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We report on a study of QCD thermodynamics with three flavors of quarks, using a Symanzik improved
gauge action and the Asqtad O(a?) improved staggered quark action. Simulations were carried out with
lattice spacings 1/4T, 1/6T, and 1/8T both for three degenerate quarks with masses less than or equal to
the strange quark mass m; and for degenerate up and down quarks with masses in the range 0.1m,; =
m, 4 = 0.6mg and the strange quark mass fixed near its physical value. We present results for standard
thermodynamics quantities, such as the Polyakov loop, the chiral order parameter and its susceptibility.
For the quark masses studied to date we find a rapid crossover rather than a bona fide phase transition. We
have carried out the first calculations of quark number susceptibilities with three flavors of sea quarks.
These quantities are of physical interest because they are related to event-by-event fluctuations in heavy
ion collision experiments. Comparison of susceptibilities at different lattice spacings show that our results

are close to the continuum values.
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L. INTRODUCTION

Under ordinary laboratory conditions quarks and gluons,
the fundamental constituents of quantum chromodynamics
(QCD), are bound into hadrons. However, as the tempera-
ture or density is increased, the forces among quarks and
gluons weaken, and one expects to find a phase transition
or crossover to a new state of matter, a quark-gluon plasma.
The plasma was a dominant state of matter in the early
development of the universe, and a primary objective of
current relativistic heavy ion collision experiments is to
observe the plasma and determine its properties. The be-
havior of strongly interacting matter in the vicinity of the
phase transition or crossover is inherently a strong cou-
pling problem, which at present can only be addressed
from first principles through lattice gauge theory calcula-
tions. Among the issues that can uniquely be addressed by
lattice calculations are the nature of the transition and the
temperature at which it occurs, the properties of the
plasma, including strange quark content, and the equation
of state [1].
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PACS numbers: 12.38.Gc, 11.10.Wx, 12.38.Mh

In this paper we report on a study of the phase diagram
of high temperature QCD with three flavors of quarks using
improved gauge and quark actions [2]. Most lattice studies
of high temperature QCD have included only the up and
down quarks, but the inclusion of the strange quark is an
important feature of our work [3]. From chiral models it is
expected that with two flavors of quarks there is no phase
transition at all for physical values of the up and down
quark masses; however, a strange quark could induce a first
order transition, or move a second order critical point
closer to physical quark masses [4]. Furthermore, the
production of strangeness is expected to be an important
signal for the plasma in heavy ion experiments.

We are considering two cases in our study: (1) all three
quarks have the same mass m,, and (2) the two lightest
mass quarks have equal mass m, 4, while the mass of the
third quark is fixed at approximately that of the strange
quark m,. We refer to these cases as Ny = 3 and Ny =
2 + 1, respectively. For Ny =3 we have worked with

quark masses in the range 0.2m; = m, = m,, while for
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Ny =2 + 1 we have carried out simulations with 0.1m; =
m, 4 = 0.6m;. We have monitored standard thermody-
namic quantities such as the plaquette, the Polyakov
loop, the chiral order parameter and its susceptibility. For
the quark masses we have studied to date, we find rapid
crossovers, which sharpen as the quark mass is reduced,
rather than a bona fide phase transition. This is in agree-
ment with earlier work [1]. We have also measured the
quark number susceptibilities, which provide excellent
signals for the crossover, and which are directly related
to event-by-event fluctuations in heavy ion collisions [5].
The data indicate that our results for these susceptibilities

are quite close to their continuum values.

II. THE SIMULATIONS

Our simulations are carried out with a one-loop
Symanzik improved gauge action [6] and the Asqtad quark
action [7]. Both the gauge and quark actions have all lattice
artifacts removed through order a? at tree level, where a is
the lattice spacing, and are tadpole improved. Thus, the
leading order finite lattice spacing artifacts are of order

