because D�1
0 and D�1

n are not gauge-
invariant all by themselves. Let us examine a physical
observable. We will consider the gauge-invariant two-point
function of the true Goldstone-boson field $�x�. Its exis-
tence is implied by the symmetries of the one-component
formalism [14], and so h$�x�$�y�i decays like a power of
jx� yj in the massless limit. We may construct this two-
-5



8Since in this framework the independent link variables always
reside on the original fine lattice, the limit n! 1 cannot be
taken independently of the continuum limit.
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point function either from D�1
0 or, using Eq. (20), from

D�1
n . Had any cutoff-scale masses been induced as in the

case of Ref. [17], D�1
n would decay exponentially with a

cutoff-scale rate, making it impossible to reproduce the
correct long-distance behavior. We conclude that, whether
or not the RG-blocked theory enjoys manifest shift and
(full) hypercubic symmetries, the physical consequences
of all the original symmetries remain intact.

Suppose that, instead, one had started with an interacting
theory obtained by simply gauging the flavor representa-
tion using link variables that reside on the coarse lattice, as
in Ref. [17]. Assume also that the bare quark mass is set to
zero. What would go wrong? Denoting the new interacting
Dirac operator by D0 and the lattice spacing by a0, the
two-point function of the would-be Goldstone boson is
given explicitly by

h$�x�$�y�i � hG�x; y�i; (23a)

G�x; y� � tr���5 
 �5�D
�1
0 �x; y���5 
 �5�D

�1
0 �y; x��:

(23b)

Since ��5 
 �5�D0��5 
 �5� � Dy
0 one has G�x; y�> 0,

i.e., this correlator is strictly positive. The decay rate of
h$�x�$�y�i is now O�1=a0�, because the explicit one-loop
calculation of Ref. [17] shows that the quarks acquire
(Lorentz-breaking) cutoff masses in this theory. Since
G�x; y�> 0, it is ruled out that the short range could be
generated by destructive interference between different
gauge-field configurations; rather, given an ensemble of
configurations, we must have jjD�1

0 �x; y�jj2 � exp�jx�
yj=a0� on each and every one of them.

One could have applied RG transformations, and
Eq. (20) would again say that any long-distance physics
of D0 must be reproduced by the resulting Dn. However,
we have just seen that D0 has no long-distance physics
whatsoever. By Eq. (20), any number of RG transforma-
tions would not have fixed it.

Coming back to the interacting one-component stag-
gered theory, the algebraic structure of G�x; y� is similar
to Eq. (23b), and again G�x; y�> 0. In order to obtain the
correct power-law behavior of the Goldstone-boson corre-
lator h$�x�$�y�i, there must exist a finite probability to
encounter configurations where G�x; y� has the same long-
distance behavior. Finally, by Eq. (20), the long-distance
behavior must be sustained if we useD�1

n instead ofD�1
0 to

construct G�x; y�. The long-distance physics contained in
D�1

0 is faithfully reproduced by the RG-blocked D�1
n .

It will be interesting to test the resulting operators
numerically, and see whether the properties established in
the free theory persist. For the RG-blocked operator Dn,
the crucial properties are locality, suppression of the flavor-
mixing (or taste-mixing) part with n, and convergence to a
GW operator in the massless case. As for Gn [Eq. (7a)], the
question is whether this operator indeed describes only
excitations with masses of the order of the cutoff, so that
the effective action Sneff � log�det�Gn�� is local. Last, it
034509
should be verified that the mechanism that protects the
(physical consequences of the) symmetries of the original
one-component formulation is indeed operative.

On the theoretical side, an interesting idea is to make use
of the notion of admissibility condition. The original con-
cept introduced in Ref. [18] asserts that the lattice gauge
field is constrained such that, for every plaquette, Re tr�1�
U�!�x��< *0, where U�!�x� is the ordered product of link
variables around the given plaquette, and *0 > 0 is a fixed
(small) number. It is believed that an admissibility condi-
tion does not change the universality class. The utility of an
admissibility condition is the following. Given a free lat-
tice operator whose spectrum satisfies a certain bound, one
expects that this bound will be modified only by O�*0� if
we promote the operator to a covariant one, while allowing
only for gauge fields that satisfy the admissibility
condition.

In the case at hand, we may envisage imposing an
admissibility condition on the link variables of the original
fine lattice. This should imply that, apart from O�*0�
modifications, the operator bounds established in Ref. [6]
will continue to hold during the first few blocking steps,
and the same should follow for the locality properties.

Unlike in Ref. [18], however, we now face the
following problem. When the number of blocking
transformations becomes of the order of n� 1=*0, we no
longer have any useful bound on the gauge field. We
will thus propose a stronger notion of admissibility.
Considering the product of (covariant) blocking kernels
Qn � Q�n�Q�n�1� � � �Q�1�Q�0�, we will constrain the
gauge field on the original fine lattice by demanding that
every Wilson loop W occurring in the product QnQ

y
n will

satisfy the constraint jW j< *0. The reasoning behind this
new admissibility condition is the following. After n block-
ing steps, the length of the loops contained in QnQ

y
n will

be O�2n� in units of the original lattice spacing a0.
However, as explained earlier, we are really interested in
the ‘‘two-cutoff’’ situation where a0 � 2�na. When mea-
sured in units of the coarse-lattice spacing a, all these
Wilson loops have length smaller than some l0 � O�1�.
Our new admissibility condition is therefore a natural
generalization of the same concept to a ‘‘two-cutoff’’
situation. With this new admissibility condition, it is plau-
sible that the free-theory bounds will continue to hold for
arbitrarily large n, up to O�*0� modifications. In other
words, the deviations from the free-theory bounds will be
O�*0� independently of n. In addition, for very large n, the
flavor-breaking part of the RG-blocked operator will be-
come very small. It should be possible to find large enough,
but finite, n, such that full flavor (‘‘taste’’) symmetry is
recovered to any desired accuracy.8
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In conclusion, using the machinery of RG block trans-
formations I have shown that the fourth-root trick is con-
sistent for free staggered fermions. In the limit of infinitely
many RG steps, the free staggered-fermion determinant is
equal to the fourth power of the determinant of a one-flavor
local operator which, in the massless case, satisfies the GW
relation, times the determinant of a local operator whose
excitations have cutoff masses. The fourth root of the latter
operator is local too. While a similar result for interacting
staggered fermions is unlikely to be established anytime
soon, I have discussed how to construct the flavor repre-
sentation in the interacting theory, while in effect main-
taining all the symmetries of the one-component
formalism. I have also suggested avenues for numerical
034509
tests, as well as a theoretical framework which appears to
be best suited for generalizing some of the rigorous free-
theory results to the interacting case.
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