2

FIG. 1 (color online).
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last few years to perform a wide variety of zero-
temperature calculations [8]. It has a number of features
that make it particularly well suited for high temperature
studies. The Asqtad action has considerably better disper-
sion relations for free quarks than the standard Kogut-
Susskind and Wilson actions [9], which markedly de-
creases lattice artifacts above the transition. This is also
true of the P4 action used by the Bielefeld group in its
studies of high temperature QCD [10]. The improvement
in dispersion relations is illustrated in Fig. 1, where we plot
the energy, pressure, and quark number susceptibility for
free massless quarks as a function of lattice spacing. The
Asqtad action exhibits excellent scaling properties in the
lattice spacing [11], which accelerates the approach to the
continuum limit. Finally, taste symmetry breaking is much
smaller for the Asqtad action, than for the conventional
Kogut-Susskind action. Our spectrum studies with the
Asqtad action indicate that for lattices with eight to ten
time slices, the kaon is heavier than the heaviest non-
Goldstone pion in the neighborhood of the finite tempera-
ture transition or crossover, a condition which requires
much smaller lattice spacings with the conventional
Kogut-Susskind action. It is, of course, difficult to study

free fermions, m=0
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action is the improved staggered fermion action studied by the Bielefeld group [10].
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the effects of the strange quark on the transition if this
condition is not fulfilled.

We have used the refreshed hybrid molecular dynamics
R algorithm [12] to generate gauge configurations. In in-
tegrating the molecular dynamics equations of motion we
used a time step dtf equal to the smaller of 0.02 and %mu, d-
The momenta conjugate to the gauge fields were refreshed
every molecular dynamics time unit, which consisted of
1/dr time steps. In the vicinity of the crossover we gen-
erated 2000 equilibrated molecular dynamics time units at
each value of the gauge coupling and quark masses we
studied. The runs well above and below the crossover were
shorter. Measurements of standard thermodynamics quan-
tities were made after each time unit, and gauge configu-
rations were saved every five time units for separate
measurements of the quark number and ¢ susceptibili-
ties. Ten random sources were used in the measurements of
iy made at the end of each time unit, and 100 random
sources were used in the calculations of the susceptibilities.
The values of the chiral order parameter obtained in these
two measurements agreed to within statistics.

We have attempted to vary the temperature while keep-
ing all other physical quantities constant. To this end, for
the Ny = 3 study we have performed a set of spectrum
calculations at lattice spacings ¢ = 0.125 fm and 0.18 fm
with m, = my, 0.6m;, 0.4m, and 0.2m,. We determine the
lattice spacing from the static QQ potential and express it
and other dimensionful quantities in terms of r; defined by
r%FQ-Q(rl) = 1. Using results from the 1S-2S and 1P-1S
splitting in the Y spectrum [13], we have found r| =
0.317 £0.007 fm in the continuum and chiral limits
[14]. We determine m, from the requirement that
m, [/mgy = 0.673, where 7, is an “unmixed” pseudosca-
lar meson made of an s and § quark. We would like to carry
out our thermodynamics studies with three equal mass
quarks for m,, / m,, fixed, but this quantity will, of course,
vary slightly with lattice spacing if we keep m,/m fixed.
So, at a = 0.18 fm we perform linear interpolations of
m%” and my in the quark mass to determine the precise
values of m, for which mnm/ mg will take on the values
found at @ = 0.125 fm. Then to determine the values of
amg, a, and T = 1/aN, for thermodynamics studies with
other values of a, we perform interpolations or extrapola-
tions with a form due to Allton, inspired by asymptotic
freedom [15]. We first define

F(87) = (bog?) 1/ Cr)e1/2be’, (1)

where b, and b, are the universal beta-function coefficients
for massless three-flavor QCD, and g? is the bare lattice
coupling. f(g?) is basically a/A ;. We then determine a as
a function of g2 from the interpolation formula

a(g?)/r1 = cof ()1 + c282*(g?)]. (2

The second term in Eq. (2) is an O(g%a®) correction to the
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asymptotic freedom formula. The coefficients ¢y and ¢, are
determined from the measured values of a/r; at a = 0.18
and 0.125 fm. A similar interpolation formula is used to
determine the lattice quark mass along the line of fixed

My /Mg,
am,(g%) = do(bog®) " f(g?)[1 + drg?f*(g)]  (3)

Here we have included the anomalous dimension of the
mass. In the initial stages of our work we simply made
linear interpolations of In(a) and In(am,) in 1/ g2 between
the anchor points at a = 0.18 and 0.125 fm, which gave
results in good agreement with those of Egs. (2) and (3).
However, use of the more sophisticated formulas became
critical for points outside the anchors.

Our approach for thermodynamics studies with m,, 4 <
my is quite similar. In this case we wish to vary the
temperature keeping both m,/m, and m, /m, fixed.
We have carried out spectrum studies at a = 0.125 and
0.18 fm for light quark masses m, ; = mg, 0.6mg, 0.4m,,
0.2my, and 0.1my, and at @ = 0.09 fm with m, ;, = m,,
0.4m, 0.2mg, and 0.1m, all with the mass of the heavy
quark fixed close to m; [9,14]. The strange quark mass was
determined from the spectrum calculations with three
equal mass quarks. In our spectrum runs at @ = 0.125 fm
[9] we found that m,  varied by less than 2% and my by
less than 1% for 0.2m, = m, ; = mg, and the heavy quark
mass held fixed at m;. So, the neglect of the dependence of
m, and my on m, 4 is well justified. In these studies we
performed linear interpolations of m2 and m, at a =
0.18 fm to determine the values of m,, for which
mﬁ/mp takes on the values found at a = 0.125 fm.
Then, for other values of a we interpolate or extrapolate
a/ry using Eq. (2) and am, 4 and am, using Eq. (3). We
again determine the values of ¢, ¢,, dy, and d, from the
spectrum runs at ¢ = 0.125 fm and 0.18 fm. For m, ; =
my, 0.4mg, 0.2mg, and 0.1m,, where we have spectrum data
at a = 0.09 fm, we can add f*(g?) terms to the right-hand
sides of Eqgs. (2) and (3). These added terms make only a
few percent difference in the lattice spacing and quark
masses extrapolated to 107, giving us confidence in the
interpolations and extrapolations used in our study. We
have recently combined data from all zero-temperature
runs we have made to date to obtain a smooth interpolation
formula of In(r,/a) as a function of quark mass and gauge
coupling [14]. The results are in excellent agreement with
those obtained from Eq. (2).

III. RESULTS FOR N; = 3

For three equal mass quarks N, = 3 we have carried out
thermodynamics studies on lattices with four, six, and eight
time slices, and aspect ratio N, /N, = 2. Here N, and N, are
the spatial and temporal dimensions of the lattice in units
of the lattice spacing. We also performed simulations with
aspect ratio three for N; = 4, and obtained results that are
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FIG. 2 (color online). The real part of the Polyakov loop as a
function of temperature on 16> X 8 lattices for three degenerate
flavors of quarks with masses m,/m,; = 1.0, 0.6, 0.4, and 0.2.

indistinguishable from those with aspect ratio two for
standard thermodynamics quantities, such as the
Polyakov loop and chiral order parameter. The spectrum
calculations and interpolations described above allowed us
to determine the values of the quark mass m, that keep
m, /m fixed as the gauge coupling is varied. They also
enabled us to determine the value of the lattice spacing and
therefore the temperature for each run.

In Fig. 2 we plot the real part of the Polyakov loop as a
function of temperature on 16> X 8 lattices. In this figure,
as elsewhere, we give the values of m, /m, for a =
0.125 fm. The corresponding values of m, /m, are given
in Table I. The Polyakov loop shows a crossover from
confined behavior at low temperature to deconfined behav-
ior at high temperature. There is a slight trend for the

TABLE 1. In the first column we show the value of m,/m; at
lattice spacing 0.125 fm, which produced the m, /mg ratio
shown in the second column for spectrum calculations with three
equal mass quarks. In the third column we give the value of
m, q/m, which produced the m/m, ratio shown in the fourth
column for spectrum calculations with two equal mass light
quarks and the mass of the heavy quark fixed at m.

Ny =3 Ny=2+1
mq/ms m-q”./md) mu,d/ms mﬂ'/mp
1.0 0.673 1.0 0.673
0.6 0.583 0.6 0.582
0.4 0.504 0.4 0.509
0.2 0.404 0.2 0.392
0.1 0.298
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temperature dependence of the Polyakov loop to be steeper
for larger quark masses. This is to be expected, since at
sufficiently large quark masses, it is a bona fide order
parameter. The insensitivity of the Polyakov loop to the
quark mass at fixed temperature or lattice spacing is,
perhaps, not surprising. We have determined the lattice
spacing from the heavy quark potential, and in our spec-
trum runs we adjusted the coupling constant to keep the
lattice spacing fixed as the quark mass is varied. Since the
Polyakov loop, like the heavy quark potential, is deter-
mined from measurements of purely gluonic operators, our
procedure is likely to minimize the dependence of the
Polyakov loop on the quark mass.

The number of conjugate gradient iterations varies as the
temperature is changed reflecting a changing condition
number for the Dirac operator as the spectrum of states
changes. We show this quantity in Fig. 3 for the four values
of the quark mass we have studied on 16* X 8 lattices. The
sharpening of the crossover as the quark mass is reduced is
evident. The i susceptibility provides a more physical
signal for the crossover. It is given by

9 -
Xtot:T<¢w>
m
— Lo e — Ltenr 2y — Lo 12
VS<TrM TrM 1) VS(TrM ) VS<TrM ¥, (4)

where M is the fermion matrix, 7 the temperature, and V
the spatial volume. The traces in Eq. (4) were, as usual,
evaluated using the identity

TrO = (R*OR)y, (5)
N,=3, 16°x8
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FIG. 3 (color online). The number of conjugate gradient iter-
ations required for convergence of the inversion of the Dirac
operator for three degenerate flavors of quarks with masses
mg/mg = 1.0, 0.6, 0.4, and 0.2 on 16> X 8 lattices.
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FIG. 4 (color online). The ¢ susceptibility as a function of
temperature for three equal mass quarks on 12° X 6 lattices.
Results are shown for quark masses my /m, = 1.0, 0.6, 0.4, and
0.2. Note the increase in the height of the peak as the quark mass
is decreased.

where () indicates an average over vectors R of Gaussian
random numbers. We used 100 vectors of random numbers
for each gauge configuration. Of course, care must be taken
not to use the same vector of random numbers in evaluating
the product of traces in the first term of Eq. (4). We plot
in Fig. 4 for quark masses m,, 0.6m,, 0.4m,, and 0.2m, on

N,=3, 12°x6
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FIG. 5 (color online). The chiral order parameter (i) as a
function of temperature on 12° X 6 lattices for Ny = 3. The
bursts are linear extrapolations of (i) for the two lowest quark
masses to m, = 0 at fixed temperature.
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FIG. 6 (color online). The chiral order parameter {(i)) as a
function of temperature on 163 X 8 lattices for N + = 3. The
bursts are linear extrapolations of (i) for the two lowest quark
masses to m, = 0 at fixed temperature.

123 X 6 lattices. Note the increase in the height of the peak
as the quark mass is decreased.

In Figs. 5 and 6 we show the chiral order parameter /i
as a function of temperature for m, = my, 0.6mg, 0.4m,
and 0.2m, on 12° X 6 and 16> X 8 lattices, respectively.
The bursts in these figures are linear extrapolations of s
in the quark mass to m, = 0 for fixed temperature. These
figures suggest that for m, = 0 there is unlikely to be a
phase transition for temperatures above 190 MeV, but one
could occur at or below that value. For sufficiently high
temperatures and small quark masses, one expects a linear
extrapolation in the quark mass to be valid, so the vanish-
ing of ) at m, = 0 indicates that the system is in the
chiral symmetric phase. However, a nonvanishing value of
the extrapolated ¢ could indicate a first order transition at
a nonzero quark mass, or simply a breakdown in the
validity of the linear extrapolation in the quark mass.

IV. RESULTS FOR Ny =2 +1

The Ny =2 + 1 thermodynamics studies were carried
out primarily on 8 X 4, 123 X 6, and 16 X 8 lattices. In
this phase of our work, we performed simulations with two
degenerate light quarks and the heavy quark mass held
approximately equal to that of the strange quark. The
spectrum calculations and interpolations described above
allowed us to determine curves of constant physics in the
coupling constant-quark mass plane, and to determine the
lattice spacing, and therefore the temperature for each run.
As in the Ny = 3 case, we performed simulations with
aspect ratio three for N; = 4 and again obtained results
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FIG. 7 (color online). The real part of the Polyakov loop as a
function of temperature for two light and one heavy quark on
16® X 8 lattices. Results are shown for light quark masses
my, q/mg = 0.6, 0.4, 0.2, and 0.1. The mass of the heavy quark
is fixed at m.

that were indistinguishable from those with aspect ratio
two for standard thermodynamics quantities.

In Fig. 7 we plot the real part of the Polyakov loop as a
function of temperature on 16 X 8 lattices for the four
values of m, ;4 studied to date. As in the Ny = 3 study, we
observe a crossover from confined to deconfined behavior,
rather than a sharp transition, and little dependence on the
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FIG. 8 (color online). The number of conjugate gradient iter-
ations required for convergence of the inversion of the Dirac
operator of light quarks on 163 X 8 lattices. Results are shown
for light quark masses m, 4/m; =, 0.4, 0.2, and 0.1. The mass of
the heavy quark is fixed at m.
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N,=2+1, 12°x6

-I T T T | T T T T | T T T I-
- O my 4=0.6mg A
100 — © my 4=0.4m —
- 0 m,4=0.2my A
- % my4=0.1mg A
[aV]
E‘ - -
>
3 L 4
L O 4
_ o o)
P I I B
100 200 300 400
T (MeV)

FIG. 9 (color online). The i susceptibility as a function of
temperature for two light and one heavy quark on 123 X 6
lattices. Results are shown for light quark masses m, 4/m; =
0.6, 0.4, 0.2, and 0.1. The mass of the heavy quark is fixed at m.

light quark mass. In Fig. 8 we show the number of con-
jugate gradient iterations needed for inversion of the Dirac
operator for the light quarks on 163 X 8 lattices, and in
Fig. 9 we plot the ¢ susceptibility for the up and down
quarks on 123 X 6 lattices. In both figures the sharpening
of the crossover as the light quark masses are reduced is
evident.

In Figs. 10 and 11 we plot the chiral order parameter as a
function of temperature on 123 X 6 and 16 X 8 lattices.

N,=2+1, 12°x6
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FIG. 10 (color online). The chiral order parameter i as a
function of temperature on 123 X 6 lattices. The bursts are linear
extrapolations in the quark mass to m,; = 0 for fixed tempera-
ture.
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FIG. 11 (color online). The chiral order parameter i on
16® X 8 lattices. The bursts are linear extrapolations in the quark
mass to m,,; = 0 for fixed temperature.

The octagons, diamonds, squares, and fancy crosses are
data for m, ; = 0.6my, 0.4mg, 0.2mg, and 0.1m;, respec-
tively, and the bursts are linear extrapolations in m,, ; for
fixed temperatures using the 0.2m; and 0.1m, points. The
fact that the linear extrapolation of the chiral order parame-
ter becomes slightly negative suggests that in this region of
temperature and quark mass . is nonlinear, as would be
expected if there were a bona fide critical point for m, ; =
0.

V. QUARK NUMBER SUSCEPTIBILITIES

In order to study the quark number susceptibilities [16—
21], we introduce chemical potentials u, coupled to a set
of mutually commuting conserved charges Q,. The parti-
tion function can then be written

z= exp[—ﬁ(H - ZuQﬂ (©)

The quark number susceptibilities can be related to event-
by-event fluctuations in heavy ion collisions [5] by the

fluctuation-dissipation theorem |

%C” 0
X = 0

where the rows and columns are now labeled by /, Y, and B
in that order [22]. Note that in the Ny = 3 simulations for
which m, = mg = nig, Cl,l = CZ,S = CS,S? and Dl,l =
D, = Dy, so x is adiagonal matrix in this representation.
There are then no correlations between fluctuations in 7, Y,

%(Cl,l + 2Cs,s) + g(Dl,l - 2Dl,s + D\x)
0 3(Cyy — Cy + 2Dy, — D), — Dy )
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T 0%logZ
Xag(T) ={(Qq —(Qu)(Qp <Qﬁ>)>°‘vsm (7
We work at u, = 0, so the brackets () in Eq. (7) indicate
averages weighted by the standard, real Euclidean action
for QCD, and (Q,) = 0. The charges we consider are
bilinears in the quark fields, so it is possible to write x, g
in the form

Xa,ﬁ = Coz,ﬁ + Da,ﬁ’ (8)

where C, s is the contribution to y, g of connected dia-
grams in which quark fields from charge Q, contract with
those from Qp, whereas D, g is the contribution of the
disconnected diagrams in which quark fields within each
charge contract.

If we take the charges to be the number operators for up,
down, and strange quarks, then because we have set m, =
my, x takes the form

Cii+ Dy, Dy, D
X = Dy, Cy+ Dy D , )
Dl,s Dl,s Cs,s + Ds,s

where the rows and columns of the matrix are labeled by u,
d, and s in that order, and [ stands for the equal up and
down quark matrix elements.

It appears more physical to take the three independent
charges to be the z component of isospin Qj, the hyper-
charge Qy, and the baryon number Qp, where in the
continuum

0, - % f PV () AW (), (10)
_ U [ st

0y =7 f LUt () AW (), (11)

0z = % / dxVt(x) - V(x). (12)

Here W(x) is a three-component column vector, whose
components are the up, down, and strange quark fields, and
A5 and Ag are the standard diagonal generators of SU(3) in
the fundamental representation, A; = diag(1l, —1,0) and
Ag = diag(1, 1, —2)/~/3. Using these charges, y can be
written in the form

0
$(Cyy— Cyy+2D); — D, —Dgy) | (13)
§(2C); + Cys + 4Dy, + 4Dy + Dy )

|

and B. In the Ny = 2 + 1 case the only correlations are
between hypercharge and baryon number. Of course for
m, # mg, there would be correlations among the fluctua-
tions in all three charges. For temperatures below the phase
transition or crossover, the lightest particle that can be
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excited by a chemical potential coupled to the z component
of isospin is the pion, while for hypercharge and baryon
number chemical potentials it is the kaon and the nucleon,
respectively. Above the transition temperature each of the
chemical potentials can excite quark states that are much
lighter than hadrons, so we expect the diagonal elements of
X to increase sharply in the vicinity of the transition, and
they do.

As in the case of y,., these susceptibilities can be
written as expectation values of traces of the quark matri-
ces and their derivatives with respect to the chemical
potential, and unbiased estimators of the traces can be
expressed in terms of vectors of Gaussian random numbers
[16]. Here too, we use 100 random vectors for each gauge
configuration.

In Fig. 1 we plot the quark number susceptibility of
massless free quarks for the standard Kogut-Susskind,
Wilson, P4, and Asqtad actions. (With only one flavor of
quark, there is, of course, only one susceptibility). One sees
that as in the case of the energy and pressure, the suscep-
tibility of the Asqtad action is significantly closer to the
continuum result for small values of N, (large values of the
lattice spacing) than that of the Kogut-Susskind action. In
Fig. 12 we show y;, for the four quark masses we have
studied on 123 X 6 lattices with N + = 3. One again sees
the steepening of the crossover and its shift to lower
temperature as the quark mass is decreased. In Fig. 13
we illustrate the dependence of y;; on lattice spacing by

N,=3, 12°x6

06 _I | LI — | T T T T | LI | T |_

L cont A

- et E ®H

- PR ]

= I 3 N=6 ]
ST t o -
S £ ¢ :
0.2 “o ]

r + o 4

i e ¢ m=0.4mg 7

T %@ + m=0.2m 7

OO I 1 | T B | T B | [ B B | 11 ]

150 200 250 300
T (MeV)

FIG. 12 (color online). The z component of isospin suscepti-
bility x;; as a function of temperature for three degenerate
flavors of quarks with masses m,/m, = 1.0, 0.6, 0.4, and 0.2
on 123 X 6 lattices. The solid lines on the right of the figure
indicate the free quark value in the continuum and on a 123 X 6
lattice.
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N,=3, m=0.4m,, N =2\,

06 _I T T T | T T T T | T T T |_
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L @§] @ N,;=8 1
0.4 g Ne=6_|
= [ T ]
N r & 7
o L iy 4
< Lt

0.2 - i —
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- E] .
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FIG. 13 (color online). The z component of isospin suscepti-
bility x;; for three degenerate flavors of quarks with mass m, =
0.4m; on 83 X 4, 123 X 6, and 16° X 8 lattices. The solid lines
on the right of the figure indicate the value for free quarks in the
continuum and on the finite lattices on which the simulations
were carried out. The close agreement among these results is
another indication of the excellent scaling properties of the
Asqtad action.

plotting results at fixed quark mass for three values of N,.
The solid lines on the right of this figure indicate the values
of the susceptibility for free quarks in the continuum and
on the finite lattices on which the simulations were carried
out.

In Fig. 14 we plot x;; on 12% X 6 lattices for Ny =
2 + 1. As indicated in Eq. (13), this quantity is propor-
tional to the light quark connected diagram C,,;. The dis-
connected diagrams are, of course, noisier. As an example,
we plot the light quark disconnected graph in Fig. 15. This
quantity is given by

Dy ={B+Y/2?)—(B+Y/2Y = xi. (14

We see in Fig. 15 that D;; can be cleanly evaluated in the
neighborhood of the crossover, the only region in which it
is appreciable. Below the crossover one expects x;; to be
larger than Y gy 2 p+y/2, since in this regime the lowest
energy state that can be excited by a chemical potential
coupled to I, is a pion, while the lowest energy state that
can be excited by a chemical potential coupled to B + Y /2
is a kaon. Our results suggest that vestiges of hadronic
physics persist in the plasma at least up to 240 MeV. In
Figs. 16 and 17 we show results for x;; and for the strange
quark number susceptibility C;; + D on lattices with
four, six, and eight time slices for a range of spatial
volumes. There is no observable dependence on the spatial
volume. The close agreement between the N, = 6 and
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N,=2+1, 12°x6

0-6 [ | T T T T | T ]
: cont :
: g &
0.4 - T -
N L 1802 =
= 2 o N,=8
. L 4
= ¢o
x L 3]§J<I>® O m,4=06mg |
0.2 — ;D © my4=0.4mg —
r ’[i]@ 0 m,4=02m, ]
I oy P m,,=0.1m, |
I ]
® |
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FIG. 14 (color online). The z component of isospin suscepti-
bility as a function of temperature for two light and one heavy
quark on 123 X 6 lattices. Results are shown for light quark
masses m,, 4/m; = 0.6, 0.4, 0.2, and 0.1. The mass of the heavy
quark is fixed at m,. The solid lines on the right of the figure
indicate the free quark value in the continuum and on a 123 X 6
lattice.

eight results here and for Ny = 3 illustrates the excellent
scaling properties of the action and indicates that our
results are close to the continuum ones. Finally, in
Fig. 18 we plot the diagonal elements of the susceptibility
matrix, X7, Xv.y» and xp p, as a function of T/T for two
light quarks with mass 0.2m, and one heavy quark with
mass m, on lattices with six time slices. The bulk of the
data is for spatial volume 123, but for T/T- = 2 we also

N,=2+1, 12°x6

0.00

D,,/T?

—-0.05 —

FIG. 15 (color online). The disconnected part of the light
quark susceptibility D,; as a function of temperature for two
light and one heavy quark on 123 X 6 lattices. Results are shown
for light quark masses mu)d/ms = 0.6, 04, 0.2, and 0.1. The
mass of the heavy quark is fixed at m;.
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N¢=2+1, m, 4=0.2m

0.6

O —x
0.4 _ § ot ]

i .
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X1t/ T?
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FIG. 16 (color online). The z component of isospin suscepti-
bilities as a function of T/T, for two light quarks with mass
0.2m, and one heavy quark with mass m,. Results are shown for
lattices with four, six, and eight time slices. For N, = 4 the
octagons, fancy crosses, and crosses are data from spatial vol-
umes 16, 123, and 83, respectively. For N, = 6 the fancy squares
and squares are data from spatial volumes 18% and 123, while for
N, = 8 the fancy diamonds and diamonds are data from spatial
volumes 24° and 163. The solid lines on the right of the figure
indicate the value for free quarks in the continuum and on the
finite lattices on which the simulations were carried out. The
agreement between the N, = 6 and 8 results illustrate the ex-
cellent scaling property of the Asqtad action and indicates that
these results are close to the continuum ones.

Ni=2+1, m, 4=0.2mg

b4 & cont
@ @ @ g N=8 @
: N=4 |
Ne=6

FIG. 17 (color online). The strange quark number susceptibil-
ity xss as a function of T/T, for two light quarks with mass
0.2m, and one heavy quark with mass m,. Results are shown for
lattices with four, six, and eight times slices. The symbols have
the same significance as in Fig. 16. The solid lines on the right of
the figure indicate the value for free quarks in the continuum and
on the finite lattices on which the simulations were carried out.
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N,=6, N;=2+1, m, 4=0.2m,

<
o

o
N

©
0

X[,I/T27 BXB,B/(ZTZ), 3Xy,Y/(4T2)
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FIG. 18 (color online). The diagonal elements of the suscep-
tibility matrix, x;;, xp g, and xyy as a function of T/T,. for two
light quarks with mass 0.2m, and one heavy quark with mass m;
on lattices with six time slices. The squares, crosses, and
octagons show these three quantities on lattices with spatial
volume 123, while the fancy squares, fancy crosses, and fancy
pluses show them on lattices with spatial volume 18. X,y and
X, have been normalized so that they approach the same limit
as )y, at high temperatures. Also shown is the off-diagonal
matrix element yy z, which measures correlations between fluc-
tuations in the hypercharge and baryon number for spatial
volumes 123 (diamonds) and 183 (fancy diamonds). The coeffi-
cient of yy,p is the geometric mean of those for xyy and xpp.

show results for spatial volume 183. Again, there are no
observable finite size effects. yyy and xpp have been
multiplied by factors of 3/4 and 3/2, respectively, so that
the quantities plotted approach the same high temperature
limit as y;;. Also shown is xy g, the only nonzero off-
diagonal matrix element of y for m, = m,. It measures
correlations between fluctuations in the hypercharge and
baryon number. The coefficient of x; g in this figure is the
geometric mean of those for yy y and xg 5.

VI. CONCLUSION

For the quark masses we have studied to date, we find a
rapid crossover, rather than a bona fide phase transition, for
both Ny =3 and Ny =2+ 1. Our result for Ny = 3 is
consistent with recent work of Karsch et al. [23]. They find
a first order phase transition for Ny = 3 only for pion
masses below 290(20) MeV for the standard Kogut-

PHYSICAL REVIEW D 71, 034504 (2005)

Susskind action and below 67(18) MeV for the improved
P4 action on lattices with four time slices. The lightest
quark mass used in [23] corresponded to a pion mass of
170 MeV, and reweighting techniques were used to ex-
trapolate to lighter quark masses. Our lightest Ny = 3
quark mass corresponds to a pion mass of approximately
340 MeV. Because of the large difference between standard
and improved actions on these lattices, it seems particu-
larly important to push our work at N, = 6 and eight to
smaller quark masses, and we intend to do so.

The small quark mass that seems to be required for a first
order transition at Ny = 3 strongly suggests that in the real
world, Ny =2 + 1, there is no phase transition at the
physical quark masses. With this assumption, we have
estimated the critical temperature for Ny =2+ 1 at
m, 4 = 0 through an extrapolation of the form

rnT. = cy+ ci(m,/m,)* + cy(aT.)?, (15)

where we evaluated T, for each value of N, and m,/m,
for which we have made measurements from the peak
in the i susceptibility. For a second order phase transi-
tion in the O(4) universality class at m,, =0, d =
2/B6 = 1.08. We find that 7. = 169(12)(4) MeV with a
x* of 2.1 for 11 degrees of freedom. The first error is the fit
error, the second from the uncertainty in r;, taken as
0.317(7) fm [14]. To test the sensitivity of 7, to d, we
also have performed a fit with d = 2, which yields 7, =
174(11)(4) MeV with a y? of 1.5 for 11 degrees of free-
dom. So, the goodness of the fit does not allow us to prefer
either of them.

Finally, we note that the agreement between the quark
number susceptibilities on N, = 6 and eight lattices is very
encouraging, as it indicates that our results for these quan-
tities are close to their continuum values.
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